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Abstract. An advanced Finite Element Method is presented which is being applied
to simulate fluid flow interacting with a soft structure. Furthermore, the generated sound
from fluid flow and structural mechanics is also taken into account. To get a correct model
for the acoustic source terms resulting from the fluid flow Lighthill’s analogy is applied,
while structural mechanics is coupled to acoustics via the common interface. As a result
we have a coupling between fluid flow, structural mechanics and acoustics.
While we assume the acoustics has no back reaction neither on the fluid nor on the struc-
ture, fluid and structure influence each other in a strong sense. Therefore, additionally
to the non–linearity arising from the Navier–Stokes equations the strong coupling yield a
further non–linearity, which needs to be tackled. Different kind of iterative algorithm can
be applied to solve the problem, like the relaxation according to Aitken. A further chal-
lenge is the mesh deformation which occurs due to the movement of the structure. We
apply an Arbitrary Lagrangian Eulerian (ALE) approach1,2. Dealing with all three physi-
cal fields, their interactions and the above mentioned difficulties is very costly concerning
computational time and therefore we limit ourselves to 2d simulations.

The resulting algorithms are implemented in the research code CFS++3 and find its ap-
plication in simulating the human phonation process, a prefect example since all mentioned
physical fields and their interactions are present. Due to airflow through the trachea, gen-
erated by compression of the lungs, the vocal folds, positioned inside the larynx, start to
vibrate. The vibration in turn causes the airflow to pulsate, which generates the main
frequency of the human voice, the so called phonation.
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1 INTRODUCTION

In this paper a fully coupled fluid–structure–acoustic formulation is presented4,5, which
has been implemented in the research code CFS++. The motivation arises from the
phonation process, which is not yet completely understood. Phonation is generated inside
the larynx and results from fluid flow through the trachea which generates vibrations of
the vocal folds. Therewith, fluid flow as well as mechanical vibrational induced sound is
generated.
A sketch of the relationships between the physical fields is given in figure 1, which has
been implemented using the finite element (FE) method. Generally speaking, we consider

Figure 1: Sketch of interaction and coupling types between fluid mechanics, structure
mechanics and acoustics.

a fluid flow which acts onto a deformable structure, which in turn influences the adhering
fluid. Therefore, special boundary conditions are given at the common interface which are
specified in section 2.3. Furthermore, the deforming structure prescribes the fluid domain
and its grid which has to change constantly in time. An Arbitrary Lagrangian Eulerian
(ALE) method is being used to tackle the problem. In section 2.4 the wave equation is
presented together with the calculation of the sound sources resulting from fluid dynamics
and structural mechanics.

2 PHYSICAL FIELDS

2.1 Fluid mechanics

In the case of phonation a Mach number of smaller than 0.3 is guaranteed which allows
the assumption of an incompressible flow. Therefore, the fluid may be described by the
incompressible Navier–Stokes equations given by the momentum and mass conservation

ρf
∂~v

∂t
+ ρf(~v · ∇)~v +∇p− µ∆~v = 0 , (1)

∇ · ~v = 0 . (2)
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Thereby, ρf is the fluid density, ~v the fluid velocity, p the pressure and µ the dynamic
viscosity. Inflow and outflow are treated by the inhomogeneous boundary condition

p(~x, t) = p0(~x, t) ΓD × {0, T} (3)

at the interface ΓD. A sketch of the simulation domain with its different boundaries is
given in figure 2. For fixed walls the fluid adheres and the velocity is set to zero, whilst
the pressure component is free. The common interface between moving structure and
fluid Γfs is described in section 2.3. This results in three different boundary treatments,
partitioning the boundary Γ = ΓD ∪Γfs∪ΓN with the latter representing the fixed walls.

Figure 2: Sketch of simulation model for the larynx, defining the different boundaries.

2.2 Solid mechanics

The partial differential equation of solid mechanics for linear elasticity is given by
Navier’s equation

∇ · σs = ρs
∂2

∂t2
~u , (4)

with the Cauchy stress tensor σs, the solid density ρs and the displacement ~u. By intro-
ducing the tensor of elasticity [c] and the tensor of linear strain [S], Hook’s law may be
expressed by

σs = [c][S] (5)

and the linear strain-displacement by

[S] = ∇sym~u . (6)
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Substituting (5) and (6) into (4) results in the final partial differential equation (PDE)
for linear elasticity

BT [c]B~u = ρs
∂2

∂t2
~u (7)

with the differential operator B which for the 2d plane case is

B =

 ∂
∂x

0
0 ∂

∂y
∂
∂y

∂
∂x


.

