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Abstract. The design of a new, truly robust multigrid framework for the solution of
steady-state Reynolds-averaged Navier-Stokes (RANS) equations with two-equation tur-
bulence models is presented. While the mean-flow equations and the turbulence model
equations are advanced in time in a loosely-coupled manner, their multigrid cycling is
strongly coupled (FC-MG). Thanks to the loosely-coupled approach, the unconditionally
positive-convergent implicit time integration scheme for two-equation turbulence models
(UPC) is used. An extension of the UPC scheme within the multigrid method is pro-
posed. The resulting novel FC-MG-UPC algorithm is nearly free of artificial stabilizing
techniques, leading to increased multigrid efficiency. To demonstrate the robustness of the
proposed algorithm, it is applied to linear and non-linear two-equation turbulence models.
Numerical experiments are conducted, simulating separated flow about the NACA4412
airfoil and transonic flow about the RAE2822 airfoil. Results obtained from numerical
simulations demonstrate the strong consistency and case-independence of the method.
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1 INTRODUCTION

Turbulent flow simulations employing the Reynolds-Averaged Navier-Stokes (RANS)
equations are widely used in research, development, and design processes. Among the
RANS turbulence models, the two-equation k-ω [1] and k-ǫ [2] closure models are most
widely used since they are considered well-balanced in terms of computational require-
ments and physical rationale. Two-equation RANS turbulence models are based on trans-
port equations for turbulence quantities (e.g., turbulence kinetic energy), which are posi-
tive because of the underlying physics. The equations consist of convective, diffusive, and
source term operators.

Despite their relatively simple mathematical representation, two-equation turbulence
models present serious numerical difficulties, including convergence and positivity-preservation
difficulties. The common argument is that the convergence difficulties arise mainly due to
the strongly nonlinear source term, having time scales that greatly differ from those of the
convective and diffusive terms. Furthermore, in the process of convergence, non-physical
solutions, namely negative values of the turbulence quantities, may appear even if the
analytical solution exists and is analytically guaranteed to remain positive [3]. These
difficulties dramatically deteriorate convergence rates of the overall flow solver, requiring
several thousands of iterations to reach the desired convergence criterion.

Therefore, one of the main challenges in modern computational fluid dynamics (CFD)
lies in accelerating numerical methods for solving the mean-flow and turbulence model
equations in cases where conventional methods are not optimal. One of the fastest accel-
eration means known today is use of multigrid methods (MG). MG methods accelerate
convergence rates of numerical schemes by using a hierarchy of grids, based on the notion
that certain numerical error modes are more efficiently treated on a coarse grid than on
a fine grid. However, a coarse grid may only be used in conjunction with a finer one,
requiring proper data transfer between successive grids.

MG methods rely on two basic principles: Smoothing and Coarse Grid Correction
(CGC). First, standard iterative methods (e.g., Gauss-Seidel) with good smoothing (that
is, elimination of high spatial frequency modes) properties are used to treat non-smooth
errors in the solution. Pre-smoothing is required because only a smooth error is well
represented both on fine and coarse grids, while non-smooth errors exhibit aliasing on
coarse grids, significantly reducing the efficiency of CGC [4]. After a smooth error is
obtained on the finest grid where a solution is sought, relaxation continues on coarser
grids which are achieved by eliminating every other grid line in each coordinate direction.
A coarse grid relaxation is substantially (up to four times in 2D) cheaper than its fine grid
counterpart, and is also more efficient in eliminating errors which are relatively smooth on
a finer grid. Thus, efficiency can be increased by transferring (restricting) some of the fine
grid iterations required for convergence, to a coarser grid, and interpolating (prolongating)
the results, that is, applying a coarse grid correction, to advance the solution on the finest
grid.
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While MG methods are well defined in a mathematical sense [5, 6], their efficient ap-
plication for RANS equations with two-equation turbulence models is rather difficult.
Among the barriers currently standing in the way of demonstrating an optimally effi-
cient MG method for the RANS equations is the successful incorporation of turbulence
transport equations in the multigrid framework [7].

There are two basic approaches to the incorporation of turbulence models in MG
methods:

• Mean-flow multigrid (MF-MG)

• Fully-coupled multigrid (FC-MG)

In MF-MG [8, 9, 10], the mean-flow equations are solved on all grid levels, while the
turbulence model equations are integrated only on the finest grid where a solution is
sought, as in single-grid computations. In this approach, turbulence variables are sim-
ply injected onto coarser grids, where they are frozen. This allows bypassing numerical
difficulties arising from the destabilizing effects of productive turbulence model source
terms [11]. However, mean-flow equations convergence was proven to be highly influenced
by turbulence model equations convergence [12]. Therefore, insufficient acceleration of
the turbulence transport equations due to a partial use of single-grid computations in
MF-MG may result in an overall reduced convergence rate, compared to fully-coupled
multigrid.

