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Abstract. In the present work it is shown that it is possible to model and simulate non-
periodic flows using Fourier Pseudo-Spectral Method (FPSM) coupled with Immersed
Boundary Method (IBM) and obtain, at least, second order convergence rates. The IBM
has been widely used in Computational Fluids Dynamic (CFD) in order to simulate
flows over complex and moving geometries. IBM represents the boundary conditions
through a force field added to the Navier-Stokes equations. Nevertheless, generally, it
presents low accuracy and low convergence order. On the other hand, the FPSM
provides an excellent numerical accuracy and, using the FFT algorithm, it presents a
low computational cost compared with other high-order methods. Another important
issue, for solving the incompressible Navier-Stokes equations, is the projection method
for pressure term, at Fourier space. This procedure does not require a Poisson solver,
which is usually the most computational onerous part in classical projection methods.
The drawback of FPSM are boundary conditions, which should be periodics, when the
Discret Fourier Transform is used. At the present paper, a new method is proposed,
which make use of FPSM coupled with IBM, aiming to simulate non-periodic flows over
complex geometries. By using a buffer domain and multi-direct forcing method it is
possible to represent the boundary conditions and immersed bodies through of force
field and obtain high convergence rates and accuracy. In order to validate the new
methodology it was proposed the simulations of three problems. The first is a
Manufactured Solution problem, which has analytical solution and ability to show
accuracy and high order convergence rate (fourth order). The second one is the
Poiseuille flow, in which a solid boundary conditions is imposed and second order
convergence rate is reached. The last one, assessed is the flow around a circular
cylinder, in which quantitative parameters as for instance, drag and lift coefficients and
Strouhal number are compared with reference works.
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1 INTRODUCTION

Phenomena involving aeroacustic, transition to turbulence and combustion are
problems that modern engineers aim to understand, among other manners, by using
techniques of Computational Fluids Dynamics (CFD) [1]. In the case of the aeroacustic
problems it is important to use a method that captures the sound pressure waves. In
phenomena involving transition to turbulence is necessary to study small instabilities
that give rise to turbulence. In combustion, there are processes that involve small edges
of turbulent structures. In these problems CFD uses methods of high order accuracy to
obtain results to analyze which really represent the physics phenomena mentioned.

High order methods provide an excellent accuracy, for example, high order finite
differences method and compact schemes [2]. On the other hand, they have
disadvantaged of computational expensive cost in comparison to conventional
methodologies. The advents of spectral methods become possible to joining high
accuracy with low computational cost [3-5]. This low cost is given by the Fast Fourier
Transform (FFT) [6], since the cost of a problem resolution with finite differences is
order of O(N’), where N is the number of the grid points, the cost of the FFT is of
O(Nlog>N) [4]. In addition, it was also developed the projection method [4], which
gives the pressure field in the spectral space. Using the projection process is not
necessary to calculate the Poisson equation, as it is has been done by conventional
methodologies. Normally, solving this equation is the most expensive part of a CFD
codes. The disadvantage of the spectral methodology is the difficulty to work with
complex geometries and boundary conditions.

One of the most practical methodologies to work with complex geometries is the
Immersed Boundary (IBM) [7]. It is characterized by the imposition of a term source,
which has the role of a body force added to the Navier-Stokes equation to represent
virtually a body immersed in the flow [8].

A new methodology, presented in this paper, works with Fourier pseudo-spectral
method connected with immersed boundary method. It is proposed to simulate flows
with non-periodic boundary conditions making use of the term source of immersed
boundary. On the other hand, the accuracy of immersed boundary is improved, at least
to second order for smooth solution problems.

2 MATHEMATICAL MODELING

The mathematical model presented in this section is based on immersed boundary
method and in Multi-Direct Forcing proposed by [9]. The equations that govern the
problem will be transformed for the Fourier spectral space using the properties of
discrete Fourier transform and, finally, the methodology proposed in the present paper
concern these two methodologies.

2.1 Mathematical model for the fluid

The flow is governed by momentum and continuity equations. The information of the
fluid/solid interface (domain 7, see Figure 1) is passed to the eulerian domain () by the
addition of the term source to Navier-Stokes equations, term £ at equation (1). This term
plays a role of a body force that represents the boundary conditions of the immersed
geometry [8]. The equations that govern the problem are presented in the tensorial form:

%+%:_a_p+vﬂ+f
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where — =——— p* is the static pressure in [N/m"]; u, is the velocity in / direction
ox, p Ox
n [m/s]; f—’; f is the term source in [N/m’]; p is the density; v is the cinematic

viscosity in [m?/s]; x; is the spatial component (x,y) in [m] and ¢ is the time in [s]. The
initial condition is any velocity field that satisfies the continuity equation.

