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Abstract. Optimal boundary control problems associated with the Magnetohydrody-
namic (MHD) equations have a wide and important range of applications. If one desires
to increase or decrease the velocity inside a channel filled with a conductive fluid or to
impose a desired velocity profile near the channel outflow, the control of the magnetic
field may represent the best way to reach the objective. The magnetic field inside the
domain obeys to the MHD equations and the control by an external field can be achieved
only through the control of the boundary conditions. In this work, we study a class of
stationary boundary MHD optimal velocity and optimal flow control problems. Standard
boundary control approach is not very straightforward to implement numerically in com-
parison to distributed control and often leads to unnecessary smooth controls. In this paper
we present a very different approach from the standard one where the optimal boundary
control problem is transformed into an extended distributed problem. This can be achieved
by considering boundary controls in the form of lifting functions which extend from the
boundary into the inner domain. The optimal solution is then searched by exploring all
possible extended functions. This approach gives robustness to the boundary control algo-
rithm which can be solved by standard distributed control techniques over the interior part
of the domain. Boundary controls obtained by extended functions have several advantages.
The extended function can easily take into account several possible boundary conditions
and both Dirichlet and Neumann controls. We can seek these boundary controls in their
natural functional spaces differently from the standard approach where the control must
be, for feasibility reasons, in smoother spaces. Also in this approach integral constraints
on the boundary magnetic field may be implicitly taken into account. Some theoretical as-
pects of this optimal control approach are investigated and numerical examples of boundary
controls in channels are presented in order to show the performance of this approach on
conductive flows.
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1 INTRODUCTION

In this paper we propose an optimal control method that, by using the boundary
condition of the magnetic field B, can achieve control on the velocity field u and solve
the steady MHD equations

− 1

Re
∆u + (u · ∇)u + ∇p − S1(∇× B) × B − f = 0

∇ · u = 0

1

Rem

∇× (∇× B) −∇× (u × B) + ∇σ = 0

∇ · B = 0 .

(1)

The MHD system is completed with appropriate boundary conditions over velocity and
magnetic fields. The coefficient S1 is H2

m/Re Rem where Re = UL/ν, Rem = µ0σUL
and Hm = BL

√
σ/µ are the viscous Reynolds, the magnetic Reynolds and the Hartmann

number respectively. The quantities U,B, L, ν, µ0, σ indicate the reference values for ve-
locity, magnetic field, length, kinematic viscosity, magnetic permeability and electrical
conductivity of the fluid.

The interest in these equations arises from a lot of applications in science and engi-
neering, such as fusion technology, fission nuclear reactors with liquid metal coolant and
submarine propulsion devices.3,12 Numerous formulations of the MHD system have been
proposed and analyzed in literature, based on different physical assumptions on the MHD
model.7,13–16 This has lead to the adoption of different sets of state variables for the
description of the electromagnetic phenomena, which consist of a combination of quan-
tities such as magnetic field, current density, electric field and electric potential.7 It is
well-known that, while Navier-Stokes equations are valid over the region occupied by the
fluid, Maxwell equations extend to three-dimensional space;14 therefore, the adoption of
specific boundary and interface conditions for a certain physical model affects its mathe-
matical weak formulation along with the choice of the functional spaces associated with
the problem.

Different approaches have been studied in literature for the optimal control of MHD
equations.7,9, 11 In this paper we present a new boundary control approach where the opti-
mal boundary control problem is transformed into an extended distributed one. Standard
boundary control approach is not very straightforward to implement numerically in com-
parison to distributed control and often leads to unnecessary smooth controls.10,14 We
choose to split the magnetic field into two pieces: a lifting function Be, which matches
the boundary conditions, and an auxiliary field b with homogeneous conditions such that
B = Be + b. The magnetic field Be can be considered as an extension of the function
from the boundary to the interior of the domain. The optimal solution is then searched by
exploring all possible extended functions. This approach gives robustness to the boundary
control algorithm which can be solved by standard distributed control techniques over the
inner part of the domain.
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We consider the following optimal control functional

J (u,Be) =

∫
Ω

(
α

2
∥u − ud∥2 +

β

2
∥Be∥2 +

γ

2
∥∇Be∥2

)
dx , (2)

where α, β and γ are positive constants and Be is the extended function or boundary
lifting function introduced above. The objective is to track the velocity to a desired field
ud and to limit the boundary control by limiting the H1-norm of the extended function
Be. In Section 2 we state the variational formulation of the optimal control problem. The
finite element approximation is introduced in Section 3 and finally we present the results
of some numerical computations in Section 4.