An alternative to MF-MG, is the fully-coupled multigrid approach (FC-MG), in which
both the mean-flow equations and the turbulence model equations are solved on all grid
levels that are created in a multigrid framework. Although FC-MG is regarded as be-
ing more efficient in terms of convergence, its actual implementation is far from being
straightforward. Usually, artificial stabilization techniques are used [13, 14, 15, 16] to
overcome numerical difficulties encountered in integration of turbulence transport equa-
tions on coarse grid levels of the MG hierarchy. While these techniques increase stability
of multigrid for the RANS equations coupled with two-equation turbulence models, they
may also hinder convergence rates.

The present study focuses on designing a multigrid method for an implicit solver of
the compressible RANS equations, together with a two-equation turbulence model. The
work was guided by the belief that designing a robust multigrid method for this prob-
lem strongly depends on use of a highly stable scheme for the turbulence model equa-
tions. It was realized that some of the difficulties encountered in the multigrid solution
of RANS turbulence models occur in fact due to the use of insufficiently stable relax-
ation schemes, rather than to the multigrid concept itself. Therefore, the uncondition-
ally positive-convergent (UPC) time integration implicit scheme for turbulence transport
equations developed by Mor-Yossef and Levy [17] is adopted in this work and successfully
extended for use in multigrid methods, allowing for smooth incorporation of these equa-
tions in a multigrid framework for the RANS equations. The proposed method is based
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on a Full Approximation Storage (FAS) fully-coupled multigrid approach (FC-MG). The
method is nearly free of stabilization fixes and other techniques commonly used to avoid
numerical difficulties.

2 GOVERNING EQUATIONS

The governing equations are obtained by Favre-averaging the Navier-Stokes equations
(RANS) and modeling the Reynolds stress. The unknown Favre-averaging Reynolds stress
tensor is modeled in this work via linear or non-linear two-equation turbulence models.
The linear model used is the k-ω turbulence model developed by Kok [18], which is
considered to be topology-free and was designed to resolve the well-known dependency
on free-stream values of ω. The non-linear model used is based on Kok’s model together
with the Explicit Algebraic Reynolds Stress Model (EARSM) developed by Wallin and
Johansson [19]. Hereafter the linear and non-linear turbulence models are referred to as
kω-Linear and kω-EARSM , respectively.

In a compact conservation law form, the 2D RANS equations may be expressed in
Cartesian coordinates as follows:

∂Q

∂t
+
∂(F c − F d)

∂x
+
∂(G c − G d)

∂y
= S (1)

The vector Q = {Q,q} denotes the dependent variables vector of mean-flow equations,
Q, and of the turbulence model equations, q, given as:

Q =




ρ
ρu
ρv
E


 , q =

[
ρk
ρω

]
(2)

The fluid density is denoted by ρ, the Cartesian velocity vector components are denoted
by u and v, and E denotes the total energy. The turbulence kinetic energy is denoted by
k. The second turbulence quantity is denoted by ω, representing the specific turbulence
dissipation rate. The convective flux vectors are denoted by F c = {Fc, fc} and G c =
{Gc, gc}, where Fc, Gc and fc, gc are the mean-flow and turbulence model equations
convective flux vectors, respectively:

Fc =




ρu
ρuu+ p
ρuv

u (E + p)


 , Gc =




ρv
ρuv

ρv2 + p
v (E + p)


 (3)

fc =

[
ρuk
ρuω

]
, gc =

[
ρvk
ρvω

]
(4)
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The diffusive flux vectors are denoted as F d = {Fd, fd} and G d = {Gd, gd} where Fd,
Gd and fd, gd are the mean-flow and turbulence model equations diffusive flux vectors,
respectively:

Fd =




0
τxx
τxy

uτxx + vτxy + κd
∂T
∂x


 , Gd =




0
τxy
τyy

uτxy + vτyy + κd
∂T
∂y


 (5)

fd =

[
µk

∂k
∂x

µω
∂ω
∂x

]
, gd =

[
µk

∂k
∂y

µω
∂ω
∂y

]
(6)

The fluid temperature is denoted by T and κd = κl + κt represents the thermal conduc-
tivity of the fluid with κl and κt being the molecular and turbulent thermal conductivity
coefficients, respectively. The shear stresses are defined as:

τxx = 2 (µ+ µt)
∂u

∂x
−

2

3
(µ+ µt)

