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Abstract. In optimizing the iteration parameters of the SIMPLE-like numerical pro-
cedure, a genetic algorithm (GA) which searches for a minimum calculation time in a
space of iteration numbers was developed. A methodology has been presented for the nu-
merical solution of natural convection in a squeezed cavity at Rayleigh number of 106 and
Pr number of 10.0. The pressure correction equation was employed in a conjugate gradi-
ent (CG) method with a relative incomplete factorization (RILU(0)) preconditioner. The
temperature equation was solved by using preconditioned Krylov subspace methods: the
generalized minimum residual (GMRES) method and the bi-conjugate gradient-stabilized
(BICGSTAB) method with a RILU(0) preconditioner. The momentum equation was
treated by means of the successive overrelaxation (SOR), Gauss-Seidel (GS), GMRES,
and GMRES with symmetric Gauss-Seidel (SGS) preconditioner methods. We analyze
computed results and we discuss how the calculation time depends on methods and on
changes of iteration parameters. The calculation times were not strongly influenced by
use of the RILU(0) preconditioner with optimal and close-to-optimal combinations of the
perturbation and lumping coefficients, but changed sharply with changes in the pressure
iteration parameter.
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1 INTRODUCTION

Since 1972, when Patankar and Spalding1 successfully developed the SIMPLE method,
several variants of SIMPLE have been proposed, to improve convergence rates. Progress
of an effective iterative solution of a linearized momentum-mass-energy system depends
heavily on the set of iteration parameters and the iterative procedures of the system of
linear equations. In the context of values of iteration parameters of computational meth-
ods it is appropriate to refer to the iterative method for solving the unsteady viscous flow
equations, according to Fletcher2, p. 169: - ”Possibly the delicate point of the method
lies in the choice of parameters, since the number of iterations necessary to reach con-
vergence is very sensitive to this choice.” The number of iterations, the relaxation factors
and the iteration parameters are generally chosen in the light of numerical experiments
or published recommendations.

In most studies it is emphasized that the SIMPLE method has a slow convergence
rate, even though Cartesian co-ordinates are used. Attempts to enhance the convergence
properties of the SIMPLE method in general coordinates may be divided into two parts:
enhancement of the approximation of Poisson’s pressure correction equation, which in-
cludes approximation of cross-derivatives and use of enhanced linear algebraic methods,
followed by choice of the set of iteration parameters. Lehnhäuser and Schäfer3 used an
approximation of the pressure derivatives based on a multi-dimensional Taylor expansion
and they discussed the problem associated with the pressure-correction equation. Yen
and Liu4 proposed an explicit correction step and an optimal relaxation factor for this
additional step. Optimum values of two parameters of the SIMPLE method are defined
in a paper by Chatwani and Turan5, who proposed a pressure-velocity coupling algorithm
to determine the underrelaxation factor in the pressure correction. A segregated solution
procedure by Tao et al.6 for incompressible flow and heat transfer problems solves the
improved pressure directly, rather than by adding a correction term; a second relaxation
parameter was imputed to robustness. A segregated algorithm by Sun et al.7 includes
internal double iterative processes for pressure correction equation at each iteration level.

Thus, there are many variants of the SIMPLE algorithm, and many comparisons among
them have been published (for details, see Sun et al.7). All variants of the SIMPLE
iterative method use a set of iteration parameters, and calculation time and number
of iterations depends on choice of this set. Therefore, it was correctly suggested that
comparison of the iterative methods should be based on use of the optimal parameters
for each method.

A study by Shklyar and Arbel8 developed discretization on double-staggered grids
(DSG), and studied the accelerated convergence of the numerical simulation of incom-
pressible flow in general curvilinear co-ordinates. In the present study, we analyzed a
segregated numerical solution of the momentum-pressure-energy equations, with opti-
mization of the iteration parameters. This paper is organized as follows: Section 2 briefly
describes the mathematical model and algorithm, and testing of numerical benchmarks
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of the well known problem of natural convection in a squeezed cavity. In Section 3,
optimization of the iterative parameters is demonstrated for the present case by use of
the GA for optimization of the solution of linear systems of equations by stationary and
nonstationary numerical methods.