2 THE OPTIMAL CONTROL PROBLEM

In order to formulate the optimal control problem in the discrete finite element form
we introduce some functional spaces. Let Ω ⊂ IR3 be a bounded connected open Lipschitz
domain. We denote by Hm(Ω) the usual vector-valued Sobolev spaces endowed with the
standard norm ∥ · ∥m and by H0(Ω) the space of square-integrable functions (L2(Ω)) with
norm ∥ · ∥ = ∥ · ∥0. Let Hm

0 (Ω) denote the closure of C∞
0 (Ω) with respect to the norm

∥ · ∥m and H−m(Ω) denote the dual space of Hm
0 (Ω). The dual space of H1(Ω) is denoted

by H1(Ω)∗. The spaces V(Ω) and L2
0(Ω) are defined as1,6

V(Ω) = {u ∈ H1(Ω) : ∇ · u = 0}

L2
0(Ω) = {p ∈ L2(Ω) :

∫
Ω

p dx = 0} .

The trace operator, which restricts the function to its boundary, is denoted by γ0, i.e.
γ0f := f |Γ. The trace space of H1(Ω) is denoted by H1/2(Γ) and its dual by H−1/2(Γ).

We introduce the continuous bilinear forms

a(u,v) =

∫
Ω

∇u : ∇v dx ∀u, v ∈ H1(Ω) , (3)

am(u,v) =

∫
Ω

(∇× u) · (∇× v) dx ∀u, v ∈ H1(Ω) , (4)

d(v, q) = −
∫

Ω

q∇ · v dx ∀ q ∈ L2
0(Ω), ∀v ∈ H1(Ω) (5)

and the continuous trilinear forms

c(u;v,w) =
1

2

∫
Ω

w ·
(
u · ∇

)
v dx − 1

2

∫
Ω

w ·
(
v · ∇

)
u dx ∀u, v, w ∈ H1(Ω) , (6)

cm(u;v,w) =

∫
Ω

(
∇× u

)
·
(
v × w

)
dx ∀v, u, w ∈ H1(Ω) . (7)
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The form c is the usual anti-symmetrized form for the non-linear term of the Navier-Stokes
equation.16,17 Since all the arguments of the trilinear form c(u;v,w) belong to H1(Ω),
integration by parts yields a boundary integral which does not vanish and therefore must
be included in the boundary stress term of the equation.

In this framework (u, p, τττ ,B, σ, τττm) ∈ H1(Ω) × L2
0(Ω) × H−1/2(Γ) × H1(Ω) × L2

0(Ω) ×
H−1/2(Γ) is called a weak solution for the MHD equations if it satisfies the weak form of
the steady MHD system (1) given by

1

Re
a(u,v1) + c(u;u,v1) − S1 cm(B;B,v1)+

d(v1, p)+ < τττ ,v1 >Γ=< f ,v1 > ∀v1 ∈ H1(Ω)

d(u, q1) = 0 ∀ q1 ∈ L2
0(Ω)

1

Rem

am(B,v2) − cm(v2;u,B) + d(v2, σ)+ < τττm,v2 >Γ= 0 ∀v2 ∈ H1(Ω)

d(B, q2) = 0 ∀ q2 ∈ L2
0(Ω)

(8)

where

τττ = − 1

Re

∂u

∂n
+ pn +

1

2
uu · n

τττm = −E × n + σn

E =
1

Rem

(∇× B) − (u × B) ,

(9)

with appropriate boundary conditions. It is important to remark that τττ contains the term
uu · n/2 which is zero only if the normal velocity vanishes. Clearly, if u is a solution of
(1), then it is also a solution of the weak formulation (8), while the viceversa may or may
not take place.

The boundary conditions for the velocity field can be defined by g and t in different
combinations as

u = g or

u · n = g · n τττ × n = t × n or

u × n = g × n τττ · n = t · n .

(10)

In a similar way the boundary conditions for the magnetic field could be defined by q and
k as

B = q or

B · n = q · n τττm × n = k × n or

B × n = q × n τττm · n = k · n .

