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Abstract. In the present work it is shown that it is possible to model and simulate non-
periodic flows using Fourier Pseudo-Spectral Method (FPSM) coupled with Immersed 
Boundary Method (IBM) and obtain, at least, second order convergence rates. The IBM 
has been widely used in Computational Fluids Dynamic (CFD) in order to simulate 
flows over complex and moving geometries. IBM represents the boundary conditions 
through a force field added to the Navier-Stokes equations. Nevertheless, generally, it 
presents low accuracy and low convergence order. On the other hand, the FPSM 
provides an excellent numerical accuracy and, using the FFT algorithm, it presents a 
low computational cost compared with other high-order methods. Another important 
issue, for solving the incompressible Navier-Stokes equations, is the projection method 
for pressure term, at Fourier space. This procedure does not require a Poisson solver, 
which is usually the most computational onerous part in classical projection methods. 
The drawback of FPSM are boundary conditions, which should be periodics, when the 
Discret Fourier Transform is used. At the present paper, a new method is proposed, 
which make use of FPSM coupled with IBM, aiming to simulate non-periodic flows over 
complex geometries. By using a buffer domain and multi-direct forcing method it is 
possible to represent the boundary conditions and immersed bodies through of force 
field and obtain high convergence rates and accuracy. In order to validate the new 
methodology it was proposed the simulations of three problems. The first is a 
Manufactured Solution problem, which has analytical solution and ability to show 
accuracy and high order convergence rate (fourth order). The second one is the 
Poiseuille flow, in which a solid boundary conditions is imposed and second order 
convergence rate is reached. The last one, assessed is the flow around a circular 
cylinder, in which quantitative parameters as for instance, drag and lift coefficients and 
Strouhal number are compared with reference works. 
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1 INTRODUCTION 
Phenomena involving aeroacustic, transition to turbulence and combustion are 

problems that modern engineers aim to understand, among other manners, by using 
techniques of Computational Fluids Dynamics (CFD) [1]. In the case of the aeroacustic 
problems it is important to use a method that captures the sound pressure waves. In 
phenomena involving transition to turbulence is necessary to study small instabilities 
that give rise to turbulence. In combustion, there are processes that involve small edges 
of turbulent structures. In these problems CFD uses methods of high order accuracy to 
obtain results to analyze which really represent the physics phenomena mentioned. 

High order methods provide an excellent accuracy, for example, high order finite 
differences method and compact schemes [2]. On the other hand, they have 
disadvantaged of computational expensive cost in comparison to conventional 
methodologies. The advents of spectral methods become possible to joining high 
accuracy with low computational cost [3-5]. This low cost is given by the Fast Fourier 
Transform (FFT) [6], since the cost of a problem resolution with finite differences is 
order of O(N2), where N is the number of the grid points, the cost of the FFT is of 
O(Nlog2N) [4]. In addition, it was also developed the projection method [4], which 
gives the pressure field in the spectral space. Using the projection process is not 
necessary to calculate the Poisson equation, as it is has been done by conventional 
methodologies. Normally, solving this equation is the most expensive part of a CFD 
codes. The disadvantage of the spectral methodology is the difficulty to work with 
complex geometries and boundary conditions.  

One of the most practical methodologies to work with complex geometries is the 
Immersed Boundary (IBM) [7]. It is characterized by the imposition of a term source, 
which has the role of a body force added to the Navier-Stokes equation to represent 
virtually a body immersed in the flow [8]. 

A new methodology, presented in this paper, works with Fourier pseudo-spectral 
method connected with immersed boundary method. It is proposed to simulate flows 
with non-periodic boundary conditions making use of the term source of immersed 
boundary. On the other hand, the accuracy of immersed boundary is improved, at least 
to second order for smooth solution problems. 

2 MATHEMATICAL MODELING 

The mathematical model presented in this section is based on immersed boundary 
method and in Multi-Direct Forcing proposed by [9]. The equations that govern the 
problem will be transformed for the Fourier spectral space using the properties of 
discrete Fourier transform and, finally, the methodology proposed in the present paper 
concern these two methodologies. 