The source term is defined in all domain Q, but presents values different from zeros
only in the points that coincide with the immersed geometry, enabling that the eulerian
field perceives the presence of solid interface [10].

€)

where X is the position of any particle in the fluid and X, is the position of any point in

solid interface (figure 1).

The boundary conditions are periodic in all directions in eulerian domain 3, as
showed in figure 1, it is necessary due pseudo-spectral method properties. The boundary
condition of the simulated problem is imposed by direct forcing methodology in 7 sc,
and also the boundary conditions of bodies immersed in flow /7.

(s
[s

/

.
/
yj / g

Figure 1: Schematically representation of Eulerian and Lagrangean domain.

Using equation (3) it is possible to concluded that the field f, ()?, t) is discontinuous,

which can be numerically solved only when there are coincidence between the
Lagragean points with Eulerian domain. In the cases there is no coincidence between
these points, which is very frequent in the complex geometries, it is necessary to

distribute the function f, ()?,t) on its neighborhoods. Just by calculating the
Lagrangean force field F;(%,,7), it can be distributed and thus, transmitted the geometry

presence information for the Eulerian domain. More details about this procedure can be
found in [11-12]:
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Here 4 is the spacing between two consecutive Lagrangean points.

2.2 Mathematical model for the immersed interface

The Lagrangean force field, in this study, is calculated by direct forcing
methodology, which was proposed by [13]. One of the characteristics of this model is
that is not necessary to use ad-hoc constants and allows the non-slip condition modeling

on immersed interface. The Lagrangean force F,(?ck,t) is available by momentum

conservation equation over a fluid particle that is joined in the fluid-solid interface:

. ou, , . 0 B p .. o’u, .
E(Xk,t):a—tl(xk,l)+aT(MIMj)(Xk,t)-i‘aT(Xk,f)— ﬁ(xk,t)
i l 77

J

()

The values of u,(X,,t) and p(X,,t) are given by interpolation of velocities and

pressure, respectively, of the Eulerian points near the immersed interface [11]. For
Lagrangean point X, at the immersed boundary, we have:

E(fka )= u, (xk,t+At)—u, (xk,t+AAtz+ul (xk,t+At)—u,(xk,t) +RHS(5c'k,t), ()

where u* is a temporary parameter, as defined by [9], 4¢ is the time step and
2

RHS()?k,t)=£j(u,uj)(fk,t)+aa—z()?k,t)—vaijg;j (%,.t). The equation (8) is solved

by equations (9) and (10) at same time step:
w, (X0 +At)—u, (%,,1)
At

+RHS (%,,1)=0, )

r (Xt + A —uy (%, 1+ At)

[ (%t) = ~ : (10)

where u, (X,,¢+At)=U,, is the immersed boundary velocity, normally known.
Equation (9) is solved at Eulerian domain at Fourier spectral space, i.e. the solution

of equation (1) with fi=0. u, (X,t+At) is interpolated for Lagrangean domain and

became u, (X,,¢+At) and it is computed on equation (10). Then F,(%,,7) is smeared

for Eulerian mesh by equation (4). Finally, the Eulerian velocity is update by equation

(11):
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w, (X,0+At) =u, (X,t+ A1)+ At- f,(%,1) (11)

2.3 Fourier Transforms

Defined the equations that govern the flow through immersed boundary method, the
next step is transforming them to the Fourier spectral space. Appling the Fourier
transform in the continuity, equation (2):

iku. =0. (12)

JJ

According to analytic geometry the scalar product between two vectors is null, if
both are just orthogonal. Therefore, from equation (12), the wave number vector k; is

orthogonal to transformed velocity #,. The plane of divergent free, here named plane =,

is perpendicular to wave number vector k and thus, transformed velocity vector

U (E ,t) belongs to the plane . Now applying the Fourier transform in the momentum
equation (9):

%w ik, = —ik,p— vk, (13)

where & is the square norm of wave number vector, i.e. K’ =kik;.
In agreement with plane n definition, each of the terms of equation (13) assume a

AK

.. ) . u ) o
position related to it: the transient term, —-, and the viscous term, vkzul , belong to the
t

plane m. The gradient pressure term is perpendicular to plane m, and non-linear term,

—

ik;u,u, , a priori, is not known in which position it can be found as relation to plane 7.