(11)

The boundary functions g and q define the Dirichlet boundary conditions. The natural
boundary conditions are defined by k and t. If Dirichlet boundary conditions are specified

4



Giorgio Bornia, Antonio Cervone and Sandro Manservisi

by g and q in (8) then τττ and τττm are the corresponding unknown Lagrangian multipliers.
On the other hand, if τττ and τττm are given, the boundary fields u and B are unknown and
must be computed.5,6, 10 The existence of solutions in (8) with boundary conditions taken
from (10-11) is still an open issue and the hypothesis of small data for g, t, q and k is
required.11,13,16

In order to transform the boundary control into a distributed control we extend the
function which defines the boundary conditions q inside the domain and consider the
corresponding lifting functions. This brings several theoretical and numerical advantages.
In fact in this case boundary controls can be sought in their natural space H1/2(Γ),
while standard boundary control approaches require to search for boundary controls in
smoother spaces such as H1(Γ).10 The numerical implementation of distributed controls
is more straightforward than a standard boundary control approach, where compatibility
conditions on the control variables have to be satisfied. With the use of a lifting function,
one can find the distributed control Be as a solution of the optimality system and then
obtain the boundary control q by using the trace operator

B · n = q · n = γ0Be · n over Γ

B × n = q × n = γ0Be × n over Γ.
(12)

Thus, one can decompose the magnetic field B as

B = b + Be , (13)

where Be is the lifting function that retains the information of the boundary conditions,
so that b assumes homogeneous values on the boundary. Moreover, the lifting function
Be is such that

∇ · Be = 0 (14)

and thus, the compatibility condition for q∫
Ω

∇ · BdΩ =

∫
Ω

∇ · BedΩ =

∫
Γ

γ0Be · ndΓ =

∫
Γ

q · ndΓ = 0 (15)

is automatically satisfied.
With the decomposition of B we can reformulate the weak form of the MHD equations

as follows. Given the lifting function Be we seek (u, p, τττ ,b, σ, τττm) ∈ H1(Ω) × L2
0(Ω) ×

H−1/2(Γ) × H1(Ω) × L2
0(Ω) × H−1/2(Γ) such that

1

Re
a(u,v1) + c(u;u,v1) − S1 cm(b + Be;b + Be,v1)+

d(v1, p)+ < τττ ,v1 >Γ=< f ,v1 > ∀v1 ∈ H1(Ω)

d(u, q1) = 0 ∀ q1 ∈ L2
0(Ω)

1

Rem

am(b + Be,v2) − cm(v2;u,b + Be) + d(v2, σ)+ < τττm,v2 >Γ= 0 ∀v2 ∈ H1(Ω)

d(b + Be, q2) = 0 ∀ q2 ∈ L2
0(Ω)

(16)
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with appropriate boundary conditions for b. For any choice of the lifting function Be satis-
fying the divergence-free constraint (14) one recovers a different solution (u, p, τττ ,b, σ, τττm)
of the system (16). Different lifting functions Be lead to different solutions b, but the
solution B = b + Be of the original system (8) only depends on the values assumed by
Be at the boundary.

In order to define the optimal control problem let Γs ⊂ Γ be the portion of the bound-
ary over which we set Dirichlet boundary conditions on both the velocity and the magnetic
field. The functions g and q are fixed over Γs and the corresponding Lagrangian multipli-
ers τττ and τττm are unknown. The tangential component of the velocity field u, the normal
component of the multipliers τττ , τττm and the controlled tangential magnetic field Be are en-
forced over the rest of the boundary Γc = Γ\Γs. Different sets of boundary conditions and
controls can be taken into account in a similar way. With these notations the optimal prob-
lem is to find the control Be ∈ V(Ω) such that the functional (2) attains a local minimum
and the solution (u, p, τττ ,b, σ, τττm) ∈ H1(Ω)×L2

0(Ω)×H−1/2(Γ)×H1(Ω)×L2
0(Ω)×H−1/2(Γ)

satisfies the system (16) together with the prescribed boundary conditions.
In order to obtain the first order necessary conditions and the optimality system for the

optimal control problem we introduce the operator M : B1 → B2 which is defined between
the spaces B1 = H1(Ω)×L2