2 DISCRETIZATION AND THE NUMERICAL ALGORITHM

We consider incompressible, steady-state flow. The reader may find in9 the treatment
of physical domain discretization with evaluation of metrics, discretization continuity and
momentum equations, and velocity-pressure linkage a treatment which leads to general-
ization of the SIMPLE procedure for external and internal problems in the case of our
double-staggered grid method for general curvilinear co-ordinates. Here we demonstrate
discretized forms of the continuity, momentum and energy equations.

The mass flux, ρu is integrated over a finite volume dV in physical space, bounded by
lines of constant ξ and constant η.

∫

S

ρu · ndS = 0, (1)

here u is a velocity vector, written as u = [u,v], with Cartesian components u, v, and
unit vector n = [nx, ny] normal to the surface element dS. The integrations are performed
by regarding all values as constant over each face of the control volume

Ui+1,j − Ui,j + Vi,j+1 − Vi,j = 0, (2)

The U, V in this equation, are the contravariant velocity components at point i, j of the
domain mesh.

A momentum balance for finite volume dV gives:
∫

S

ρuu · ndS =
∫

S

T · ndS +
∫

V

ρgdV, (3)

where g is a gravity acceleration, T is the stress tensor, T = S - pI , S is the extra
stress tensor

S =
2

Re

[
D − 1

3
(∇ν)I

]
, (4)

here D is the rate of deformation tensor in incompressible flow.
The final form of the discretized momentum equation specific to grid point may written

as (more details for staggered grid presented by Patankar and Spalding1)

ai,jui,j = ai+1,jui+1,j + ai−1,jui−1,j + ai,j+1ui,j+1 − (5)

(pi,j − pi−1,j)yηdη + Si,j,
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where Si,j includes second grid approximation, Shklyar and Arbel9.
An energy balance for finite volume dS gives:

∫

S

cpρuT · ndS =
∫

S

q · ndS, (6)

where T is the temperature, q is the heat flux. Discretization of (6) leads to the system
of linear equations with nonsymmetry matrix.

Here we describe the numerical solution of the linear system of an incompressible flow
equation by an iterative method with incomplete-block diagonal factorization precondi-
tioner. This differs from the GCR-SIMPLE(R) method presented by Vuik et al.10 in that
the SIMPLE(R) method was seen as a distributive iterative method. The linear system
(2), (6) gives rise to a saddle point problem, Benzi and Golub11:

Ax = b, (7)

here

A =

[
A11 A12

A21 0

]
, x = [u, p]T ,

in which A11 is a discrete convection-diffusion operator, A12 and A21 are discrete di-
vergence and gradient operator respectively. An approximate factorization of A, such as
the incomplete LU factorization, is used for solving a linear system (7)

r = b− Ax, LUdn+1 = r, xn+1 = x + dn+1, (8)

for some vector d which occurs in the iterative method (we will establish the correlation
between d and corrections in the SIMPLE method), n is an iteration number.

Incomplete block triangular factorization of the LU is:

LU =

[
A11 0
A21 S

] [
I A−1

11 A12

0 I

]
,

here S is a Schur complement

S = −A21A
−1
11 A12.

Thus, from the lower triangular system L

[
vn+1

1

vn+1
2

]
=

[
r1

r2

]
,

A11v
n+1
1 = r1. (9)

In terms of intermediate velocity u∗ = u + vn+1
1 , r1 = b1 − A11u− A12p, and
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A11v
n+1
1 = r1 = b1 − A11u− A12p = b1 − A11(u

∗ − vn+1
1 )− A12p, (10)

equation (9) is transformed to a momentum equation for intermediate velocity:

A11u
∗ = b1 − A12p. (11)

Note, that conversely, approval, e.g. u∗, vn+1
1 = u∗ − u may be calculated from (11).