By joining the terms of equation (13) and observing the definition of plane &, we
have found that:

{%+vk2ﬁ;}+[ikju;uj +ik, p} =0, (14)
%/—J
- —>ern

To close equation (14) the addition of pressure and non-linear term must be equal to
the projection of the non-linear term over the plane n. For that, a projection tensor is
used as in [3], which projects any vector over the plane m. Therefore, applying this
definition on the right hand side of the sum done in equation (14):

ik +ikp | = o, ik | (15)

The parcel of the gradient pressure field is orthogonal to plane =, then, it is zero after
to be projected. Therefore we do not need the pressure field to solve Navier-Stokes
equations in the spectral space. The pressure field can be recovered at the pos-
processing manipulating equation (15).

Other important point is that the non-linear term, in which the product of transformed
functions appears, in agreement with Fourier transformed properties, this operation is a
convolution product and its solution is given by convolution integral, which is very hard
to be performed. This is solved by pseudo-spectral Fourier method [4]. Therefore the
momentum equation in the Fourier space, using the projection method, assumes the
following form:
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on (k.t) - (T A
#+ vk, (k,t) = —ikfgolmlz__[ﬁum (7.1)a, (k - r,t)dr (16)

The non-linear term can be handed by different forms: advective, divergent, skew-
symmetric or rotational [3]. In spite of being mathematically the same, they present
different properties when discretized. The skew-symmetric form is more stable and
present best results, but it is twice more expensive than the rotational form. However,
this inconvenience can be solved using the alternate skew-symmetric form, which
consist in to alternate the advective and divergent forms in each time step. This
procedure is adopted in present paper.

For all types of hande the non-linear term it is necessary to solve the convolution
integral, but its numerical solution is computational expensive. Then the pseudo-
spectral method is used, i.e. calculates the velocity product in the physical space and
transforms this product to the spectral space.

The Navier-Stokes equations is solved numerically with the Fourier spectral method
using the Discrete Fourier Transform (DFT), which is define by [14]:

R N/2 —i27kn
fi= D fe ¥, (17)
n=—N/2+1

where k is the wave number, N is number of meshes points, n gives the position x, of

collocation points (x,=n4x) and i = J-1.

The DFT restriction is the periodic boundary conditions, by limiting the use of
Fourier spectral transformed for CFD problems. The advantage is the low
computational cost given by Fast Fourier Transform (FFT) [6], which solves the DFT,
equation (17), very efficiently way, given order O(Nlog:N). For systems with many
collocation points, e.g. three-dimensional problems, the spectral method is very cheaper
when compared with another conventional high order methodologies. Two examples of
use of this method are the simulations of periodic temporal jets and isotropic turbulence.

2.4 The IMERSPEC Methodology

The algorithm of purposed methodology:
1) Solve the equation (16) in Fourier spectral space and obtain the temporal

parameter #, (lg,t + At) , using the low dispersion and low storage Runge-Kutta method

proposed by [15];
2) Use the Inverse Fast Fourier Transformer in #, (l; g+ At) and obtain u, (X,t+Ar)

at physic space in the domain Q;
3) Interpolate u, ()?,t+At) for the Lagrangean domain by equation (4), and obtain

u, (X0 +At);

4) Calculate the Lagrangean force, F, ()?k i+ At) , by equation (10).

5) Distribute the F,(X,,z+At) by equation (4), and obtain f,(X,7+At) in Eulerian
domain;

6) Update the Eulerian velocity, u, (X,7+At) by equation (11) and transform to the

spectral space obtaining u, (lg 1+ At) and returned to step 1.
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3 RESULTS

In order to validate the proposed methodology and the developed numerical code,
three typical problems, normally, used in CFD were chosen. The first one is the a
manufactured solution, which gives an analytic solution to incompressible two-
dimensional Navier-Stokes equations, with periodic boundary conditions. This case was
useful in order to verify the developed pseudo-spectral code without and with immersed
boundary. The second one is the Poiseille flow, which has solid boundaries and an
analytical solution. The third is the flow over a circular cylinder, which is a benchmark
of CFD. This case shows the solution of incompressible two-dimensional Navier-Stokes
equations using Fourier pseudo-spectral method with non-periodic boundary conditions
imposed by an immersed boundary.