0(Ω)×H−1/2(Γ)×H1(Ω)×L2
0(Ω)×H−1/2(Γ)×H1(Ω) and B2 =

H1∗(Ω)×L2
0(Ω)×H1∗(Ω)×L2

0(Ω)×L2
0(Ω) ×H1/2(Γs)×H1/2(Γs)×H1/2(Γs)×H1/2(Γc)×

H1/2(Γc) so that M(u, p, τττ ,b, σ, τττm,Be) = (f1, q1, f2, q2, q3, r1, r2, r3, r4, r5), where

< f1,v1 >:=
1

Re
a(u,v1) + c(u;u,v1) + d(v1, p) ∀v1 ∈ H1(Ω)

− S1cm(b + Be;b + Be,v1)+ < τττ ,v1 >Γ − < f ,v1 >

(q1, z1) := d(u, z1) ∀ z1 ∈ L2
0(Ω)

< f2,v2 >:=
1

Rem

a(b + Be,v2) − cm(v2;u,b + Be)+

d(v2, σ)+ < τττm,v2 >Γ ∀v2 ∈ H1(Ω)

(q2, z2) := d(b, z2) ∀ z2 ∈ L2
0(Ω)

(q3, z3) := d(Be, z3) ∀ z3 ∈ L2
0(Ω)

(r1, s1) :=< u − g, s1 >Γs ∀ s1 ∈ H−1/2(Γs)

(r2, s2) :=< Be − q, s2 >Γs ∀ s2 ∈ H−1/2(Γs)

(r3, s3) :=< b, s3 >Γs ∀ s3 ∈ H−1/2(Γs)

(r4, s4) :=< u × n, s4 × n >Γc ∀ s4 ∈ H−1/2(Γc)

(r5, s5) :=< b × n, s5 × n >Γc ∀ s5 ∈ H−1/2(Γc) .

(17)

The operator (17) is completed by the appropriate values of τττ · n and τττm · n over Γc.
Through the usual method of Lagrangian multipliers, we turn the constrained minimiza-
tion problem into an unconstrained one. The new problem is then to find (u, p, τττ ,b, σ, τττm,

6
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Be, λλλ, π1, ξξξ, π2, π3, χχχ1, χχχ2, χχχ3, χχχ4, χχχ5) such that the augmented functional

Jaug(u, p, τττ ,b, σ, τττm,Be, λλλ, π1, ξξξ, π2, π3, χχχ1, χχχ2, χχχ3, χχχ4, χχχ5) =

J (u,Be)+ < M(u, p, τττ ,b, σ, τττm,Be), (λλλ, π1, ξξξ, π2, π3, χχχ1, χχχ2, χχχ3, χχχ4, χχχ5) > (18)

is minimized in the set of admissible states, costates and controls.
Now, we can formulate the optimal control problem as a non-trivial solution to a system

of differential equations. It suffices to compute the Fréchet differentials of the augmented
functional Jaug with respect to the state, adjoint and control variables. Clearly, the varia-
tions (δλλλ, δπ1, δξξξ, δπ2, δπ3, δχχχ1, δχχχ2, δχχχ3, δχχχ4, δχχχ5) with respect to the Lagrangian multipli-
ers yield the state equations (8) and the constraints defined by M(u, p, τττ ,b, σ, τττm,Be) = 0.
For the other variables we can proceed in a standard way and obtain the following corre-
sponding Euler equations.7,8, 10,11,13 The variables (Be, π3, χχχ2) satisfy the system

β(Be, δBe) + γa(Be, δBe) − S1 cm(δBe,b + Be, λλλ) − S1 cm(b + Be; δBe, λλλ)+

1

Rem

am(δBe, ξξξ) − cm(ξξξ;u, δBe) + d(δBe, π3)+ < χχχ2, δBe >= 0 ∀δBe ∈ H1(Ω)

d(Be, δπ3) = 0 ∀δπ3 ∈ L2
0(Ω)

< Be, δχχχ2 >Γs=< q, δχχχ2 >Γs ∀ δχχχ2 ∈ H−1/2(Γs) .

