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Abstract. The present authors have been developing cavitating flow simulation method
based on the dynamics of cavitation bubbles solving so-called Rayleigh-Plesset (R-P) equa-
tion to simulate precise motions of bubbles and pressure field around the bubbles. The
advantage of bubble dynamics based model is that relative velocity of bubble can be con-
sidered, e. g., bubble accumulation can be simulated and that the pressure radiated from
the collapsed bubble can be estimated. On the other hand, bubble dynamics based model
tends to be stiff (hard to stably solve) and R-P equation is not valid in high void fraction
region such as sheet cavitation because R-P equation assumes spherical bubble shape and
no interaction between bubbles. In the present paper, a new bubble model valid for high
void fraction region is proposed. Up to 90% of void fraction is stably simulated.

1



N. Tsurumi, Y. Tamura and Y. Matsumoto

1 INTRODUCTION

Cavitating flow simulation is still one of the challenging topics in CFD. There are some
published works[1]−[3] but most of the works related to the cavitating flow simulation
are limited within conference talks[4]−[8] and there is no definitive method in this field.
Cavitating flow simulation methods are categorized into three groups. The first group
is the method based on VOF[1],[2]. VOF based method is suitable for the case of rather
large bubbles, e. g., sheet cavitations and bubble cavitations. Oppositely for the case
of tiny bubbles whose size and slip velocity are to be negligible, barotropic model (or

homogenization model) based method are applicable[4]−[7]. In this type of methods, the
governing equation is for single phase flow with a special equation of state which models
the thermodynamic state of mixture, including cavitation (vaporization and condensa-

tion). In between, there are bubble dynamics based methods[3],[8]. The advantage of
bubble dynamics based model is that relative velocity of bubble can be considered, e.
g., bubble accumulation can be simulated and that the pressure radiated from the col-
lapsed bubble can be estimated and thus these methods could possibly be extended to
erosion estimation[9]. On the other hand, the bubble dynamics based methods tend to
be unstable in computation due to the stiffness of the governing equations and cannot
allow high void fraction as most of the bubble dynamics model is based on the Rayleigh-
Plesset equation which implies that bubble - bubble interactions are negligible. In the
present paper, an extension of a bubble dynamics based method for higher void fraction
region with sufficient stability and efficiency is described. The basic idea is to switch the
Rayleigh-Plesset equation to another (rather simple) model of reasonable assumptions for
higher void fraction region, where the liquid pressure is consequently low in general. In
the following sections, the governing equations of the present method and the solution
algorithm are described and the results of two-dimensional flow around a hydrofoil are
presented to show the validity and the capability of the present method.

2 NUMERICAL METHOD

As temporal and spatial scale of cavitation bubble is much smaller than those of entire
flow field, followings are assumed to obtain the governing equations[3].

• Liquid phase is incompressible, gas phase is compressible.

• Density and momentum of gas phase are sufficiently small compared to liquid phase.

• Gas phase consists of bubbles. All bubbles are spherical and no collision and coa-
lescence occur.

• Mass change due to the phase change is much smaller than the mass of liquid.

• Bubbles are filled with vapor and non-condensable gas. The pressure inside a bubble
is uniform. The vapor pressure is constant. The pressure of non-condensable gas is
modeled to simulate vaporization and condensation at the interface.
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Each bubble is assumed to follow Rayleigh-Plesset equation in rather low void fraction
region, or, as far as it works. Otherwise another simple bubble growth model is applied
to extend the present method for higher void fraction region.

2.1 Governing Equations

According to the assumptions, the following equations are derived. The dependent
variables are number density, radius and velocity of bubbles and pressure and velocity of
liquid phase.

1) Conservation of the number density of bubbles

∂nG
∂t

+ J
∂ (nGUGj/J)

∂ξj
= 0 (1)

nG is the number density of bubbles. The Subscript G denotes the gas phase (L
the liquid phase). This and the following equations are written in the generalized
coordinate of ξi and U is contravariant velocity. J is the Jacobian.

2) Translational motion of a bubble

FIi + FAi + FPi + FDi + FLi + FHi = 0 (2)

Here FIi is the inertia force of a bubble and FHi is the history force and both are
neglected. FAi is the added mass force, FPi the force by the acceleration of the
surrounding liquid, FDi the drag force and FLi the lift force and their details are
found in [3].

3) Volumetric motion of a bubble (Rayleigh-Plesset equation)

rG
D2rG
Dt2

+
3

2

(
DrG
Dt

)2

=
pB − pL
ρL

+
1

4
|~uG − ~uL|2 (3)

rG is the radius of a bubble. p is a pressure, ρ is density and u is velocity in Cartesian
coordinate. pB is a pressure inside of a bubble and given as,

pB = pv + pG −
2T

rG
− 4µL

1

rG

DrG
Dt

(4)

T is the surface tension and pv is the vapor pressure and both are constant in the
present research. pG is the pressure of non-condensable gas and modeled to simulate
the single bubble motion as,

pGr
3
G = const. (DrG/Dt > 0)

pGr
3κ
G = const. (DrG/Dt < 0)

(5)

κ is the specific heat ratio and taken to be 1.4. This is a simplified model from the
observation of a very precise simulation[10] and was validated in [11].
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4) Conservation of the volumetric fraction of liquid phase

∂fL
∂t

+ J
∂ (fLULj/J)

∂ξj
= 0 (6)

fL is the volume fraction of liquid. This is lead from the mass conservation of
mixture with the assumption that the liquid is incompressible and the density of
the gas is neglected.