(
∂u

∂x
+
∂v

∂y

)
−

2

3
ρk + ψτnlxx (7)

τyy = 2 (µ+ µt)
∂v

∂y
−

2

3
(µ+ µt)

(
∂u

∂x
+
∂v

∂y

)
−

2

3
ρk + ψτnlyy (8)

τxy = (µ+ µt)

(
∂u

∂x
+
∂v

∂y

)
+ ψτnlxy (9)

where τnlxx, τ
nl
xy, and τ

nl
yy represent the supplementary high order terms used in the EARSM

model, and the scalar ψ distinguishes between the linear (ψ = 0) and non-linear (ψ = 1)
models. The molecular viscosity, µ, is calculated from Sutherland’s law, and µt denotes
the turbulent viscosity. The turbulence diffusive flux vector coefficients µk, µω are defined
as:

µk = µ+
µt

σk
(10)

µω = µ+
µt

σω
(11)

where σk, σω are model-specific closure coefficients. The mean-flow equations are closed
using the equation of state for a perfect gas, given by:

p =

[
E −

1

2
ρ
(
u2 + v2

)]
(γ − 1) (12)

where γ is the ratio of specific heats (cp/cv), set to γ = 1.4. In the flows examined in
this work, source terms appear only due to turbulence model equations. Therefore, the
source-term vector S is represented by:

S =
[
0 0 0 0 Sk Sω

]T
(13)

Detailed formulation of the source-term and model-specific constants may be found in the
original publications [18, 19].
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3 NUMERICAL METHOD

A conservative cell-centered finite volume methodology is employed to discretize the
governing equations on structured grids. Let Ca denote the control area (defined by a grid
area element), and let ∂Γ denote the control area boundary, with n = [nx, ny]

T being the
outward-pointing unit normal vector to ∂Γ. Therefore, the integral form of Eq. (1) for a
control area Ca can be expressed as:

∂

∂t

∫

Ca

Q dA+

∫

∂Γ

(H c − H d) dl =

∫

Ca

S dA (14)

where H c = F cnx + G cny, and H d = F dnx + G dny.

3.1 Spatial Discretization

The semi-discrete form of Eq. (14) for cell i of a non-deforming grid is given by:

Ai

dQ i

dt
= −

∑

j∈N(i)

(
H cij − H dij

)
lij + S iAi ≡ R i (15)

where Q i is the vector of cell-averaged conservative variables, and S i is the cell source
vector. The terms H cij and H dij are the convective and diffusive fluxes, respectively,
normal to the interface ij shared by cell i and its neighboring cell j. Ai is the cell area,
and t represents the time. The term lij is the face length of the interface ij, and N(i)
denotes the set of cell i’s neighbors (direct face neighbors). The vector R i signifies the
right hand side (residual) of the equation set:

R i =
{
RT , rT

}T

i
(16)

where R represents the residual of the mean-flow equations, and r represents the residual
of the turbulence model equations.

The convective flux vector of the mean-flow equations is computed at the cell interface
using the HLLC scheme proposed by Batten et al. [20]. The diffusive flux vector of
the mean-flow equations is discretized by employing central differencing based on the
diamond stencil [21]. The convective flux vector of the turbulence model equations is
computed based on the first-order passive scalar approach [22], within the HLLC numerical
framework [20]. The turbulence model diffusive flux vector is evaluated according to the
thin-layer approximation.

3.2 Time Integration

Implicit time marching of both the mean-flow, and the turbulence model discretized
equations is employed, based on the first order implicit backward Euler method:

[
A

∆t
I −

∂R

∂Q

]n
∆Q n = R n (17)
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where I is the identity matrix, and the ∆ operator is defined as the increment between
time levels n and n+1. Equation (17) is solved using the alternating line symmetric Gauss-
Seidel method, in a loosely coupled manner. Loosely coupled time integration possesses
several advantages over a coupled strategy. It is easy to implement and it provides the
enhanced flexibility required to design a stable and efficient scheme for the turbulence
model equations.

3.2.1 Mean-Flow Equations Time Integration

The algebraic set of the discretized mean-flow equations may be written as:

[
A

∆t
I −

∂R

∂Q

]n
∆Qn = Rn (18)

The evaluation of the exact Jacobian ∂R
∂Q

, of the high-order, nonlinear explicit operator R
is very complicated. To alleviate this difficulty, the common practice is to approximate the
Jacobian using the spatial lower-order accuracy of the explicit operator, meaning that the
approximated Jacobian of the convective part is based on a first-order spatial accuracy of
the convective explicit operator. The Jacobian of the diffusive part is based on the thin-
layer approximation, namely, the approximated Jacobian is based on a compact stencil
which takes into account only direct face neighbors. Moreover, the non-linear Reynolds-
stress tensor that appears in the mean-flow equations is treated implicitly only with regard
to its linear part. The remaining high-order terms, namely τnlxx, τ

nl
xy and τnlyy , are treated

explicitly. In the current work, the approximated Jacobian of the mean-flow convective
part is evaluated using the HLLC Jacobian by Batten et al. [20]. The diffusive part of
the Jacobian is calculated analytically. An implicit treatment of boundary conditions is
employed only for wall boundaries. To improve iterative convergence to a steady state
solution, the B2 scheme proposed by Batten et al. [20] is used.