(19)

The variables (λλλ, π1, χχχ1, χχχ4) in H1(Ω) × L2
0(Ω) × H1/2(Γs) × H1/2(Γc) are defined by

1

Re
a(δu, λλλ) + c(δu;u, λλλ) + c(u, δu, λλλ) + d(δu, π1) − cm(ξξξ; δu,b + Be)+

< χ1, δu >Γs + < χ4 × n, δu × n >Γc +α(u − ud, δu) = 0 ∀δu ∈ H1(Ω)

d(λλλ, δp) = 0 ∀δp ∈ L2
0(Ω)

< u, δχχχ1 >Γs=< g, δχχχ1 >Γs ∀ δχχχ1 ∈ H−1/2(Γs)

< u × n, δχχχ4 × n >Γc= 0 ∀ δχχχ4 ∈ H−1/2(Γc)

(20)

and (ξξξ, π2, χχχ3, χχχ5) in H1(Ω) × L2
0(Ω) × H1/2(Γs) × H1/2(Γc) by

1

Rem

am(δb, ξξξ) − cm(ξξξ;u, δb) − S1 cm(δb;b + Be, λλλ) − S1 cm(b + Be, δb, λλλ)+

d(δb, π2)+ < χχχ3, δb >Γs + < χχχ5 × n, δb × n >Γc= 0 ∀δb ∈ H1(Ω)

d(ξξξ, δσ) = 0 ∀δσ ∈ L2
0(Ω)

< b, δχχχ3 >Γs= 0 ∀ δχχχ3 ∈ H−1/2(Γs)

< b × n, δχχχ5 × n >Γc= 0 ∀ δχχχ5 ∈ H−1/2(Γc) .

(21)

The optimality system is a very complex system and the numerical solution is a difficult
and expensive task.
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3 FINITE ELEMENT APPROXIMATION

In this section we approximate the problem by using the finite element method. We
consider only conforming finite element approximations. Let Xh ⊂ H1(Ω) and Sh ⊂ L2(Ω)
be two families of finite dimensional subspaces parameterized by h that tends to zero. We
denote Sh0 = Sh ∩ L2

0(Ω) and make the following assumptions on Xh and Sh :
i) the approximation hypotheses: there exist an integer l and a constant C, independent
of h, u, and p, such that for 1 ≤ k ≤ l we have

inf
uh∈Xh

∥uh − u∥1 ≤ Chk∥u∥k+1 ∀u ∈ Hk+1(Ω) ∩ H1(Ω) (22)

inf
ph∈Sh

∥p − ph∥ ≤ Chk∥p∥k ∀ p ∈ Hk(Ω) ∩ L2
0(Ω) . (23)

ii) the inf-sup condition or LBB condition: there exists a constant C ′ , independent of h,
such that1,6, 17

inf
0̸=qh∈Sh0

sup
0 ̸=uh∈Xh

∫
Ω

qh ∇ · uh dx

∥uh∥1 ∥qh∥
≥ C ′ > 0 . (24)

Next, let Ph = Xh|Γ, i.e. Ph consists of the restriction, to the boundary Γ, of functions
u ∈ Xh. For all choices of conforming finite element space Xh we then have that Ph ⊂
H−1/2(Γ). For the subspaces Ph = Xh|Γ, we assume the boundary approximation property:
there exists an integer l and a constant C, independent of h, s such that for 1 ≤ k ≤ l we
have2

inf
sh∈Ph

∥sh − s ∥−1/2,Γ ≤ Chk∥u∥k−1/2 ∀s ∈ Hk−1/2(Γ) . (25)

In order to solve the optimal control problem we must solve the optimality system in the
variables (uh, ph,bh, σh, λλλh, π1h, ξξξh, π2h,Beh, π3h). We can divide the discrete optimality
system into three parts: the MHD system, the adjoint system and the control equation.
The discrete MHD system (8) for the state variables (uh, ph, τττh,bh, σh, τττmh) can be written
in operator form as

1

Re
a(uh,v1h) + c(uh;uh,v1h) − S1 cm(bh + Beh;bh + Beh,v1h)+

d(v1h, ph)+ < τττh,v1h >Γ=< fh,v1h > ∀v1h ∈ Xh(Ωh)

d(uh, q1h) = 0 ∀q1h ∈ Sh0(Ωh)

1

Rem

am(bh + Beh,v2h) − cm(v2h;uh,bh + Beh)+

d(v2h, σh)+ < τττmh,v2h >Γ= 0 ∀v2h ∈ Xh(Ωh)

d(bh + Beh, q2h) = 0 ∀q2h ∈ Sh0(Ωh)

< uh − g, s1h >Γsh
= 0 ∀ s1h ∈ Ph(Γsh)

< bh, s3h >Γsh
= 0 ∀ s3h ∈ Ph(Γsh)

< uh × n, s4h × n >Γch
= 0 ∀ s4h ∈ Ph(Γch)

< bh × n, s5h × n >Γch
= 0 ∀ s5h ∈ Ph(Γch) .