The second equation from the lower triangular system is:

A21A
−1
11 A12v

n+1
2 = A21v

n+1
1 − r2. (12)

We demonstrate that (12) equivalence to the pressure correction equation of the SIMPLE-
like methods. First of all, from the upper triangular system Udn+1 = vn+1 immediately
should

dn+1
2 = vn+1

2 (13)

dn+1
2 is an analog of the pressure correction p ′; with vn+1

1 = u∗−u and r2 = b2−A21u
n,

from (12)

A21A
−1
11 A12p

′ = A21(u
∗ − u)− (b2 − A21u) = A21u

∗ − b2, (14)

or,

A21A
−1
11 A12p

′ = A21u
∗ − b2, (15)

thus, pressure correction (p ′) is calculated from (15) and for d1 we shall cover the upper
triangular system:

dn+1
1 = vn+1

1 − A−1
11 A12d

n+1
2 . (16)

In SIMPLE-like methods preconditioners D−1
11 are used for A−1

11 (for details see10.
Rewrite (15) and (17), for velocity correction

dn+1
1 = vn+1

1 −D−1
11 A12d

n+1
2 , (17)

and

A21D
−1
11 A12p

′ = A21u
∗ − b2. (18)

Equation (18) is a pressure correction of the SIMPLE-like methods. Notice that use
of D−1

11 and to maintain stability of the iterative procedure (8) leads to inputting of the
pressure correction iterative parameter - αp, so, that (8) transforms to

pn+1 = p + αpp
′. (19)
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If we use the previous definition of u∗, dn+1, and dn+1
2 = p′, then

un+1 − u = u∗ − u−D−1
11 A12p

′, (20)

the conventional form for a velocity in the SIMPLE-like method is

un+1 = u∗ −D−1
11 A12p

′. (21)

(Note that, conversely, approval, e.g. dn+1
1 = un+1 − u may be calculated).

The single-grid DSG code was used for natural convection in a squeezed cavity. In
order to preserve the practice of a five-point stencil discretization the cross-derivatives
were calculated by linear interpolation and were grouped with other source terms. For
the sake of brevity in the present paper we omit the mathematical treatment of the
numerical method as applied to natural convection problems; we take the parameters
to have been optimized. To facilitate the derivation of the finite-volume-finite-difference
formulation, the physical domain in the x and y co-ordinate system is first discretized.
Thus, we want to use the staggered-grid technique, which naturally offers conservation of
mass, momentum and kinetic energy, and which avoids the decoupling of odd-even points.

2.1 Convergence criteria

During the numerical procedure, we monitored three norms of residuals; convergence
of momentum was controlled by the residual norm,

||Residualu||2 = (
Nx∑

i=1

Ny∑

j=1

|un+1
i,j − un

i,j|2)1/2, (22)

the corresponding norm for the temperature field was

||ResidualT ||2 = (
Nx∑

i=1

Ny∑

j=1

|T n+1
i,j − T n

i,j|2)1/2, (23)

in which Nx×Ny is a grid dimension. The velocity fields which are obtained must be
divergence-free at steady state (divu=0), therefore it is natural to control the convergence
of the continuity equation in its discretized form:

divu = Ui+1,j − Ui,j + Vi,j+1 − Vi,j, (24)

this condition gives rise to the norm of velocity divergence

||Residualdivu||1 =
Nx∑

i=1

Ny∑

j=1

|divu|. (25)
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2.2 Validation

The use of the methodology will be illustrated by means of numerical comparison with
a benchmark solution. The numerical algorithm was tested with double precision on an
IBM server, CPU X355, 2.66GHz. The control test case involved buoyancy-driven cavity
flows. Appropriate benchmark solutions were described by Demirdžić et al.12 (Figure
1(a)). Non-orthogonal grids were set up by inclining the sidewalls or by squeezing the
cavity (Figure 1(b)).

β

cTT =

hTT =

u=v=0

u=v=0
0=

∂

∂

y

T

0=
∂

∂

y

T

g

(a) (b)

L

x

y

βu=v=0 ∂y

Figure 1: Squeezed cavity test case: (a) geometry and boundary conditions; (b) example of a coarse
uniform grid.

The inclined walls were kept at constant temperatures Th and Tc, respectively; the
horizontal walls were assumed to be adiabatic; the inclination angle β was set to π/4.
Scaling for the flow was characterized by the following reference quantities: L = H for
length; V = (kT /H)Ra0.5 for velocity, where kT is a thermal conductivity, Ra is the
Rayleigh number; and the temperature was scaled by (T− Tc)/(Th − Tc).