3.2.2 Turbulence Model Equations Time Integration Method

Similarly to the algebraic set of the discretized mean-flow equations, the algebraic set
of the discretized turbulence model equations is given by:

[
A

∆t
I −

∂r

∂q

]n
∆qn = rn (19)

A straightforward implementation of the turbulence model equations’ exact Jacobian, ∂r
∂q
,

usually leads to an unstable scheme that exhibits convergence and positivity preserving
difficulties. These numerical difficulties are even further amplified in a multigrid frame-
work. Any lagging in the turbulence model time integration, with respect to that of the
mean-flow equations, may hinder the convergence rate. Therefore, a highly stable implicit
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scheme for the turbulence model equations is vital for the success of FC-MG computa-
tions. It should be noted that the B2 scheme is not used for time integration of the
turbulence model equations, and therefore Eq. (19) is employed only in the second step
of the B2 scheme of the mean-flow equations.

In this work, the unconditionally positive-convergent (UPC) time integration implicit
scheme for turbulence transport equations developed by Mor-Yossef and Levy [17] is
adopted and successfully extended for use in multigrid methods. The key idea of the
UPC scheme is the design of the implicit operator to form an M-matrix [23]. Specifically,
the Jacobian, − ∂r

∂q
, is approximated by a matrix M ≈ − ∂r

∂q
such that it fulfills the

following two conditions:

1. M is an M-matrix

2. r + Mq is a non-negative vector (i.e., all its entries are non-negative)

By substituting the matrix M for the matrix − ∂r
∂q
, Eq. (19) may be rewritten as:

[
A

∆t
I +M

]n
∆qn = rn (20)

Eq. (20) represents an unconditionally positive-convergent scheme. Complete details of
the proof and construction may be found in Ref. [24].

4 MULTIGRID METHOD

For nonlinear equations such as the RANS and turbulence model equation set, the Full
Approximation Storage (FAS) multigrid algorithm [25] is mostly used. In multigrid meth-
ods, a hierarchy of grids is constructed based on successive coarsening (e.g., elimination of
every other grid line, in each direction) of a given fine grid of mesh size h. The resulting
grids are of typical mesh sizes 2h, 4h, 8h, etc. Normally, 4 fine-grid cells compose a single
underlying coarse-grid cell.

The numerical solution is sought on the finest grid in the hierarchy, while the un-
derlying coarse meshes are used to damp low-frequency error modes that can not be
efficiently reduced using fine-grid relaxations. Pseudo-time iterations (i.e., Gauss-Seidel
relaxation, as described in sections 3.2.1, 3.2.2) are employed on all grid levels to smooth
errors of wavelengths comparable to the corresponding mesh size. As a result, the entire
error spectrum is reduced at a comparable rate, leading to notably faster convergence
characteristics.

The governing equations, given in integral form in Eq. (14), may be rewritten in oper-
ator notation as:

∂

∂t

∫

Ca

Q dA = −

[∫

∂Γ

(H c − H d) dl −

∫

Ca

S dA

]

︸ ︷︷ ︸
N (Q )

(21)
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Where N (Q) is a nonlinear operator representing the RANS and turbulence model equa-
tions, operating on the dependent-variable vector Q . The equivalent discrete operator,
sampled on a grid of mesh size h, is denoted by N h

(
Qh

)
.

4.1 Basic Multigrid Algorithm

The basic multigrid algorithm employed in this work is based on a V-Cycle composed
of pre-relaxation, restriction, coarse-grid correction and post-relaxation. Each V-cycle is
based on recursively invoking the following two-grid algorithms where h and H denote
fine and coarse grid levels, respectively.

Fine-grid pre-relaxation: N h
(
Q̄h

)
= −Rh

Pre-relaxation sweeps are performed on the fine-grid to achieve an approximate
solution Q̄h and a corresponding smooth numerical residual Rh . One or two pre-
relaxation sweeps are necessary to ensure that transferred fine-grid defects (resid-
uals) are correctly sampled on coarser grids in the hierarchy, with relatively small
aliasing.