(26)

8
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The adjoint system, in (λλλh, π1h, ξξξ, π2h, χχχ1h, χχχ4h), can be written as

1

Re
a(δuh, λλλh) + c(δuh;uh, λλλh) + c(uh, δuh, λλλh) + d(δuh, π1h) − cm(ξξξh; δuh,bh + Beh)+

< χ1h, δuh >Γsh
+ < χ4h × n, δuh × n >Γch

+α(uh − ud, δuh) = 0 ∀δuh ∈ Xh(Ωh)

d(λλλh, δph) = 0 ∀δph ∈ Sh0(Ωh)

< uh, δχχχ1h >Γsh
=< g, δχχχ1h >Γsh

∀ δχχχ1h ∈ Ph(Γsh)

< uh × n, δχχχ4h × n >Γch
= 0 ∀ δχχχ4h ∈ Ph(Γch)

1

Rem

am(δbh, ξξξh) − cm(ξξξh;uh, δbh)+ < χχχ3h, δbh >Γsh
+ < χχχ5h × n, δbh × n >Γch

+

d(δbh, π2h) = S1 cm(δbh;bh + Beh, λλλh) + S1 cm(bh + Beh, δbh, λλλh) ∀δbh ∈ Xh(Ωh)

d(ξξξh, δσh) = 0 ∀δσh ∈ Sh0(Ωh)

< bh, δχχχ3h >Γsh
= 0 ∀ δχχχ3h ∈ Ph(Γsh)

< bh × n, δχχχ5h × n >Γch
= 0 ∀ δχχχ5h ∈ Ph(Γch)

(27)
and the control equations, for the variables (Beh, π3h, χχχ2h), take the form

β(Beh, δBeh) + γa(Beh, δBeh) +
1

Rem

am(δBeh, ξξξh) − cm(ξξξh;uh, δBeh)−

S1 cm(δBeh,bh + Beh, λλλh) − S1 cm(bh + Beh; δBeh, λλλh)+

d(δBeh, π3h)+ < χχχ2h, δBeh >= 0 ∀δBeh ∈ Xh(Ωh)

d(Beh, δπ3h) = 0 ∀δπ3h ∈ Sh0(Ωh)

< Beh, δχχχ2h >Γsh
=< q, δχχχ2h >Γsh

∀ δχχχ2h ∈ Ph(Γsh) .

(28)

The optimal boundary control qh for the magnetic field is then extracted directly as

q = γ0 (bh + Beh) (29)

where γ0 is the trace operator.

4 NUMERICAL RESULTS

4.1 Hartmann case and lifting function test

In order to test the boundary control and the lifting method we would like to reproduce
well known MHD physical situations. We refer to the Hartmann flow as a basic config-
uration. Let us consider a two-dimensional channel with square domain [0, 1] × [0, 1] as
in Figure 4.1. Let Γc be the bottom and top sides of the square which are assumed as
inlet and outlet of the channel. At the wall Γs we specify no slip boundary conditions
uh = gh = 0 for the velocity field and Bh ·n = qh ·n = B0x, Bh ×n = 0 for the magnetic
field. On Γc we assume uh×n = uh = 0 and uniform pressure p on each side with pressure
gradient P = p1 − p0 > 0 reproducing an infinite channel flow. Since uh is uniformly zero
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b · n = 0

Figure 1: Domain and boundary conditions

then ∂uh/∂x = 0 and from the divergence-free constraint one has ∂vh/∂y = 0. In a similar
way we set Bh ×n = 0 and σh = 0 uniformly on the bottom and top of the domain which
implies again ∂Bxh/∂x = 0 and ∂Byh/∂y = 0.

Since we use lifting functions it is important that the boundary control is not affected
by the particular function used. The total magnetic field Bh can be split as the sum of
two contributions Bh = bh + Beh and one can write

1

Rem

∇×
(
∇× bh

)
−∇× (uh × bh) + ∇σh =

∇× (uh × Beh) −
1

Rem

∇×
(
∇× Beh

)
∇ · bh = −∇ · Beh = 0

Beh × n = bh × n = 0 on Γs

Beh · n = B0x bh · n = 0 on Γs

Beh × n = bh × n = 0 on Γc

τττmh · n = 0 on Γc .