3.1 Manufactured solution without immersed boundary

The analytic equations to velocities component (# and v) and the pressure fields are
given as a function of spatial coordinates (x and y) and time ():

u(x,y,t)=U, sin(x)cos(y)cos(—2zvt), (18)
v(x,y,t)=-U, cos(x)sin(y)cos(—2zvt), (19)
p (x, Vv, t) =0.5U,, [cos(x)2 +cos(y)’ ] cos(=27vt)*, (20)

where U is the flow velocity amplitude in [m/s] and v is the frequency [1/s].

From equations (18), (19) and (20) a source term is generated and added in equation
(16). This way, it is possible to compare the analytical (u,) and numerical (uy) solutions.
The L, norm of velocity error is adopted for this comparison:

1 M
Lz=\/mz:zy_l[u,v(xi,yj,t)—ua(xl.,yj,t)T (21)

We performs the simulations with a domain with Lx=Ly=2z discretized with 32x32
collocation points. The time step used was given by CFL=0.1 [1]. The result shown in
Figure 2 is dimensionless by vortex diameter (D= 7) and the maximal velocity (Us),
thus x*=x/D, y*=y/D and p*=p/(pU.’). The results of field pressure superposed by
velocity vectors are displayed at Figure 2. It is possible to see the counter-rotating
vortices.

20 r
El dl "
R

p*
o 0.00
-0.01
u -0.02
] N -0.03
. F -0.04
= 10 -0.05
4 -0.06
] aFE 0.07
-0.08
B -0.09
0.5 -0.10

0.5 1.0 1.5 2.0
x¥

Figure 2: Pressure field superimposed by velocity vector at ¢*=1.0/ .
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The Figure 3 shows the temporal evolution of L, norm of horizontal velocity error,
equation (21). The other velocity component and the pressure errors are the same
magnitude. For the Fourier pseudo-spectral method the expected errors are the
magnitude of round-off errors (for double precision is /07'%) and this is confirmed by
figure 3.

6E-15

4E-15 |

L. norm of horizontal velocity

2EISH

Figure 3: Temporal evolution of L, norm of horizontal velocity error.

3.2 Manufactured solution with immersed boundary

In order to verify the immersed boundary algorithm, the same simulations of [13]
and [16] is performed. It is defined any geometry, which plays a role the immersed body
in the flow. In the present case a circle with diameter D*=] is used, where D* is the
non-dimensional diameter and D=x [m] is the reference length. Therefore, two domains
are defined: Eulerian and Lagrangean, as can be seen in Figure 4, and the equations (18)
and (19) are used in both domains.

Several different cases were simulated refining the grid mesh and was taken the L,
norm of components velocities and pressure, comparing the analytical solution (u,) and
numerical solution (uy). The grid spacing is Ax* the Reynolds number is Re=10,
U w =1.0, p=1,0 [kg/m’] the domain length is Lx*=Ly*=2 and the time step is defined

by CFL=0.01. The immersed boundary velocity (U;) is defined by equations (15) and
(16) in Lagrangean positions ( %, ) and at t=t+d.

0.5 PR HH-HPP P H A HH

Figure 4: Sketch of Eulerian (€2) and Lagrangean (/") domain.
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The Figure 5 presents the comparison between L, norm as a function of grid
refinement at time ¢*=/.0. The results show decaying of the fourth order for all
variables. It is a good result obtained using immersed boundary methodology.

—0O—— IMERSEPEC
Of4)

L., Norm of horizontal velocity

0.0/ 0.03 0.05
Ax*

Figure 5: Comparison the L, norm as a function of mesh spacing.

3.3 Poiseuille Flow

The Poiseuille flow is other CFD problem used for codes verification, because it has
an analytical solution [17]:

u,(y)=Cy*+C,y+C;, (22)

where the coefficients C;, C; and C; is done by:

C=——momr, (23)

G, = %[(umax — Unin ) -G (ylzlax - yliin ):| ) (24)

1
C3 = Umax _Clyrznax -

- | (e =i ) Vs + Cob (Vo =) |- (29)

where y,.c and v, are the positions of superior and inferior walls, respectively; .,y
and u,,;, is the velocity imposed at the walls. In the present simulations gy =tmin=0
were used, D is the channel width and AP is pressure difference given by

AP = p(x+Ax)—p(x). All dimensions and results fields are non-dimensionalized

using as characteristic length the width channel D = [m] and characteristic mean
velocity U, =1.66 [m/s].