In the present study the steady-state numerical model was solved on a staggered grid
by a finite-volume finite-difference method; the second-order central differences were used
for space derivatives, as well as within the cavity. The solutions of this problem velocities,
temperature, and rates of heat transfer have been obtained at Ra=106 and number of
Pr=10. Non-uniform grids, symmetrically expanding from all walls towards the center
line from, were applied by Demirdžić et al.12, e.g., on the finest grid, with 224×192 control
volumes, the smallest values δx=L/467 and δy=L/454. In our computation interpolation
between the two boundaries was provided by:

x(ξ, η) = (1− s)xAB(qAB) + sxDC(qDC), (26)

y(ξ, η) = (1− s)yAB(qAB) + syDC(qDC), (27)

in which AB and DC are boundary curves, and s and q are stretching functions. Non-
uniform, symmetrical expansion from all walls towards the centerline, was implied by the
stretching functions q = s = 1 + tanh(P (η − 0.5))/ tanh(P/2)/2, in which P=2.95 for
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all grids, e.g., on the grid with a 5122 control volume, the smallest δx was 0.00030397
(L=1.0), or 1/3289. Velocity boundary conditions were v=u=0 at the walls. The Nusselt
number at the walls was calculated as:

Nu =

√
x2

η + y2
η

J
Tξ, (28)

variable derivatives at the wall (uη, vξ, Tη and Tξ) were calculated by one-sided second-
order accurate formulas, such as, temperature derivative at the left(hot) wall is

Tξ|ξ=0 = −yη(3T1 − T2/3− 8/3)/Nx/J, (29)

and that at the right (cold) wall is

Tξ|ξ=1 = −yη(TNx−1/3− 3TNx)/Nx/J, (30)

in which J is a Jacobian of the transformation. The values of the Nusselt number
presented in Table 1, are more sensitive to the number of grid cells at the extreme points
than to that at the middle points. The grid 5122 with stretching function (26) and (27)
permits displacement of 22 cells in the interval [1,0.9984] on the η coordinate (0.9984 is
the extreme top η coordinate in which12 presents their calculated results, in accordance
with12 this η coordinate is approximately the coordinate of the middle cell closest to 1.0).

Table 1: Profile of the local Nusselt number along the cold wall as predicted on various grids, Ra=106,
Pr=10, inclination angle is π/4.

Grids
η 64×64 128×128 256×256 512×512 1024×1024 Demirdžić et al.12

1.4309×10−3 0.049 0.142 0.173 0.181 0.18180 0.19757
6.5813×10−2 8.219 8.137 8.116 8.111 8.11093 8.12495
9.6025×10−2 10.746 10.687 10.671 10.668 10.667 10.674
1.2916×10−1 12.089 12.058 12.050 12.129 12.048 12.051
1.5610×10−1 12.452 12.433 12.428 12.426 12.426 12.428
1.7028×10−1 12.491 12.475 12.471 12.470 12.470 12.471
1.8497×10−1 12.461 12.447 12.444 12.443 12.443 12.445
2.3220×10−1 12.092 12.084 12.082 12.082 12.082 12.083
3.0334×10−1 11.210 11.207 11.207 11.207 11.207 11.208
5.2954×10−1 8.106 8.110 8.111 8.111 8.1113 8.1111
8.1999×10−1 4.315 4.320 4.322 4.322 4.3220 4.3212
9.6406×10−1 2.016 2.032 2.036 2.037 2.0375 2.0338
9.7969×10−1 1.871 1.895 1.902 1.904 1.9049 1.8995
9.9219×10−1 2.209 2.147 2.163 2.175 2.1790 2.1651
9.9844×10−1 4.445 4.425 3.743 3.433 3.4748 4.2622
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3 RESULTS AND DISCUSSION

