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Abstract. The paper presents a numerical simulation of blood flow using generalized viscoelas-
tic model. Mathematical model is based on incompressible Navier-Stokes equations which are
generalized to take into acount viscoelasticity and shear-thinning properties of blood flow. The
numerical method used for solution of the governing system of equations is based on the Fi-
nite Volume discretization. The scheme uses central in space discretization of cell-centered type
on structured grid. The steady solution is obtained by time-marching technique using artificial
compressibility method.
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1 INTRODUCTION
This study presents a numerical simulation of blood flow using shear-thinning viscoelastic

model.
Blood is a suspension of large number of formed elements (cells) in an aqueous polymer

solution (plasma). There are three kinds of cells: Red blood cells (RBC) , white blood cells
(WBC) and platelets. RBC has biconcave shape with diameter of about 7 · 10−6m. The blood
cells are present in a ratio of approximately 45% cells and 55% plasma. Plasma contains water
(approximately 90-92% by weight), mineral ions such as K+, Na−, Cl−, HCO−3 , HPO−4 ,
(approximately 1-2%) and the reminder (7%) are various proteins. The red blood cells have a
tendency to attach themselves side by side to form what are described as rouleaux, resembling
a stack of coins. The phenomena to form rouleaux is called aggregation. The attraction is
attributed to charged groups on the surface of cells. The process is reversible and also depends
on the presence fibrinogen and globulins. The red blood cells also can deform into a infinite
variety of shapes without changing volume or surface area. All above mentioned properties of
blood results in conclusions that blood can be described as a non-Newtonian (shear-thinning,
viscoelastic) liquid.

The computational test case is based on two dimensional symmetric channel geometry imi-
tating idealized blood vessel. The channel is either widened to simulate the vessel aneurysm, or
is narrowed to simulate its stenosis. The aim of this study is to show the differences in solutions
obtained by four types of models often used in blood flow simulations. These are the Newtonian,
Generalized Newtonian, Odroyd-B and Generalized Oldroyd-B models.

2 MATHEMATICAL MODEL
Mathematical model is based on incompressible Navier-Stokes equations which are general-

ized to take into account viscoelasticity and shear-thinning properties of blood flow. The model
used to capture viscoelastic properties of the blood flow is the generalized Oldroyd-B model.
The numerical method used for solution of the governing system of equations is based on the Fi-
nite Volume discretization. The scheme uses central in space discretization of cell-centered type
on structured grid. The steady solution is obtained by time-marching technique using artificial
compressibility method. The governing system of equations is based on Navier-Stokes equations
using Johnson-Segalman model for stress tensor. The system of equations can be written in the
following general form:

div u = 0 (1)

ρ
du
dt

= divT−∇p (2)

T + λ1
δT

δt
= 2µ(γ̇)(D + λ2

δD

δt
) (3)

Here T is the stress tensor, D is symmetric part of the velocity gradient, γ̇ is the shear rate and
λ1 and λ2 denote the relaxation- resp. retardation time. Stress tensor T can be splitted into two
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parts:

T = Ts + Te (4)
Ts = 2µsD (5)

Te + λ
δT

δt
= 2µeD (6)

Te =

 t1 t2 t3
t2 t4 t5
t3 t5 t6

 (7)

where Ts is solvent part of stress tensor that corresponds to Stokes law for Newtonian fluid.
Te is viscoelastic (extra stress) part of stress tensor, the derivative expression δ

δt
is convected

derivative, which is for general quantity Q following:

(δQ
δt

)
a

= Q̇−WQ + QW + a(DQ + QD) (8)

2.1 Viscoelasticity contribution

Viscoelastic part of stress tensor Te is a symmetric tensor of second order (as well as T and
Ts) therefore six components (in three dimensions) must be computed. Extra stress tensor can
be evaluated from the following equation:

∂Te

∂t
+ (u · ∇)Te =

2µe
λ

D− 1

λ
Te + (WTe − TeW)− a(DTe − TeD) (9)

Where model constants are: λ = 0.06s. The derivative constant is a = −1.0 which leads
to Upper-convected derivative and the model is called Oldroyd-B model. Tensors D & W are
symmetric and antisymmetric parts of velocity gradient:

D =
1

2

 2ux vx + uy wx + uz
uy + vx 2vy wy + vz
uz + wx vz + wy 2wz

 (10)

W =
1

2

 0 vx − uy wx − uz
uy − vx 0 wy − vz
uz − wx vz − wy 0

 (11)

More details about extra stress equation can be found e.g. in [3].

2.2 Shear-Thinning viscosity model

For evaluation of the variable viscosity the Modified Cross Model was used. The viscosity
decreases from µ0 to µ∞ depending on the shear-rate. Model parameters are obtained by fitting
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an experimental data [6]. The Modified Cross Model is given by formula:

µ(γ̇) = µ∞ + (µ0 − µ∞)

[
1

[1 + (αγ̇)m]b

]
(12)

γ̇ =
1

2

√
D : D =

1

2

√∑
i,j

d2
i,j (13)

D =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) (14)

where: µ0 = 0.16 Pa · s, µ∞ = 0.0036 Pa · s, α = 3.736 s, m = 2.406, b = 0.254. More
information about blood viscosity models can be found e.g. in [6] or [5].