2.3 Fluid–solid interaction

Considering the common interface Γfs between solid and fluid, fluid velocity and struc-
tural velocity needs to be identical given by

~v =
∂

∂t
~u on Γfs . (8)

This implies that the fluid adheres to the structure. Furthermore, fluid stress σf and solid
stress have to coincide in normal direction which is enforced by

[σs] · ~n = [σf ] · ~n on Γfs. (9)

In (9) the fluid acting on the solid is equivalent to a force ~ffs which may be split into a
pressure and a shear component

~ffs = ρf

∫
Γfs

−pI · ~n dx

︸ ︷︷ ︸
pressure

+

∫
Γfs

µ
(
∇~v + (∇~v)T

)
· ~n dx

︸ ︷︷ ︸
shear

.

2.4 Acoustics

In our application the acoustic calculation domain coincides with the fluid domain Ω,
where the acoustic pressure propagation is described by the wave equation, which in index
notation is given as

1

c2

∂2p′

∂t2
− ∂2p′

∂x2
i

=
∂2Tij

∂xi∂xj

(10)

with the speed of sound c, p′ the acoustic pressure and T the Lighthill tensor

Tij = ρfvivj︸ ︷︷ ︸
Reynolds stress

+ τij︸︷︷︸
Viscous stress

+
[
p′ − c2ρ′

]
δij︸ ︷︷ ︸

Heat conduction

. (11)

In (11) ρ′ is the acoustic density . For high Reynolds number the viscous stress may
be neglected6,7. The heat conduction may also be neglected since in regions of ambient
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temperature the contribution of heat conduction is of the same order as the viscous term.
This leads to the approximation

Tij ≈ ρfvivj . (12)

The fluid induced sound is a sound source given on the whole domain Ω. Additionally, at
the structure interface Γfs vibrational induced sound is enforced by

∂

∂t
~u · ~n = ~va · ~n on Γfs (13)

setting the structural and acoustic velocity ~va equal in normal direction. With the lin-
earised momentum equation for acoustics

∂

∂t
~va · ~n = − 1

ρf

∂

∂n
p′ on Γfs (14)

the source terms in pressure formulation is

∂

∂n
p′ = −ρf

∂2

∂t2
~u · ~n on Γfs . (15)

For the considered case we assume, that there is no back reaction of the acoustic onto
the vibrating solid.

3 FINITE ELEMENT FORMULATION

3.1 Fluid mechanics (FE)

To employ the FE method, the weak form of the PDE is regarded, which is then
approximated by appropriate set of functions. In this section a sketch is only presented,
for a detailed view we refer to appropriate literature8. We define the scalar product as

(p, q) =

∫
Ωf

pq dΩ .

Hence the weak form of (2) is(
~̇v, ~w

)
+ (~vc · ∇~v, ~w)− (p,∇ · ~w) + ν (∇~v,∇~w)− (∇ · ~v, q) =

(
~h, ~w

)
Γf

(16)

with ~h representing the boundary conditions. The pressure is approximated by

p ≈ ph :=
∑
i∈N

pi(t)ϕ(~x),

which is also done for the test function and the velocity field. Additionally applying the
BDF2-scheme to the unsteady flow problem we get the final algebraic system of equations[

M +
2

3
4tN

]
vn+1 +

2

3
4tGpn+1 = M

(
4

3
vn − 1

3
vn−1

)
. (17)

The Streamline Upwind Petrov Galerkin9,10,11 (SUPG) was used as a residual based
stabilisation, but will not be covered here.
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3.2 Structure mechanics (FE)

Regarding structural mechanics, the weak form reads as(
[c]B~u, (B ~w)T

)
= ρs

(
~̈u, ~w

)
(18)

resulting in the following semi-discrete Galerkin formulation

Mü + Ku = 0 (19)

with ü denoting the second derivative in time. The time discretisation is performed by
the standard implicit Newmark scheme.