Restriction to a coarser grid: NH
(
IH
h
Qh

)
− NH

(
IH
h
Q̄h

)
= ĨH

h

(
Rh

)

Using numerical restriction operators, appropriate coarse-grid equations are con-
structed to reduce low-frequency fine-grid errors. An area-weighted restriction op-
erator IH

h
is employed to transfer the current fine-grid approximate solution Q̄h to

a coarser grid. The transferred fine grid residual, ĨH
h

(
Rh

)
, is calculated by summing

four equivalent fine-grid residuals.

Coarse-grid relaxations: NH
(
Q̄H

)
= NH

(
IH
h
Q̄h

)
+ ĨH

h

(
Rh

)
︸ ︷︷ ︸

F ine−grid Constants

−RH

The coarse-grid equation is solved using local iterations, starting from the initial so-
lution Q̄H

0
= IH

h
Q̄h . Coarse-grid relaxations yield an approximate solution Q̄H ,

and a corresponding coarse-grid residual RH . Note that the first iteration on the

coarse-grid is driven only by ĨH
h

(
Rh

)
, since NH

(
Q̄H

0

)
= NH

(
ĨH
h
Q̄h

)
. Note

that the first two expressions on the right-hand-side of the coarse-grid equation,
which originate from the fine-grid, remain constant throughout coarse-grid relax-
ations.

Numerical tests showed that for this problem, FAS multigrid does not require a
direct and most accurate solution on the coarsest grid to ensure efficient accelera-
tion. In fact, attempts to use a large number of iterations in order to achieve an
accurate solution on the coarsest grid yield unrealistically large values of turbulent
viscosity originating from large initial fine-grid turbulence defects contributing to
uncontrolled turbulence production on coarser grids.
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Coarse-grid correction: ∆Q̄h = Ih
H

(
Q̄H − IH

h
Q̄h

)

The approximate coarse-grid solution Q̄H is transfered (prolongated) back to the
fine-grid, where it is used to correct the current fine-grid solution Q̄h . The prolon-
gation operator is based on bi-linear interpolation. One should bear in mind that for
the commonly used two-equation turbulence models (such as the k-ω and the k-ǫ)
the turbulence model quantities vary strongly near the wall. Therefore, bi-linear in-
terpolation may not be sufficiently accurate. Modified interpolations may alleviate
this issue by offering better representation of large near-wall gradients.

Fine-grid post-relaxation: N h
(
Q̄h

)
= −Rh

Aside from valuable corrections, application of a coarse-grid correction also intro-
duces new errors to the fine-grid solution, arising from interpolation inaccuracies.
Several post-iterations are performed to reduce these new errors. In the present work
it was found that at least four post-relaxations are required to efficiently reduce the
new error components introduced by interpolating and applying a coarse-grid cor-
rection.

4.2 Extension of the UPC Scheme for Multigrid

The original UPC scheme ensures positivity and convergence for time-integration of
turbulence model equations in single-grid computations. However, in multigrid, a mod-
ification of the UPC scheme is required to retain the positivity of turbulence variables
on coarse grid levels as well. On coarse grid levels, forcing terms (transferred fine-grid
residuals, and residuals calculated based on the transferred solution) of the turbulence
model equations may be regarded as additional source terms. Unless they are appro-
priately treated they may cause loss of positivity of turbulence variables. Hereafter, an
appropriate numerical treatment of these terms is presented, aimed at extending the UPC
scheme for use in multigrid methods.

Let n (q) denote the non-linear discrete operator representing the turbulence model
equations alone, correspondingly operating on the turbulence variables vector q (similar
to equation (21)). A typical discrete coarse-grid equation for the turbulence variables is
of the form:

nH
(
q̄H

)
= nH

(
IH
h q̄h

)
+ ĨH

h

(
rh

)
︸ ︷︷ ︸

forcing term

−rH (22)

Where the forcing term (labeled in equation (22)) denoted by,

cH ≡ [ck, cw]
∆
= nH

(
IH
h q̄h

)
+ ĨH

h

(
rh

)
(23)

is a constant vector. Consequently, the time-marching delta-form of the discretized tur-
bulence model equations on the coarse grid level is given in (the index H is hereafter
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omitted for convenience): [
A

∆t
I +M

]n
∆qn = rn − c (24)

The motivation is to modify the implicit operator to appropriately account for the new
source term, in the form of vector c. First, the vector (−c) is decomposed to positive and
negative parts as follows:

−c = cP − cN (25)

where cP and cN are defined as:

cP =
1

2
[|−c|+ (−c)] (26)

cN =
1

2
[|−c| − (−c)] (27)