2.1 Mathematical model for the fluid 
The flow is governed by momentum and continuity equations. The information of the 

fluid/solid interface (domain Γ, see Figure 1) is passed to the eulerian domain (Ω) by the 
addition of the term source to Navier-Stokes equations, term f at equation (1). This term 
plays a role of a body force that represents the boundary conditions of the immersed 
geometry [8]. The equations that govern the problem are presented in the tensorial form: 
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; p* is the static pressure in [N/m2]; lu  is the velocity in l direction 

in [m/s]; 
*

lf
ρ

; *
lf  is the term source in [N/m3]; ρ is the density; ν is the cinematic 

viscosity in [m2/s]; xl is the spatial component (x,y) in [m] and t is the time in [s]. The 
initial condition is any velocity field that satisfies the continuity equation.  

The source term is defined in all domain Ω, but presents values different from zeros 
only in the points that coincide with the immersed geometry, enabling that the eulerian 
field perceives the presence of solid interface [10]. 

 ( ) ( ),
,

0
l k k

l
k

F x t if x x
f x t

if x x
=⎧

= ⎨
≠⎩

 (3) 

where x  is the position of any particle in the fluid and  kx  is the position of any point in 
solid interface (figure 1). 

The boundary conditions are periodic in all directions in eulerian domain ΩB, as 
showed in figure 1, it is necessary due pseudo-spectral method properties. The boundary 
condition of the simulated problem is imposed by direct forcing methodology in ΓBC, 
and also the boundary conditions of bodies immersed in flow Γi. 

 
Figure 1: Schematically representation of Eulerian and Lagrangean domain. 

Using equation (3) it is possible to concluded that the field ( ),lf x t  is discontinuous, 
which can be numerically solved only when there are coincidence between the 
Lagragean points with Eulerian domain. In the cases there is no coincidence between 
these points, which is very frequent in the complex geometries, it is necessary to 
distribute the function ( ),lf x t  on its neighborhoods. Just by calculating the 
Lagrangean force field ( ),l kF x t , it can be distributed and thus, transmitted the geometry 
presence information for the Eulerian domain. More details about this procedure can be 
found in [11-12]: 
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Here h is the spacing between two consecutive Lagrangean points. 

2.2 Mathematical model for the immersed interface 
The Lagrangean force field, in this study, is calculated by direct forcing 

methodology, which was proposed by [13]. One of the characteristics of this model is 
that is not necessary to use ad-hoc constants and allows the non-slip condition modeling 
on immersed interface. The Lagrangean force ( ),l kF x t  is available by momentum 
conservation equation over a fluid particle that is joined in the fluid-solid interface: 

 ( ) ( ) ( )( ) ( ) ( )
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The values of ( ),l ku x t  and ( ),kp x t  are given by interpolation of velocities and 
pressure, respectively, of the Eulerian points near the immersed interface [11]. For 
Lagrangean point kx  at the immersed boundary, we have: 
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where u* is a temporary parameter, as defined by [9], Δt is the time step and 
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. The equation (8) is solved 

by equations (9) and (10) at same time step: 
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where ( ),l k FIu x t t U+ Δ =  is the immersed boundary velocity, normally known. 
Equation (9) is solved at Eulerian domain at Fourier spectral space, i.e. the solution 

of equation (1) with fl=0. ( )* ,lu x t t+ Δ  is interpolated for Lagrangean domain and 

became ( )* ,l ku x t t+ Δ  and it is computed on equation (10). Then ( ),l kF x t  is smeared 
for Eulerian mesh by equation (4). Finally, the Eulerian velocity is update by equation 
(11): 
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 ( ) ( ) ( )*, , ,l l lu x t t u x t t t f x t+ Δ = + Δ + Δ ⋅  (11) 

2.3 Fourier Transforms 
Defined the equations that govern the flow through immersed boundary method, the 

next step is transforming them to the Fourier spectral space. Appling the Fourier 
transform in the continuity, equation (2): 

 ˆ 0.j jik u =  (12) 

According to analytic geometry the scalar product between two vectors is null, if 
both are just orthogonal. Therefore, from equation (12), the wave number vector jk  is 
orthogonal to transformed velocity ˆ ju . The plane of divergent free, here named plane π, 

is perpendicular to wave number vector k  and thus, transformed velocity vector 

( )ˆ ,ju k t  belongs to the plane π. Now applying the Fourier transform in the momentum 

equation (9): 