(30)

For any given Beh and any velocity field uh we can solve for (30) and obtain bh = (bxh, byh).
If we set Beh = (Bx0, 0) as a lifting function it is possible to find the analytical solution as
v = v(x). This assumption implies that the pressure gradient P along the y direction is
constant. We denote the non-dimensional pressure drop PL

ρU2 with P ∗ and the Hartmann

number with Hm = Bx0L
√

σ/µ. The Hartmann flow is the solution to the following MHD
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Figure 2: The magnetic fields bxh, Bexh, Bxh along the line x = 0.5 (left) and the magnetic fields
bxh, Bexh, Byh along the line y = 0.5 (right) for K = 0(A), 1 (B), 10 (C) in the divergence-free case.
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Figure 3: The velocity components uh (left) and vh (right) along the line y = 0.5 for K = 0(A), 1 (B),
10 (C) in the divergence-free case.
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equations in strong form4

d2v

dx2
− H2

mv = −P ∗ReHm coth Hm

dby

dz
= Rem(P ∗ Re

H2
m

(Hm coth Hm − 1) − v)
(31)

with boundary conditions as stated above. The non-dimensional solutions for v(x) and
by(x) are

v(x) = P ∗ Re

Hm

cosh(Hm) − cosh(Hmx)

sinh(Hm)

by(x) = P ∗Rem
Re

H2
m

sinh(Hmx) − x sinh(Hm)

sinh(Hm)
.

(32)

The choice of the lifting function Beh = (Bx0, 0) results in a special case where Beh and
beh are orthogonal. It is important to see that for any choice of Beh satisfying the same
boundary conditions the MHD equation yields the same solution (uh, ph,Bh, σh) provided
that the lifting function is divergence-free. With the purpose of clarifying this condition
we study two different cases: a divergence-free and a non divergence-free lifting function.

Let us first consider divergence-free lifting functions. Since we have a two-dimensional
domain, a function in V(Ω) can be derived from a potential ϕ(x, y). For instance, let us
consider

ϕ(x, y) = K[x(x − 1)]2[y(y − 1)]2 (33)

and choose the lifting function as

Bexh = Bx0 +
∂ϕ

∂y
= Bx0 + K2y(y − 1)(2y − 1)[x(x − 1)]2

Beyh = −∂ϕ

∂x
= −K2x(x − 1)(2x − 1)[y(y − 1)]2 .

(34)

In Figure 2 the magnetic field Bexh, bxh and Bxh along the line x = 0.5 and the magnetic
field Beyh, byh and Byh along the line y = 0.5 for K = 0 (A), 1 (B), 10 (C) are shown on
the left and right column, respectively. It can be seen that for all the cases (A), (B) and
(C) the sum Beh +bh is the same. Also the velocity components u and v remain the same
for the three cases as shown in Figure 3.

Now we consider a non divergence-free lifting function. We plot the results for

Bexh = Bx0 + Kx(1 − x)y(1 − y) Beyh = 0 (35)

with Bx0 = 2 and where K takes the values K = {0, 1, 10}. In Figure 4 the x and y
components of the magnetic field Bh and its contributions bh and Beh are shown along
the line y = 0.5 for K = 0 (A), 1 (B) and 10 (C). We see that the components of the
magnetic field Bh depend strongly on the lifting function Beh. Since the divergence of
the lifting Beh is not zero, the total resulting magnetic field does not match. Therefore,
the velocity component vh, the pressure ph and σh change, as shown in Figure 5.
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Figure 4: The x-components bxh, Bexh, Bxh (left column) and the y-components byh, Beyh, Byh (right
column) along the line y = 0.5 for K = 0 (A), 1 (B) and 10 (C) in the non divergence-free case.
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(B̄ex, B̄ey) α
∫

Ω1
∥u − ud∥2 vmax (B̄ex, B̄ey) α

∫
Ω1

∥u − ud∥2 vmax

(6,0) 0 1.013e-5 0.0754 (2,0) 0 5.302e-4 0.115
(6,0) 1 9.768e-6 0.0755 (2,0) 10 4.209e-4 0.112
(6,0) 10 7.982e-6 0.0763 (2,0) 100 1.126e-4 0.0957
(6,0) 100 5.972e-6 0.0779 (2,0) 500 2.182e-5 0.0849
(6,0) 200 5.702e-6 0.0782 (2,0) 1000 1.502e-5 0.0828
(6,0) 500 5.236e-6 0.0784 (2,0) 1500 1.307e-5 0.0820
(6,0) 750 4.968e-6 0.0785 (2,0) 5000 1.043e-5 0.0808
(6,0) 1000 4.764e-6 0.0786 (2,0) 6000 1.005e-5 0.0809