The resulting set of equations is:
[
A

∆t
I +M

]n
∆qn = rn + cP − cN (28)

For the purpose of extending the UPC scheme for use on coarse-grid levels, the implicit
delta form of equation (28) is split and rewritten as follows (assuming ∆t→ ∞):

Mnqn+1 = rn +Mnqn + cP − cN (29)

The stabilizing term originating from discretization of the time derivative is dropped in
order to ensure an unconditionally positive-convergent scheme. Bearing in mind that
the basic UPC scheme (designed for single-grid computations) ensures that the vector
rn +Mnqn is non-negative, on coarse-grid levels, the presence of the additional constant
vector −cN may not meet the condition of a non-negative right-hand side of the non-delta
form equation, namely that the right hand side vector of Eq. (29) will be non-negative.
By approximating cN as:

cN ≈ Cqn+1 (30)

where the matrix C is defined as follows:

C =

[
(ck)N
(ρk)n

0

0
(cω)N
(ρω)n

]
(31)

equation (29) may be recast as

[M+ C]n qn+1 = rn +Mnqn + cP (32)

Since the left-hand side matrix, [M+ C] is also an M-matrix, and since the right-hand
side vector of Eq. (32), rn + Mnqn + cP , is non-negative, positivity of the vector qn+1
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is unconditionally guaranteed. Finally, the delta form of the extended UPC scheme for
coarse-grid levels is attained by adding the vector -Cnqn(≡ −cN) to both sides of equa-
tion (32), and returning the vector Mnqn to its original place on the left-hand side of the
equation: [

A

∆t
I +M+ C

]n
∆qn = rn − c (33)

Although, Eq. (33) guarantees positivity and convergence for any time step, in practice it
was found that using an infinite time step for the turbulence model equations results in an
excessive and unrealistic build-up of turbulent viscosity values on coarse-grid levels. This
anomaly was mainly noted during early stages of the simulation when the transferred fine-
grid defects are still large. However, numerical experiments show that stable simulations
can be achieved with a turbulence model CFLT number as high as twice the CFL number
that is used for the mean-flow equations. It should be emphasized that realizability
constraints [26] that were derived for the basic turbulence model are not adequate for
coarse-grid levels, since the additional fine grid defect may be regarded as an additional
source or production term, which the basic realizability constraints do not account for.
This is believed to be the origin of the excessive build-up of turbulent viscosity on coarse
grid levels.

5 NUMERICAL EXAMPLES

Two well-known test cases are simulated and examined using the proposed multigrid
method. The aim of the tests is twofold: first to study the convergence characteristics of
the new multigrid algorithm; and second, to verify that the proposed procedure indeed
preserves the positivity of the turbulence variables. The first test case is the separated
flow about the NACA4412 airfoil at high incidence. The second test is the transonic flow
about the RAE2822 airfoil. Several general remarks and definitions should be made prior
to proceeding:

• The convergence criterion was set to a drop of eight orders in the magnitude of the
mean-flow equations residual, compared to the initial residual.

• Convergence was measured in normalized work units (WU), each equal to the com-
putational time that is required to perform a single fine-grid relaxation sweep.

• A uniform CFL number was used on all grid levels of a given simulation. The
maximum CFL (as stated in the description of the simulation) was achieved after
10 cycles, or 40 iterations, in multigrid and single-grid simulations, respectively.

• A multigrid hierarchy of 3 grid levels was used in all simulations that were conducted
in this work. In addition, a hierarchy of 4 grid levels was used in two of the test-cases
(marked by ”MG 4L”).
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• It is important to emphasize that in all conducted simulations, no clipping of tur-
bulence variables was employed, nor were there any bounds enforced on turbulence
model terms.

5.1 Boundary and Initial Conditions

Characteristic boundary conditions based on the Riemann invariant are used for the
mean-flow equations, and enforced at subsonic inflow and outflow regions. The inflow
turbulence kinetic energy is evaluated according to the relation k = 3

2
(Tu · U∞)2 where

Tu represents the turbulence intensity. The inflow turbulence dissipation rate is set so that
normalized inflow turbulent viscosity is equal to µt∞ = 0.01. At the outflow boundary,
turbulence variables are extrapolated from interior values. Wall boundary conditions for
the turbulence kinetic energy are set to k = 0, while the turbulence dissipation rate at
the wall is determined following the treatment proposed in Ref. [27]:

ωwall = CN
19

9

6νwall

β (∆y1)
2 (34)

where CN = 0.1×min [50, max(10, Re∞∆y1 − 20)], Re∞∆y1 is the cell Reynolds number
and ∆y1 denotes the distance to the first cell center neighboring the wall, as measured
from the wall. The initial solution of the mean-flow equations and of the turbulence model
equations is set to uniform free-stream flow throughout the flow-field.