 
*

* * 2 *ˆ ˆ ˆ ,l
j l j l l

u ik u u ik p k u
t

ν∂
+ = − −

∂
 (13) 

where k2 is the square norm of wave number vector, i.e. k2=kjkj. 
In agreement with plane π definition, each of the terms of equation (13) assume a 

position related to it: the transient term, 
*ˆlu
t

∂
∂

, and the viscous term, 2 *ˆlk uν , belong to the 

plane π. The gradient pressure term is perpendicular to plane π, and non-linear term, 
* *

j l jik u u , a priori, is not known in which position it can be found as relation to plane π.  
By joining the terms of equation (13) and observing the definition of plane π, we 

have found that: 
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To close equation (14) the addition of pressure and non-linear term must be equal to 
the projection of the non-linear term over the plane π. For that, a projection tensor is 
used as in [3], which projects any vector over the plane π. Therefore, applying this 
definition on the right hand side of the sum done in equation (14): 

 * * * *ˆ .j l j l lm j m lik u u ik p ik u u⎡ ⎤ ⎡ ⎤+ =℘⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (15) 

The parcel of the gradient pressure field is orthogonal to plane π, then, it is zero after 
to be projected. Therefore we do not need the pressure field to solve Navier-Stokes 
equations in the spectral space. The pressure field can be recovered at the pos-
processing manipulating equation (15). 

Other important point is that the non-linear term, in which the product of transformed 
functions appears, in agreement with Fourier transformed properties, this operation is a 
convolution product and its solution is given by convolution integral, which is very hard 
to be performed. This is solved by pseudo-spectral Fourier method [4]. Therefore the 
momentum equation in the Fourier space, using the projection method, assumes the 
following form: 
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The non-linear term can be handed by different forms: advective, divergent, skew-
symmetric or rotational [3]. In spite of being mathematically the same, they present 
different properties when discretized. The skew-symmetric form is more stable and 
present best results, but it is twice more expensive than the rotational form. However, 
this inconvenience can be solved using the alternate skew-symmetric form, which 
consist in to alternate the advective and divergent forms in each time step. This 
procedure is adopted in present paper. 

For all types of hande the non-linear term it is necessary to solve the convolution 
integral, but its numerical solution is computational expensive. Then the pseudo-
spectral method is used, i.e. calculates the velocity product in the physical space and 
transforms this product to the spectral space. 

The Navier-Stokes equations is solved numerically with the Fourier spectral method 
using the Discrete Fourier Transform (DFT), which is define by [14]: 

 
2/2

/2 1

ˆ ,
i knN

N
k n

n N
f f e

π−

=− +

= ∑  (17) 

where k is the wave number, N is number of meshes points, n gives the position xn of 
collocation points (xn=nΔx) and 1i = − . 

The DFT restriction is the periodic boundary conditions, by limiting the use of 
Fourier spectral transformed for CFD problems. The advantage is the low 
computational cost given by Fast Fourier Transform (FFT) [6], which solves the DFT, 
equation (17), very efficiently way, given order O(Nlog2N). For systems with many 
collocation points, e.g. three-dimensional problems, the spectral method is very cheaper 
when compared with another conventional high order methodologies. Two examples of 
use of this method are the simulations of periodic temporal jets and isotropic turbulence. 

2.4 The IMERSPEC Methodology  
The algorithm of purposed methodology: 
1) Solve the equation (16) in Fourier spectral space and obtain the temporal 

parameter ( )*ˆ ,lu k t t+ Δ , using the low dispersion and low storage Runge-Kutta method 

proposed by [15]; 
2) Use the Inverse Fast Fourier Transformer in ( )*ˆ ,lu k t t+ Δ  and obtain ( )* ,lu x t t+ Δ  

at physic space in the domain Ω; 
3) Interpolate ( )* ,lu x t t+ Δ for the Lagrangean domain by equation (4), and obtain 

( )* ,l ku x t t+ Δ ; 

4) Calculate the Lagrangean force, ( ),l kF x t t+ Δ , by equation (10). 

5) Distribute the ( ),l kF x t t+ Δ  by equation (4), and obtain ( ),lf x t t+ Δ  in Eulerian 
domain; 

6) Update the Eulerian velocity, ( ),lu x t t+ Δ  by equation (11) and transform to the 

spectral space obtaining ( )ˆ ,lu k t t+ Δ  and returned to step 1.  
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3 RESULTS 
In order to validate the proposed methodology and the developed numerical code, 

three typical problems, normally, used in CFD were chosen. The first one is the a 
manufactured solution, which gives an analytic solution to incompressible two-
dimensional Navier-Stokes equations, with periodic boundary conditions. This case was 
useful in order to verify the developed pseudo-spectral code without and with immersed 
boundary. The second one is the Poiseille flow, which has solid boundaries and an 
analytical solution. The third is the flow over a circular cylinder, which is a benchmark 
of CFD. This case shows the solution of incompressible two-dimensional Navier-Stokes 
equations using Fourier pseudo-spectral method with non-periodic boundary conditions 
imposed by an immersed boundary. 