Linearization of the set of momentum-mass-energy conservation equations by SIMPLE-
like methods gives rise to two equations for velocity components (u,v), a pressure-correction
equation and an equation for temperature. One of the distinguishing feature of the
SIMPLE-like method is the insertion of an iteration parameter for pressure. The number
of iteration parameters depends also on the method of solution of the linearized system
of equations. When methods with iteration parameters are used for the solution g.e.,
successive overrelaxation (SOR), or symmetric SOR (SSOR) methods, there are eight
parameters in a 2D SIMPLE method: Np - iteration number of pressure correction equa-
tion; Nu - iteration number of the u velocity component; αu - u iteration parameter; Nv

- iteration number of the v velocity component; αv - v iteration parameter; Nt - itera-
tion number of the temperature equation; ωt - temperature iteration parameter; αp from
(19); and however in the bi-conjugate stabilized (BiCGSTAB) iterative procedure for the
temperature equation, the temperature iteration parameter is not used, but in the pre-
conditioned BiCGSTAB iterative method by means of a modified incomplete factorization
(MILU(0)) a two additional parameters may be input and optimized.

A (GA) algorithm searches for a global minimum calculation time in a space of iteration
numbers and parameters of the linear system; one which provides a means for unbiased
comparison of computational methods. Unfortunately, a genetic algorithm takes a long
time to search for a global minimum - a time that encompasses calculation time and
the number of external iterations - for a grid containing more than ≈ 100k elements
(≈320×320 cells in a 2D case), therefore, in order to make an estimate of the numbers
of iterations and iteration parameters needed for general cases, including a GA, we will
examine at the convergence at various iteration parametres.

This section is organized as follows: in subsection 3.1 we briefly describe a genetic
algorithm of the optimization of the search for the iteration parameters of the SIMPLE-
like method. The subsequent subsections present the results of numerical computation of
natural convection in a squeezed cavity by various iterative procedures: conjugate gradient
(CG) with MILU(0) preconditioner for pressure correction equation; SOR and Gauss-
Seidel (GS) methods applied to the momentum equation; BiCGSTAB with MILU(0)
preconditioner for the temperature equation.

3.1 Genetic algorithm

GA mimics the biological evolutionary process and determine an optimal value, in par-
allel with a multi-point search procedure, based on crossover and mutation in genetics,
Holland13. The search procedure for determining the optimal iteration parameters by
means of the GA is as follows: the initial solution (population) is generated at random;
some solutions (100 samples) are added to the original set of solutions from another set
(200 samples); genetic operations, crossover and mutation, are applied to those individ-
uals. As a results of the crossover, some individuals are newly created according to the
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crossover rate (70%), and other sorts of individuals are then newly generated according to
the mutation rate (50%). As a results of these operations, new individuals are created; an
optimal value can be obtained by repeating these procedures. In the GA, we considered
‖Residualdivu‖1 ≤ 10−10, ‖Residualu‖2 ≤ 10−5, ‖ResidualT‖2 ≤ 10−5.

3.2 Iterative procedures for the momentum equation

Application of the SIMPLE-like method to a non-linear momentum equation leads to
an appropriate linear system with a non-symmetry, strictly diagonally dominant matrix
A11 in (11). In the calculation procedure we assumed: the values of iteration numbers
Nu of the linearized equation for u-component velocity were the same for number Nv of
v -component velocity; and the iteration parameter αu was equal to αv.

Momentum equation in segregated algorithms of incompressible flow simulation is most
commonly solved by the SOR and GS iterative methods. Table 2(a)-(d) presents the
optimization results obtained by application of these two methods to the momentum
equation. Optimal values of αu found by GA in applying the SOR iterative method to
the linearized momentum equation were always less then 1 (thus it is more accurate to
describe this iterative procedure as successive underrelaxation, SUR) and Nu was changed
from 5 to 6 (Table 2(a)). Table 2(b) shows how the calculation time increased by ≈2.5-
3 times under the condition Nu=1. The optimal value of αu was found be close to 1.
Changing αu to 1 leads to the Gauss-Seidel iterative method, because A11 is a strictly
diagonally dominant, therefore the GS iteration converges for any initial guess x0 of x.
Table 2(c) shows that the calculation time with this value of αu and iteration numbe r
Nu=1 was slightly greater than that obtained with the SOR iterative procedure, Table
2(b). Optimization of the GS method for the momentum equation with Nu=var enables
us to achieve the same calculation time as the SOR method, Table 2(b).