5.2 NACA4412 airfoil

Simulation of the flow about a NACA4412 airfoil at high incidence is a well-known
test for a solver’s ability to accurately resolve high lift separated flows. In the current
work, flow about the airfoil at an incidence of α = 13.87◦, a Mach number of M∞ = 0.2
and a Reynolds number of Re∞ = 1.52×106 is simulated using the kω-Linear turbulence
model, and compared to the experimental results of Ref. [28]. Two different grid topologies
were examined: a C-type grid, and an O-type grid. Common grid parameters are given in
Table 1. At experimental flow conditions [28], a steady trailing-edge separation is present.

Grid name Grid dim. Far-field ∆y1 y+

C-type grid 243 × 67 14 chords 5× 10−6 ≤ 1
O-type grid 283 × 95 25 chords 3× 10−6 ≤ 0.62

Table 1: NACA4412 computational grid information

Figure 1 shows a comparison of calculated stream-wise velocity profiles and experimental
data at four stations along the upper airfoil surface (η represents the axis perpendicular
to the airfoil surface). The numerical results appear to be in good agreement with the
experimental results. Specifically, the velocity profile at the separation region is accurately
predicted.
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Figure 1: Comparison between calculated and measured stream-wise velocity profiles at four stations
along the upper NACA4412 airfoil surface: ◦, experiment [28], — computation.

A comparison of convergence histories recorded using the single-grid and multigrid
methods is given in Figure 2, for both the C-type and O-type grids. Note that a 4 level
MG hierarchy was also evaluated using the O-type grid. The simulations were conducted
with a mean-flow CFL as high as CFL=400. While the CFL of the turbulence model
(CFLT) was as high as CFLT=800 in multigrid computations, and CFLT → ∞ in single-
grid computations. An acceleration factor of two was obtained for tests performed with
the C-grid. Moreover, while the SG solver failed to reach convergence using the O-type
grid (even with lower CFL and CFLT numbers), the 3 level MG solver converged using
the same grid in only 343 work units, corresponding to 53 MG cycles. The 4 level MG
solver converged in 312 work units, corresponding to 44 MG cycles. Hence, in this case,
further acceleration of 10% is achieved through use of a 4 level MG hierarchy, compared to
use of a 3 level MG hierarchy. The similarity of MG performance for both topologies (C-
type and O-type grids) indicates the robustness and consistency of the proposed method.
Noteworthy is the fact that the convergence characteristics of the mean-flow equations and
of the turbulence model equations are similar. Consequently, it is recognized that stability
and convergence of the mean-flow equations and of the turbulence model equations are in
some sense coupled. This can be realized from the fact that, although these two sets of
equations are solved in a loosely-coupled time marching manner, their multigrid cycling is
strongly coupled. Furthermore, it is well known that due to the high numerical stiffness of
turbulence model equations, turbulent simulations converge slowly as they require the use
of smaller time steps along with the need to closely follow the evolution of the simulation.
In contrast, the use of the UPC scheme completely overturns the trend. The ability to
utilize a very large time step for the turbulence model solver guarantees fast convergence
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Figure 2: Comparison of convergence histories for the NACA4412 airfoil at Re∞ = 1.52×106, M∞ = 0.2,
α = 13.87o, MG(CFL=400,CFLT=800) vs. SG(CFL=400,CFLT=∞).

of the turbulence equations, with respect to the current mean flow state. This is achieved
while guaranteeing positivity of turbulence quantities. Thus, apart from stabilizing time-
integration of turbulence model equations, use of the UPC scheme also brings about an
accelerated convergence of the mean-flow equations as well.

5.3 RAE2822 airfoil

The simulation of the transonic flow about the RAE2822 supercritical airfoil is another
well-known test case. The experiment performed by Cook et al. [29] covers a wide variety
of flow conditions. In this work, flow at Mach number, M∞ = 0.734, Reynolds number,
Re∞ = 6.5×106, and an incidence angle of α = 2.54◦ (referred to as case 9 in Ref. [29]) was
simulated using the proposed method, with the kω-Linear and kω-EARSM turbulence
models. Two C-type grids were employed in the current test: a fine grid, and a coarser
grid. Common grid parameters are given in Table 2.