The domain is show in Figure 6 (a). The channel is represented by immersed
boundary (/7), the domain flow of interests is £2; and the complementary domain (buffer
domain) is Q. In the present paper, we use the same procedure of manufactured
solutions, with the force term replaced by a constant, which play the role of a pressure
difference (4P). This procedure permits verify the accuracy of no-slip boundary
conditions.
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At the buffer domain (£Qp) any pressure gradient can be imposed. We have used
AP>0, AP<0 and 4P=0. In Q; AP<0 is imposed, as can be seen in Figure 6 (b).

2.0
QB | AP0
Flow direction
I -
8555 | Speeeea6
|
L AP<O
3 - Flow direction)
= Q 1.0
0. 5pFeeeaa6
AP=0
Flow direction
Q, i
0.2 04
x* ¥
(a) (b)

Figure 6: a) The flow domain; b) Pressure difference and flow direction.

Simulations are performed in the domain L =0.5 and L; =2.0, discretized with Nx
x Ny collocation points. Walls positions is y.. =0.5 and y_ _=1.5, time step is given
by CFL=0.1 and the Reynolds number is Re=100, thus the viscosity is calculate by:
U.D
- Re
The velocity profiles at x*=0.25 in t*=50.0 of differents 4P in Qp are shows in
Figure 7. A grid of N,=64 and N,=256 collocation points was used.

|4

(26)

2.0 20f
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10 Yy t10 / Lot /x/
[ —
t T
0.0 " _ | 0ol . . 0ot i *a
-15 -0 05 0.0 0.5 1.0 1.5 0.0 0.5 Lo 15 0.0 0.5 1.0 15
u u w*
(@) (b) (©)

Figure 7: Velocity profiles at x*=0.25 in t*=50.0 for (a) 4P>0, (b) AP=0 and (¢) AP<0 in Q3.

The differences of simulations are clear in Figure 8, which show the absolute
velocity error between analytical and numerical solution for different grid refinement.
For 4P>0 in buffer domain, the convergence rate reach second order. The maximal
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order for this problem is limited by numerical solution that can be derivative only twice.
For 4P<( and 4P=0 the first order of convergence rate is obtained.

-[0-4:‘f 1 1 1 TN I S NN T N I O I
0.0 0.05 0.09 0.43

Figure 8: Convergence rate for different 4P.

3.4 Flow over a cylinder

An inlet profile flow with velocity U, in [m/s] is imposed. The flow cross the section
of a circular cylinder, see Figure 9 and verify the drag and lift coefficients, equations
(27) and (28), respectively. These variables determine the forces that act on bodies
immersed in flow. The drag coefficient determines the resistance force of the fluid on
the immersed body, while the lift coefficient determines the force that there is in
perpendicular direction to incoming flow. Other parameter analyzed is the Strouhal
number (St) which determines the non-dimensional vortex shedding frequency, equation
(29).

23 F

Cd=%U;, (27)
p y o0
O3 F

Cl :—AZU;’ , (28)
pAU;

Sx:f:]' D (29)

where: F, and F), are the forces calculated at each Lagrangean point with equation (7);
A, and A4, are the projected frontal area in direction x and y, respectively. In two-
dimensional case these areas are given in [m°] considered the axial dimension of surface
equal to unity, D is the characteristic diameter and fr is the vortex shedding frequency
downstream of cylinder.

The domain of all cases have been taken as 6z x 27 [m’] and has been discretized
with 384 x 128 collocation points. The cylinder has a diameter of D=0,785 [m], with 64
Lagrangean points. The cylinder position in domain is shown in Figure 9.

11
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Periodicity conditions were used at the top and bottom boundary of the domain. The
inflow condition is a uniform profile of velocity (U,=1,0 m/s), imposed by immersed
boundary. A buffer zone was also used as [18]:

ZB=¢(Q,-01,) (30)

where Q is the problem solution, that is, # and v, Qf is the target solution, which
required in the final buffer zone. In the present case, the target solution is an uniform
profile U, and ¢ is a parameter of stretching vortex, and it is calculated by equation

(20):
X, — X, ‘
oo
X, =Xy

where a=3.0 and f=1.0 [18], xzp and x; give the length of the buffer zone, respectively,
X, 1s a generic position.