Table 1: L2-norm of the error (uh − ud) and maximum velocity vh,max for various values of α and
(B̄exh, B̄eyh)

4.2 Optimal boundary control test

y

x

ud = (0, 0.075)

Ω1 Ω

u × n = 0 b × n = 0

x

y

p = p0 τττm = 0

u × n = 0 b × n = 0

p = p1 τττm = 0

u × n = 0

u · n = 0

b × n = 0

b · n = 0

u × n = 0

u · n = 0

b × n = 0

b · n = 0

x

y

Be × n control

τττm = 0

Be · n = B̄ex

Be × n = B̄ey

Be · n = B̄ex

Be × n = B̄ey

Be × n control

τττm = 0

Figure 6: Target domain Ω1 and boundary conditions for state and control variables

We consider an example of a numerical solution of the optimality system over the
geometry of the previous section. The target is a desired constant velocity ud on a central
strip Ω1 = {(x, y)|x ∈ [0.25, 0.75], y ∈ [0, 1]}. We set β = 0 and γ = 1 so that the
functional to be minimized becomes

J (uh,Beh) =
α

2

∫
Ω1

∥uh − ud∥2dx +
1

2

∫
Ω

∥∇Beh∥2dx . (36)

The control is the x-component of the magnetic field over Γc which consists of the top
and bottom sides. The magnetic field Beh is fixed on the left and right sides x = 0
and x = 1 (Γs) to a constant value (B̄exh, B̄eyh). In Figure 6 we show the subregion Ω1

for the desired velocity and summarize the boundary conditions associated with the state
(uh, ph,bh, σh) and the control Beh. In Figures 7 and 8 we plot the profiles of the variables
of the optimality system along the lines y = 0.5 and x = 0.5 for (B̄exh, B̄eyh) = (2, 0) and
α = 6000. In Table 4.2 we report the values of the L2-norm error

∫
Ω1

∥uh−ud∥2dx together
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Figure 7: State, costate and control variables along the line y = 0.5 for the case B̄eh = (2, 0) and α = 6000
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Figure 8: State, costate and control variables along the line x = 0.5 for the case B̄eh = (2, 0) and α = 6000
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Figure 9: The components of the fields bh, Beh and Bh on y = 0 (first and second row) and y = 1 (third
and forth row)

with the maximum velocity vh,max for different values of α and magnetic field (B̄exh, B̄eyh).
We remark that for increasing α the solution of the optimality system yields a more and
more accurate result, in the sense that the L2-norm of the distance between the computed
and the desired velocity decreases. For the case (B̄exh, B̄eyh) = (2, 0) the optimization
results in decreasing the velocity vh,max with increasing α, while vh,max increases with
increasing α for (B̄exh, B̄eyh) = (6, 0). Even if the distance |vh,max − vd| decreases in the
first case and increases in the second case, in both circumstances this is a consequence of
the minimization of the L2-norm of the error toward the desired velocity profile. In order
to study the influence of the parameter α on the tracking problem, we show in Figure 9 the
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Figure 10: Velocity component vh for α = 0 (A), 500 (B) and 6000 (C) and target velocity vd (T) along
the lines y = 0.5 (left) and x = 0.5 (right)

components of the fields bh, Beh and Bh at the boundaries y = 0 and y = 1 for the case
Beh = (2, 0) with α = {0, 500, 6000}. We also plot in Figure 10 the velocity component
vh for the case Beh = (2, 0) with α = {0, 500, 6000} and compare the computed velocity
with the target, along the lines y = 0.5 and x = 0.5.

5 CONCLUSIONS

In this paper we have introduced a new approach for the boundary optimal control
problem of stationary MHD equations. The boundary control problem is transformed
into an extended distributed one by considering boundary controls as restrictions of lifting
functions. This approach leads to a simple formulation that takes into account all possible
Dirichlet and Neumann boundary conditions with a single lifting function. Numerical
results using finite element approximation have been discussed.
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