Grid name Grid dim. Far-field ∆y1 y+

Coarse grid (C) 275 × 67 31 chords 5× 10−6 ≤ 1.9
Fine grid (C) 435 × 123 23 chords 1× 10−6 ≤ 0.43

Table 2: RAE2822 computational grid information

A comparison of the calculated surface pressure coefficient with the experimental
data [29] is displayed in figure 3. The overall agreement between computational and
experimental data is very good. Specifically, the shock wave location is accurately cap-
tured. A comparison of convergence histories recorded using the single-grid and multigrid
methods, with the kω-Linear turbulence model, is presented in Figure 4. The simula-
tions were conducted with a maximum mean-flow CFL=200. the CFL of the turbulence
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Figure 3: Comparison between Cp distributions on the RAE2822 airfoil; ◦, experiment (Cook, 1979); - - -,
computation with kω-EARSM turbulence model (fine-grid); —, computation with kω-Linear turbulence
model (fine-grid)

model (CFLT) was as high as CFLT=400 in multigrid computations, and CFLT → ∞ in
single-grid computations. Acceleration factors of nearly three times are obtained using
the coarse and fine grids. Note that a 4 level MG hierarchy was also evaluated using the
fine grid.

Strong evidence as to the robustness of the proposed MG algorithm can also be seen
by noting that 3 level MG converges on the two examined grids in 245 and 357 work
units (corresponding to 38 and 51 cycles) for the coarse and fine grid, respectively. On
the other hand, single grid simulations yielded slower convergence using the fine grid than
that achieved with the coarse grid, as expected. The 4 level MG solver converged in 291
work units on the fine grid, corresponding to 41 MG cycles. Hence, in this case, further
acceleration of 18% is achieved through use of a 4 level MG hierarchy, compared to use of
a 3 level MG hierarchy. In addition, it can be seen that SG computations on the fine grid
suffer from noticeable convergence oscillations, while MG convergence remains smooth.

A comparison of convergence histories obtained using the SG and MG methods, with
the kω-EARSM turbulence model, on the coarse RAE2822 grid is presented in Figure
5. While a maximum CFL=200 and CFLT=400 were allowed in multigrid computations,
only CFL=50 and CFLT=100 were allowed in single-grid computations. Acceleration
factors of nearly two are achieved using the MG method, with respect to an equivalent SG
simulation. The robustness of the proposed FC-MG-UPC method is once again shown in
the fact that its suitable for both the non-linear (EARSM) turbulence model, as well as for
the linear turbulence model, without requiring unique numerical treatment or stabilization
fixes for any of the models. In addition, it should be noted that use of the proposed
method also provides similar acceleration factors for both turbulence models examined in
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Figure 4: Comparison of convergence histories obtained using the kω-Linear turbulence model for the
RAE2822 airfoil at M∞ = 0.734, Re∞ = 6.5 × 106, and α = 2.54◦ (referred to as case 9 in Ref. [29]),
MG(CFL=200,CFLT=400) vs. SG(CFL=200,CFLT=∞).
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Figure 5: Comparison of convergence histories obtained using the kω-EARSM turbulence model for the
RAE2822 airfoil at M∞ = 0.734, Re∞ = 6.5 × 106, and α = 2.54◦ (referred to as case 9 in Ref. [29]),
MG(CFL=200,CFLT=400) vs. SG(CFL=50,CFLT=100).
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this work, with respect to an equivalent SG method.

6 Summary

A robust multigrid method for the solution of RANS equations with two equation
turbulence models is presented. The method employs a basic relaxation scheme (alter-
nating line Gauss-Siedel) where mean-flow and turbulence model equations are marched
in time in a loosely-coupled manner. Two pillars stand at the base of the proposed MG
method: Use of an extended version of the unconditionally positive-convergent scheme for
two-equation turbulence models, adapted for use in multigrid, and the use of a strongly
coupled multigrid cycling strategy. Minimal stabilization in the form of damping of tur-
bulence equations coarse grid corrections was found to be necessary in order to ensure
the positivity of turbulence quantities. The resulting MG method, termed FC-MG-UPC,
is suitable for robust simulations of a wide range of flows thanks to being nearly free of
artificial stabilization techniques, and user-supplied parameters. Numerical experiments
showed that the proposed FC-MG-UPC method increases the efficiency compared to an
equivalent single-grid method based on the UPC scheme by a factor of up to three. More-
over, the method has proven to be more stable than an equivalent SG-based method,
allowing the use of higher CFL numbers for the mean-flow equations and even rapid
convergence in a case where the SG-based method failed to converge. Thanks to the
added stability gained by the use of the UPC scheme, a uniform CFL number and second
order spatial accuracy could be used on all grid levels of the MG hierarchy. Moreover,
the robustness of the proposed FC-MG-UPC method is well reflected by its impressive
performance with the non-linear, EARSM , turbulence model, which is considered to be
more numerically stiff than linear models.
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