5) Conservation of momentum

∂ (ρLfLuLi)

∂t
+ J

∂ (ρLfLuLiULj/J)

∂ξj
= −∇ipL +∇k (µ∇kuLi) +

1

3
(µ∇kuLk) (7)

Here the density of gas is neglected. µ is effective viscosity of bubbly flow and given
as,

µ =

{
1 + fG

(
µL + 5/2µG
µL + µG

)}
µL ∼= (1 + fG)µL (8)

fG is the void fraction.

6) Constraint of volumetric fractions

fG + fL = 1 =
4

3
πr3GnG + fL (9)

This closes the system of equations.

2.2 Introduction of Pseudocompressibility

In order to obtain liquid pressure directly, pseudocompressibility is introduced[3]. Only
the final form of equation is shown here.

1

c2
∂pL
∂t

+∇ifLuLi +∇ifGuGi − 4πr2GnG
DrG
Dt

= 0 (10)

where c2 is pseudocompressibility constant. Equation (10) is then solved instead of Eq.
(6) and fL is obtained by Eq. (9).

2.3 Solution Algorithm

Firstly, Equation (2) is solved. The equation is convection - diffusion equation with
source terms. The convection term is discretized with upwind difference, the viscous
term with central difference. Implicit time integration of LU-SGS with sub-iterations is
adopted. Secondly, Equation (3) is divided into four equations, namely,

∂rG
∂t

+ UGj
∂rG
∂ξj

= 0 (3a)
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∂ṙG
∂t

+ UGj
∂ṙG
∂ξj

= 0 (3b)

rG
d2rG
dt2

+
3

2

(
drG
dt

)2

=
pB − pL
ρL

+
1

4
|~uG − ~uL|2 (3c)

drG
dt

= ṙG (3d)

and Equations (3a) and (3b) are solved together with Eq. (1) as they are all convection
equations with bubble velocity. They are discretized as the same as Eq. (2) described
above. The division of Eq. (3) is expected to give more stability in the computation as
well as smooth change of bubble dynamics model from Eq. (3c) for higher void fraction
described later. Equations (3c) and (3d) are integrated by Runge - Kutta method with
the modified equations of Eqs. (4) and (5) as,

pB = pv + pG −
2T

rG
− 4µL

ṙG
rG

(4)′

pGr
3
G = const. (ṙG > 0)

pGr
3κ
G = const. (ṙG < 0)

(5)′

Finally Equations (7) and (10) are solved as the same as the other convection - diffusion
equations. The liquid fraction of fL is then obtained with Eq. (9).

2.4 Cavitation Model

The present bubble dynamics model may break down where the local void fraction is
large mainly because of the following reason. Let’s consider the equilibrium state, namely,
ṙG = 0 in Eq. (4)′. With a certain initial condition, void fraction of equilibrium state
versus the liquid pressure is given as shown in Fig. 1. From the figure, we notice that
void fraction very rapidly increases when the liquid pressure goes down below the vapor
pressure. Because of this equilibrium curve, bubbles could hardly be settled around the
vapor pressure and possibly diverge. The idea of the present bubble model is to swtich
from Rayleigh-Plesset equation to another model before the bubbles diverge around the
vapor pressure. The switching point might differ from the initial condition. In this
paper we choose initial void fraction of 0.1% and initial bubble radius of 10µm to make
the model. Figure 2 shows a bubble behavior in sudden pressure decrease down to just
above 140Pa and Figure 3 just below 140Pa where the lateral axis is time (step), red
line is the normalized bubble radius, blue the normalized liquid pressure and green the
normalized pressure inside of the bubble. As clearly seen in these figures, the bubble
suddenly breaks at a certain liquid pressure. When the bubble oscillates as in Fig. 2, the
maximum bubble radius corresponds to the void fraction of 10 - 50%. Thus we adopt the
void fraction of 30% as the switching point in this paper.

Two models are proposed here. Model 1 simply set the upper limit of void fraction to
30%. When the liquid pressure is below the vapor pressure and the local void fraction
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Figure 1: Liquid pressure versus void fraction (equilibrium state)

Figure 2: Bubble motion in sudden pressure decrease (oscillation)
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Figure 3: Bubble motion in sudden pressure decrease (divergence)

increases up to 30%, the bubble motion is frozen instead of solving Eq. (3c) and the liquid
pressure is also set to be the vapor pressure. When the void fraction goes down below
30% after solving Eq. (3a) or the pressure recovers above the vapor pressure after solving
Eq. (10), Rayleigh-Plesset equation again starts to be solved.