3.1 Manufactured solution without immersed boundary  
The analytic equations to velocities component (u and v) and the pressure fields are 

given as a function of spatial coordinates (x and y) and time (t): 

 ( ), , sin( )cos( ) cos( 2 )u x y t U x y tπν∞= − , (18) 

 ( )v , , cos( )sin( ) cos( 2 )x y t U x y tπν∞= − − , (19) 

 ( ) 2 2 2, , 0.5 cos( ) cos( ) cos( 2 )p x y t U x y tπν∞ ⎡ ⎤= + −⎣ ⎦ , (20) 

where U∞  is the flow velocity amplitude in [m/s] and ν is the frequency [1/s]. 
From equations (18), (19) and (20) a source term is generated and added in equation 

(16). This way, it is possible to compare the analytical (ua) and numerical (uN) solutions. 
The L2 norm of velocity error is adopted for this comparison: 

 ( ) ( ) 2

2 1 1

1 , , , ,x yN N
N i j a i ji j

x y

L u x y t u x y t
N N = =

⎡ ⎤= −⎣ ⎦∑ ∑  (21) 

We performs the simulations with a domain with Lx=Ly=2π discretized with 32x32 
collocation points. The time step used was given by CFL=0.1 [1]. The result shown in 
Figure 2 is dimensionless by vortex diameter (D= π) and the maximal velocity (U∞), 
thus x*=x/D, y*=y/D and p*=p/(ρU∞

2). The results of field pressure superposed by 
velocity vectors are displayed at Figure 2. It is possible to see the counter-rotating 
vortices. 

 
Figure 2: Pressure field superimposed by velocity vector at t*=1.0/ π. 
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The Figure 3 shows the temporal evolution of L2 norm of horizontal velocity error, 
equation (21). The other velocity component and the pressure errors are the same 
magnitude. For the Fourier pseudo-spectral method the expected errors are the 
magnitude of round-off errors (for double precision is 10-16) and this is confirmed by 
figure 3. 

 
Figure 3: Temporal evolution of L2 norm of horizontal velocity error. 

3.2 Manufactured solution with immersed boundary  
In order to verify the immersed boundary algorithm, the same simulations of [13] 

and [16] is performed. It is defined any geometry, which plays a role the immersed body 
in the flow. In the present case a circle with diameter D*=1 is used, where D* is the 
non-dimensional diameter and D=π [m] is the reference length. Therefore, two domains 
are defined: Eulerian and Lagrangean, as can be seen in Figure 4, and the equations (18) 
and (19) are used in both domains. 

Several different cases were simulated refining the grid mesh and was taken the L2 
norm of components velocities and pressure, comparing the analytical solution (ua) and 
numerical solution (uN). The grid spacing is ∆x*, the Reynolds number is Re=10, 

* 1.0U
∞
= , ρ=1,0 [kg/m3] the domain length is Lx*=Ly*=2 and the time step is defined 

by CFL=0.01. The immersed boundary velocity (UFI) is defined by equations (15) and 
(16) in Lagrangean positions ( kx ) and at t=t+dt. 

 
Figure 4: Sketch of Eulerian (Ω) and Lagrangean (Γ) domain. 
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The Figure 5 presents the comparison between L2 norm as a function of grid 
refinement at time t*=1.0. The results show decaying of the fourth order for all 
variables. It is a good result obtained using immersed boundary methodology. 

 
Figure 5: Comparison the L2 norm as a function of mesh spacing. 

3.3 Poiseuille Flow 
The Poiseuille flow is other CFD problem used for codes verification, because it has 

an analytical solution [17]:  

 ( ) 2
1 2 3au y C y C y C= + + , (22) 

where the coefficients C1, C2 and C3 is done by: 

 1
1

2 x

PC
Lμ
Δ

= ,  (23) 

 ( ) ( )2 2
2 max min 1 max min

1C u u C y y
D
⎡ ⎤= − − −⎣ ⎦ , (24) 

 ( ) ( )2 2 2
3 max 1 max max min max 1 max max min

1C u C y u u y C y y y
D
⎡ ⎤= − − − + −⎣ ⎦ . (25) 

where ymax and ymin are the positions of superior and inferior walls, respectively; umax 
and umin is the velocity imposed at the walls. In the present simulations umax=umin=0 
were used, D is the channel width and ΔP is pressure difference given by 

( ) ( )P p x x p xΔ = + Δ − . All dimensions and results fields are non-dimensionalized 
using as characteristic length the width channel D π= [m] and characteristic mean 
velocity 1.66U∞ =  [m/s].   