GMRES and GMRES with SGS preconditioner methods, Saad14, were also applied to
the momentum equation. The preconditioned GMRES method calculated the momentum
equation with only one internal iteration but calculation time was more than twice that
obtained with the GS method. GMRES without preconditioner gave the same internal
iterations that were required with the GS method, but the calculation time was the same
as that with the GMRES with SGS preconditioner method.

3.3 Implementation of the ILU(0), MILU(0) and RILU(0) preconditioners
in the optimization process

Preconditioned CG and Bi-CGSTAB iterative procedures were applied to the pressure
correction and the temperature equations, respectively. In this subsection we present
some specific examples of a preconditioner that enables optimization of the calculation
procedures.

The general problem of finding a preconditioner for a linear system (7) is to find a
matrix M (preconditioner) with properties that ensure that M is a good approximation.
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A suitable choice of M can significantly accelerate the convergence of the method. We
used only the popular variants with explicit optimization opportunities. Let A correspond
to the following 5-point difference stencil in the usual natural row-wise or column-wise
ordering:

The entries in the above stencil are exactly the non-zero elements on the row of the
matrix A corresponding to the (i,j)-th grid point. In what follows, it is convenient to
compute an incomplete LD−1U(0) or a modified incomplete factorization (MILU(0)) of
system matrix, where L is the lower triangular matrix, D is the diagonal matrix and U is
the upper triangular matrix and they correspond to the following difference stencils (for
details see Chan and Van der Vorst15):

A =




ti,j

ci,j ai,j bi,j

si,j




,L =




fi,j di,j

gi,j




,D =




di,j




,U =




pi,j

di,j qi,j




.

Off-diagonal entries of the LU factors were calculated with the following simple formulas:

fi,j = ci,j, gi,j = si,j, pi,j = ti,j, qi,j = bi,j. (31)

Diagonal elements were calculated by the so-called interpolated (RILU(0)) version between
ILU(0) and MILU(0):

di,j = ai,j − ci,j(bi,j + χti,j)/di−1,j − si,j(ti,j−1 + χbi,j−1)/di,j−1, (32)

For χ=0 we have the standard ILU(0) factorization, whereas for χ=1 we have the modified
MILU(0) factorization. The row sum lumping parameter method, which groups together
all the elements that were dropped in the elimination process and adds them to the
diagonal D, was also optimized. Furthermore, it was found (Chan and Van der Vorst15,
that an additional small term ch2 might improve the convergence rate for elliptic problems:

di,j = ai,j − ci,j(bi,j + χti,j)/di−1,j − si,j(ti,j−1 + χbi,j−1)/di,j−1 + ch2, (33)

A perturbation parameter c was also included in the list of optimized parameters.

3.4 Iterative procedures of pressure correction and temperature equations

The matrix A of the system (12) for the pressure correction equation is symmetry and
strictly diagonally dominant, and therefore, in this short article we address the application
of a more (for this case) effective preconditioned CG iterative procedure. Oliveira and
Issa16 gave one version of the CG solver with incomplete-Cholesky preconditioner for
computations of buoyancy-driven flows in a rectangular cavity, the number of internal
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iterations Np they required to solve a set of linear equations varied according to the
specified tolerance for relative decay of the residuals.

In contrast to the system (12) for the pressure correction equation, matrix A of the
temperature equation is a non-symmetry but also strictly diagonally dominant. We de-
scribe here the results of calculation of the preconditioned BiCGSTAB iterative procedure
for the temperature equation.

In parallel with the impact of the choices of the iterative procedure and of the iteration
parameters of the momentum equation on the calculated time, Table 2 demonstrates de-
pendencies of the lumping parameter χ and a perturbation parameter c on the RILU(0)
preconditioner. Attempts to perform the calculation with c=0 and χ=1, MILU(0) pre-
conditioner failed. The minimum calculation time archived by inputting a small pertur-
bational parameter, c≈0.1, Table 2(c). All the sub-tables of this table show that, as one
would expect, the waste time, were cases in which ILU(0) preconditioners was used.