Model 2 is an extension of Model 1. Instead of freezing the bubble motion, ṙG is frozen
instead of solving Eq. (3c). The basis of the idea freezing ṙG is that the bubble radius
growth is almost linear in Fig. 3. When the void fraction reaches nearly 100% (90%
is adopted in this paper), ṙG is now set to be zero to stop expansion. When the liquid
pressure recovers above the vapor pressure, Rayleigh-Plesset equation starts to be solved
again just as Model 1.

In both models, slip velocity (~uG− ~uL) is set to be zero at and above the void fraction
of 30% because the bubble translation model (Eq. (2)) is no more valid in such high void
fraction.

3 NUMERICAL RESULTS

Two examples of flow around two-dimensional hydrofoils are presented here to show
the validity of the present method.

3.1 Clark-Y 11.4%

The first example is flow around a hydrofoil of Clark-Y 11.4%. The conditions are
summarized in Table 1. Figure 4 shows a close-up view of the computational grid. Flows
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angles-of-attack 2.0◦

chord length 0.1m
initial radius of bubble nucleus 10µm
initial void fraction 0.1%
uniform flow velocity 10m/s
Reynolds number 6×105

surface tension 7.2× 10−2N/m
vapor pressure 2.3×103Pa
number of grid points 281×41

Table 1: Conditions for Clark-Y 11.4%

Figure 4: Computational grid for Clark-Y 11.4% (close-up)
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Figure 5: Flow around Clark-Y 11.4%: Model 1, σ=0.4, left; pressure contour and void fraction, right;
pressure distribution around the hydrofoil

of cavitation index of 0.4 -2.0 are simulated. Here the cavitation index is defined as,

σ =
pL − p∞
1
2
ρLu2∞

(11)

where (·)∞ denotes the uniform state. For the case of σ = 0.4 with Model 1, relatively
stable sheet cavitation appears over the hydrofoil as shown in Fig. 5 where the left picture
shows the pressure by contour lines and void fraction in black-and-white color, and the
right graph shows the pressure distribution around the hydrofoil. So-called reentrant jet
just after the sheet cavitation is clearly observed. For the case of σ = 0.4 with Model
2, the flow is more unstable and cloud cavitations are released from the sheet cavitation
(Fig. 6). The higher void fraction region appears with Model 2 and thus steep density
gradient also appears at the interface of liquid and gas phases. This might be the reason
of instability. Averaged lift coefficient versus cavitation index is shown in Fig. 7. “exp”
denotes the corresponding experiment[12] and “old” denotes the previous computation[13].
The present two models show improved results in general as well as they stably give results
for very low cavitation index of 0.4.

3.2 NACA23012

The second example is flow around a hydrofoil of NACA23012. The conditions are
summarized in Table 2. Figure 8 shows a close-up view of the computational grid. In
low cavitation index, boundary layer of upper surface becomes unstable and vortices are
released repeatedly in both models. Comparing two models, the vortices with Model 2 is
stronger and vortex cavitation is observed (Fig. 9). On the other hand, the vortices do not
grow in Model 1 (Fig. 10). Figures 11 and 12 shows averaged lift and drag coefficients

versus cavitation index comparing with experiment[14]. At high cavitation index (no
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Figure 6: Flow around Clark-Y 11.4%: Model 2, σ=0.4, left; pressure contour and void fraction, right;
pressure distribution around the hydrofoil

Figure 7: Lift coefficient versus cavitation index for Clark-Y 11.4%

angles-of-attack 8.0◦

chord length 0.07m
initial radius of bubble nucleus 10µm
initial void fraction 0.1%
uniform flow velocity 11m/s
Reynolds number 5×105

surface tension 7.2× 10−2N/m
vapor pressure 2.3×103Pa
number of grid points 281×61

Table 2: Conditions for NACA23012
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Figure 8: Computational grid for NACA23012 (close-up)

Figure 9: Flow around NACA23012: Model 2, σ=1.2, left; pressure contour and void fraction, right;
pressure distribution around the hydrofoil
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Figure 10: Flow around NACA23012: Model 1, σ=1.2, left; pressure contour and void fraction, right;
pressure distribution around the hydrofoil

Figure 11: Lift coefficient versus cavitation index for NACA23012

cavitation / single phase case), computed results have discrepancy with experiment. This
suggests that the conditions in computation and expeirment differ as no cavitation flow
field must be agreed more in general. Unfortunately the experiment is old and more
detailed information is difficult to obtain. However the global tendency is reproduced and
very low cavitation index cases are again stably simulated.

4 CONCLUSIONS

A new bubble dynamics based cavitation model for cavitating flow simulations was
proposed. The present method has advantages of bubble dynamics based model, namely,
precise bubble motion and pressure. Moreover, the present method is stable in wide range
of cavitation index and high void fraction can be treated. Comparison with experiment
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Figure 12: Drag coefficient versus cavitation index for NACA23012

showed the quantitative or qualitative agreement. For future works, the present model
will be applied to the practical problems such as three-dimensional pumps[9].
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