The domain is show in Figure 6 (a). The channel is represented by immersed 
boundary (ΓI), the domain flow of interests is ΩI and the complementary domain (buffer 
domain) is ΩB. In the present paper, we use the same procedure of manufactured 
solutions, with the force term replaced by a constant, which play the role of a pressure 
difference (ΔP). This procedure permits verify the accuracy of no-slip boundary 
conditions. 
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At the buffer domain (ΩB) any pressure gradient can be imposed. We have used 
ΔP>0, ΔP<0 and ΔP=0. In ΩI ΔP<0 is imposed, as can be seen in Figure 6 (b). 

                           
                                                      (a)                                                              (b) 

Figure 6: a) The flow domain; b) Pressure difference and flow direction. 

Simulations are performed in the domain * 0.5xL =  and * 2.0,yL =  discretized with Nx 

x Ny collocation points. Walls positions is *
min 0.5y =  and *

max 1.5y = , time step is given 
by CFL=0.1 and  the Reynolds number is Re=100, thus the viscosity is calculate by: 

 .U D
Re

ν ∞=  (26) 

The velocity profiles at x*=0.25 in t*=50.0 of differents ΔP in ΩB are shows in 
Figure 7. A grid of Nx=64 and Ny=256 collocation points was used. 

        
                          (a)                                                   (b)                                                   (c) 

Figure 7: Velocity profiles at x*=0.25 in t*=50.0 for (a) ΔP>0, (b) ΔP=0 and (c) ΔP<0 in ΩB. 

The differences of simulations are clear in Figure 8, which show the absolute 
velocity error between analytical and numerical solution for different grid refinement. 
For ΔP>0 in buffer domain, the convergence rate reach second order. The maximal 
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order for this problem is limited by numerical solution that can be derivative only twice. 
For ΔP<0 and ΔP=0 the first order of convergence rate is obtained. 

 
Figure 8: Convergence rate for different ΔP. 

3.4 Flow over a cylinder 
An inlet profile flow with velocity U∞ in [m/s] is imposed. The flow cross the section 

of a circular cylinder, see Figure 9 and verify the drag and lift coefficients, equations 
(27) and (28), respectively. These variables determine the forces that act on bodies 
immersed in flow. The drag coefficient determines the resistance force of the fluid on 
the immersed body, while the lift coefficient determines the force that there is in 
perpendicular direction to incoming flow. Other parameter analyzed is the Strouhal 
number (St) which determines the non-dimensional vortex shedding frequency, equation 
(29). 

 2

2 x

y

F
Cd

A Uρ ∞

−
= ∑ , (27) 

 2

2 y

x

F
Cl

A Uρ ∞

−
= ∑ , (28) 

 fr DSt
U∞

⋅
= , (29) 

where: Fx and Fy are the forces calculated at each Lagrangean point with equation (7); 
Ax and Ay are the projected frontal area in direction x and y, respectively. In two-
dimensional case these areas are given in [m2] considered the axial dimension of surface 
equal to unity, D is the characteristic diameter and fr is the vortex shedding frequency 
downstream of cylinder.  

The domain of all cases have been taken as 6π x 2π [m2] and has been discretized 
with 384 x 128 collocation points. The cylinder has a diameter of D=0,785 [m], with 64 
Lagrangean points. The cylinder position in domain is shown in Figure 9. 
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Figure 14: Temporal evolution of L2 norm for different Reynolds numbers. 

4 CONCLUSIONS  
The present work shows the coupling between the pseudo-spectral method and 

immersed boundary method. Three features are highlighted: 

• Pseudo-spectral algorithm is very efficient, because it do not need to solve the 
Poison equation for pressure field; 

• Accuracy of Fourier pseudo-spectral method is high. It is demonstrated in 
simulations of manufacture solutions. Without immersed boundary we obtain 
round-off errors, and with immersed boundary we reach forth order of 
convergence; 

• A buffer domain, as shown at section 3.4, is need for recover the inlet flow. 
Nevertheless, the algorithm is still efficient when compared with high order 
methods. 
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