\‘ 14D |20 1. 8D <] 24D _|
i el TR Lt [l bl
8D

N
N
Buffer Zone S
3
[

Figure 9: Calculus domain — circular cylinder.

The forcing zone or porous medium has a thickness of 2D, where is imposed the
inflow profile by direct forcing, in order to have parallels streamlines.

Figure 10 shows vorticity field (-7.0<w<1.0) at time t*=250, for flow at Re=100.
We can see the vortex shedding behind the cylinder, the influence of buffer and forcing
zone. The eddy are damped at the buffer zone and are the forcing zone gives a parallel
flow.

16

4 N 12 I 20 24 28 32 36 40 44 45
¥

Figure 10: Isocontours of vorticity (-/,0<w<1,0) at Re=100 in t*=250. - negative vortice; -- positive
vorticity.

12
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Figura 11 shows a zoom at the region of immersed object and velocity vectors. It is
possible to see the flow deviation of the obstacle and the flow inside the boundary,
which arise for close to divergence free.

s
84 /// - § \'\_\
' /1
52 i / \
[
‘E‘__.K,H - - - I
| \
F , /
ek 1 \\ .
=] /
= - . \\‘ //

2310 23.5 240 243 254

Figura 11: Velocity vectors at region of the immersed boundary.

The time evolution of vorticity field of simulation at Re=100 is displayed at Figure
12.

TR L

g AR Y]

R

N En T
a) 1*=255 b) 1¥=50,0
-
e AT LN AN Y 2 ‘
“ | e R A TR AR f ) < Sy
- =N N W) TN - |
F == MY W N |
5: —— v ‘:
c) t*=64,0 d) t*=89,0

Figure 12: Temporal evolution of vorticity field at Re=100. -- negative vorticity; - positive vorticity.

Figure 12 (a) is the beginning of simulation, where we find two recirculation
bubbles. In t*=50, Figure 12 (b), there is a formation of instability, and in the sequence
appears the vortex shedding, *=64 and t*=89, Figure 12 (c) and (d) respectively.

In order to compare with other authors simulations of different Reynolds numbers is
performed. Table 1 shows the comparison of Cd, CI and St, equations (27), (28) and
(29), respectively. The results of other authors [12], [19] and [20] were also used.

13
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[12] [19] [20] [21] Present work
Re Cd Cl St Cd Cl St Cd Cl St Cd Cl St Cd Cl St
100 | 1,39 | 0,20 | 0,160 | 1,44 | 0,33 | 0,165 | 142 | 0,34 | 0,171 | 1,39 | 0,34 | 0,160 1,45 | 0,35 | 0,175
150 | 1,37 1 0,25 | 0,175 | 1,47 | 0,58 | 0,184 1,37 | 0,49 | 0,200
200 1,42 | 0,66 | 0,202 | 1,38 | 0,68 | 0,192 1,27 | 047 | 0,213
300 | 1,22 | 0,27 | 0,190 1,08 | 0,39 | 0,221

A AR ]

Table 1: Comparison of drag coefficient and Strouhal number.

Figure 13 show the field of vorticity for different Reynolds numbers, Figure 13 (a),
Re=45, for which we have two recirculating bubbles formed behind the cylinder. In
Figure 13 (b), Re=60, the vortex shedding appear. Figure 13 (c), (d), (¢) and (f) shows
the influence of Reynolds number over a vortex shedding.
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=IG°00 G
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Figure 13: Isocontours of vorticity for different Reynolds numbers at t*=254. -- negative vorticity; -
positive vorticity.

Other important parameter of comparison is given by L, norm, equation (21), at the
points of immersed boundary, which, rigorously, should be zero, but due to numeric
approaches, is not exactly zero and depends on the Reynolds number, shown in Figure
14.
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4 CONCLUSIONS

The present work shows the coupling between the pseudo-spectral method and
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Figure 14: Temporal evolution of L, norm for different Reynolds numbers.

immersed boundary method. Three features are highlighted:

Pseudo-spectral algorithm is very efficient, because it do not need to solve the
Poison equation for pressure field;

Accuracy of Fourier pseudo-spectral method is high. It is demonstrated in
simulations of manufacture solutions. Without immersed boundary we obtain
round-off errors, and with immersed boundary we reach forth order of
convergence;

A buffer domain, as shown at section 3.4, is need for recover the inlet flow.
Nevertheless, the algorithm is still efficient when compared with high order
methods.
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