2.3 Model summary
Four different models were tested. The following table shows an overview of considered

models:

Model name Shear-Thinning Viscoelasticity µs Te

Newtonian no no µ∞ 0
Generalized Newtonian yes no µ(γ̇) 0

Oldroyd-B no yes µ∞ Te

Generalized Oldroyd-B yes yes µ(γ̇) Te

Table 1: Models overview

All the models from the table (1) were tested for different flow rates, that correspond to the
common blood flow rates in human body. Tested flow rates are Q = 4, 2, 1 & 0.5 cm3 / s.

3 NUMERICAL MODEL

3.1 Governing equations
Incompressible Navier-Stokes equations can be rewritten in the following vector form:

PWt + Fx +Gy +Hz = Rx + Sy + Tz + fV (15)

where: W = (p, u, v,w)T denotes the vector of unknowns, F = (u, u2 + p, uv, uw)T , G =
(v, vu, v2 +p, vw)T andH = (w,wu,wv,w2 +p)T are the vectors of inviscid (convective) fluxes,
R = (0,K(ux),K(vx),K(wx))

T ,S = (0,K(uy),K(vy),K(wy))
T andT = (0,K(uz),K(vz),K(wz))

T

are the vectors of viscous (diffusive) fluxes, P = diag(0, 1, 1, 1). Discretization of these equa-
tions is achieved using Finite Volume Method and MacCormack scheme, details can be found
e.g. in [7] or [5]. For numerical solution were used Artificial compressibility method, see e.g.
[7]. The discretization of equation (9) is analogous to the discretization of the basic equations.
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3.2 Finite Volume Method

Wijk

∂t
= − 1

|D|

{∮
∂D

[F ,G,H ] · ν dS︸ ︷︷ ︸
inviscid flux

−
∮
∂D

[R,S,T ] · ν dS︸ ︷︷ ︸
viscous flux

+
∫
D
fV dV︸ ︷︷ ︸

external force

}
(16)

3.3 MacCormack Scheme
Explicit numerical scheme was used :

W
n+ 1

2
i,j = W n

i,j −
∆t

|Di,j|

6∑
k=1

{(F n
k −Rn

k)∆xk + (Gn
k − Snk )∆yk + (Hn

k − T nk )∆zk} (17)

(
W n+1
i,j

)
=

1

2

(
W n
i,j+W

n+ 1
2

i,j −
∆t

|Di,j|

6∑
k=1

{(F n+ 1
2

k −Rn+ 1
2

k )∆xk+(G
n+ 1

2
k −Sn+ 1

2
k )∆yk+(H

n+ 1
2

k −T n+ 1
2

k )∆zk}
)

(18)
W n+1
i,j =

(
W n+1
i,j

)
+DW n

i,j (19)

where DW is stabilization term (one-dimensional case):

DW n
i = ε2∆x

3 d

dx
|Wx|Wx

∣∣∣∣∣
n

i

+ ε4∆x
4Wxxxx

∣∣∣∣∣
n

i

(20)

more details can be found e.g. in [5].

4 TEST CASE SET-UP

4.1 Test geometries: axisymmertric stenosis & aneurysm
Both computational domains that were tested are straight channels with cosine narrowed/widened

regions to imitate vessel stenosis/aneurysm. Channels are assumed to be two-dimensional with
diameter D = 2R = 6.2mm:

9R

R2R

2RR2R 4R

ΓΓ
TT

ΓΓ
II

ΓΓ
OO

ΓΓ
BB

(a) Narrowed channel (stenosis)
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(b) Widened channel (aneurysm)

Figure 1: Test geometries

5
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The numerical solver is three-dimensional, but in this study all the computations are 2D-like
for simplicity. Parabolic velocity profile (corresponding to Newtonian flow) is prescribed at the
inlet (mean value: U0 = 6.15cm ·s−1) leading to Reynolds number: Re = 100. The Weissenberg
number is We = 0.6. Outlet pressure is fixed to a constant. On the walls no-slip conditions are
used for velocity and homogeneous Neumann condition for the pressure. For Oldroyd-B model
variables (Te) there is zero kept at the inlet and homogeneous Neumann condition at the walls
and at the outlet. The computational grid has 80×42×1 cells. The following set of figures shows
comparison of axial velocity distribution in the narrowed channel for above described models:

(a) Newtonian model

(b) Oldroyd-B model

(c) Generalized Newtonian model

(d) Generalized Oldroyd-B model

Figure 2: Comparison of axial velocity distribution in the narrowed channel
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Following figures show pressure and axial velocity distribution along the central axis of the
channel:

Figure 3: Narrowed channel, Pressure and axial velocity distribution along the centerline of the channel

In the following figure one can see wall shear stress distribution, here the wall shear stress is
reduced to: τw = ( du

dy
· µ ) |wall :

Figure 4: Narrowed channel, Wall shear stress distribution

All the above displayed results are of flow rate: Q = 4 cm2/s according to [2].
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5 CONCLUSIONS
- From the present results it is possible to interpret that the influence of shear-thinning be-
havior of blood on the main flow is considerably higher than the viscoelasticity for presented
testcase. But one should keep in mind the complexity of the problem. While the variable vis-
cosity (shear-thinning property) depends mainly on the ratio of the diameter of the channel and
the flow rate, the viscoelasticity contribution is highly dependent on the channel geometry and
velocity variability.
- The numerical method used to solve the governing equations seems to be sufficiently robust
and efficient for the appropriate resolution of the given class of problems.
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