It has been argued sometimes that the methods of chosen to solve a pressure-correction
equation or a temperature equation are critical from the point of view of convergence or
calculation time. Use of the SIMPLE-like iterative procedure with optimal parameters
will enable an understanding of the role of the choice of the iterative methods. The
calculation time of the pressure-correction equation with the MILU(0)-CG method, and
the calculation time of the temperature equation with the MILU(0)-BiCGSTAB method
amount, respectively, to 18-17% of the overall calculation time in the iteration procedure
which, the metric calculation time, in tern, for the strongly non-uniform grid, amounts to
30% of the total time. This finding supports the view that the calculation with optimal
parameters by a SIMPLE-like method does not depend strongly on the choice of the
solution methods for a set of linear equations, or for the pressure or temperature equations.

4 CONCLUSION

A methodology has been presented for optimization of the numerical solution of two-
dimensional convection-diffusion problems. Use of this methodology was illustrated by
comparison with the benchmark solution for natural convection in a squeezed cavity. A
genetic algorithm used to solve problems of numerical optimization of calculation time
provides a means of making an unbiased comparison in among a variety of iterative pro-
cedures for a large linear system. For the momentum equation it was found that a few
iterations in the Gauss-Seidel method gave a similar results to the SOR method; calcu-
lation time with the preconditioned GMRES method applied to the momentum equation
was more than twice that obtained with the GS method. The temperature equation was
solved by the bi-conjugate gradient-stabilized method with MILU(0) preconditioner and
the same preconditioner was used with a conjugate gradient iterative procedure for the
pressure correction equation. Use of a MILU(0) preconditioner with various and optimal
combinations of the perturbation constant c and lumping coefficient χ did not influence
the calculation time strongly.
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Table 2: Optimal iteration parameters of the iteration procedures; RILU(0)-CG iterative method for
pressure correction equation with various combinations of cp and χp; SOR and GS iterative methods
for the momentum equation; RILU(0)-BiCGSTAB iterative method for the temperature equation with
various combination of cT and χT ; Ct is a computing time (s).

(a) SOR iterative method for momentum equation, (1282 cells)

Ct Nex Np Nv Nt ωv αp cp χp cT χT

21 348 11 5 3 0.936 0.108 0 0 0 0
15 346 5 6 1 0.867 0.105 0.116 1 0.096 1
21 325 14 5 3 0.923 0.112 0.276 0 0.761 0
14 338 4 5 1 0.953 0.115 0.054 0.993 0.042 0.998

(b) SOR iterative method for momentum equation, (Nv=1, 1282 cells)

Ct Nex Np Nt ωv αp cp χp cT χT

69 1421 6 1 0.999 0.427 0 0 0 0
56 1284 5 1 1.094 0.261 0.355 1 0.955 1
49 850 9 2 1.195 0.171 0.572 0 0.433 0
46 1088 4 1 0.997 0.475 0.016 0.996 0.263 0.843

(c) GS iterative method for momentum equation, (Nv=1, ωv=1,
1282 cells)

Ct Nex Np Nt αp cp χp cT χT

69 1420 6 1 0.475 0 0 0 0
60 1265 5 1 0.422 0.179 1 0.903 1
69 1455 6 1 0.446 0.397 0 0.732 0
58 1173 7 1 0.198 0.783 0.775 0.413 0.861

(d) GS iterative method for momentum equation,
(ωv=1, cp=cT =const, χp=χT =1.0, 1282 cells)

Ct Nex Np Nv Nt αp cp cT

21 354 12 4 1 0.128 0.3 0.3
19 382 6 4 1 0.123 0.2 0.2
18 354 7 4 1 0.112 0.1 0.1
24 368 11 4 2 0.131 0.01 0.01

(e) GS iterative method for momentum equation,
(cp=cT =0.1, χp=χT =1.0)

Grid Ct Nex Np Nv Nt αp

642 2 206 4 3 2 0.248
1282 18 357 6 4 1 0.113
2562 144 671 7 1 8 0.068
5122 1504 1403 5 1 4 0.054
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