3.3 Acoustics (FE)

For the acoustics, equation (10) is multiplied by an appropriate test function q and
integrated over the domain Ω resulting in(

1

c2

∂2p′

∂t2
− ∂2p′

∂x2
i

− ∂2Tij

∂xi∂xj

, q

)
= 0 . (20)

Applying the integral theorem of Green to the spatial derivative we get(
∂2p′

∂x2
i

, q

)
=

(
∂p′

∂~n
, q

)
Γ

−
(
∂p′

∂xi

,
∂q

∂xi

)
(21)

whereby the additional boundary integral arises. At the boundaries where the computa-
tional domain adjoins to a fixed structure, hard reflecting walls are employed resulting in
homogeneous Neumann boundary conditions for Γfs and ΓN . For in- and outflow it has to
be guaranteed that any wave impinging the boundary leaves the computational domain
and does not reflect back. A first order absorbing boundary8 is used, expressed by

∂p′

∂~n
= −1

c

∂p′

∂t
. (22)

Analogously the integration by parts is applied to the term including the Lighthill tensor,
resulting in (

∂2Tij

∂xi

∂xj, q

)
=

(
∂Tij

∂xj

ni, q

)
fs

−
(
∂Tij

∂xj

,
∂q

∂xi

)
. (23)

The boundary term may be substituted based on the continuity equation12 by(
∂Tij

∂xj

ni, q

)
fs

= −
(
∂p′

∂ni

, q

)
fs

−
(
∂ρfvi

∂t
ni, q

)
fs

. (24)

6



S. Zörner, M. Kaltenbacher

The last term in (24) vanished for a fixed boundary. For vibrating structures we use (15),
which together with (22) changes (10) to(

1

c2

∂2p′

∂t2
, q

)
+

(
∂p′

∂xi

,
∂q

∂xi

)
+

(
1

c

∂p′

∂t
, q

)
ΓD︸ ︷︷ ︸

Absorbing boundary

=

−
(
∂Tij

∂xj

,
∂q

∂xi

)
︸ ︷︷ ︸

Flow–induced sound

−
(
ρf
∂2ui

∂t2
ni, q

)
fs︸ ︷︷ ︸

Vibrational–induced sound

. (25)

This in turn yields the following semi-discrete Galerkin formulation

Mp̈′ + Dṗ′ + Kp′ = F , (26)

which in turn is discretsed in time again by the standard implicit Newmark scheme.

4 APPLICATION TO HUMAN PHONATION

4.1 Human phonation model

The simulation setup to model the human larynx consists of a channel with the two
vocal folds13 which act as a constriction inside the channel. The setup is sketch in figure 3
also giving insight into the mesh around the vocal folds. Approximately 45000 quadratic
elements are used to resolve the fluid which results in about 400000 degrees of freedom.
For structural mechanics the vocal folds have been divided into three different layers, the
body, the ligament and the cover. Each have different elasticity modulus to model the real
physiology more accurately. For body, ligament and cover the elasticity moduli were set
to 21, 33 and 12 kPa respectively. To simulate the pressure the lungs build up a pressure
gradient from in– to outflow of 1.5 kPa is regarded.

4.2 Results

The simulation show the typical movement of the vocal folds during phonation, which
is divided into the divergent (opening) and convergent (closing) phase. In figure 5 the
fluid field can be seen at time step 7.25 ms. The jet attached itself to the upper vocal
fold is known as the Coanda effect. In our transient simulation one can see how the jet is
stochastically pulled towards either side of the trachea wall.

4.3 Fluid induced and vibrational induced sound

The simulation code CFS++ is capable of separately computing the aeroacoustic disre-
garding the vibrational induced sound and separately calculating the acoustic propagation
with the structural vibration as a sound source. In a series of simulations the acoustic
field of vibrational and fluid induced sound was compared. As can be seen in figure 6a the
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(a) Simulation model (dimensions in) mm (b) Mesh around the vocal folds
Figure 3: Model of the larynx with vocal folds and the according mesh used for the
simulations.

Figure 4: Computed deformation cycle of the vocal folds, which can be divided in divergent
to convergent phase.

mechanical induced sound is much smaller than that of the fluid induced sound. Com-
paring this result with a simulation were the glottis width is enlarged to 0.7 mm (see
figure 6b) it shows that the bigger glottis results in a much broader acoustic frequency
spectrum. Furthermore, no dominant frequency component is recognisable as in figure 6a
at about 190 Hz.
These results imply the importance of a proper closing glottis for a clear and healthy
voice. Furthermore, they show that the fluid flow is the dominant source of the phonation
which is hard to proof by measurements.

5 CONCLUSIONS

A method was presented and implemented to simulate fluid–structure–acoustic interac-
tion. The scheme has been applied to investigate the human phonation process. Realistic
self sustained oscillations of the vocal folds, which are induced by the fluid flow, were
observed. Furthermore, the separation of fluid induced sound and vibrational induced
sound made it possible to show that the dominant sound sources is the fluid flow.
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Figure 5: Snap–shot of velocity field and deformation of vocal folds. Jet is attached to
the top vocal fold — Coanda effect.

(a) Acoustic spectra of vibrational and fluid in-
duced sound at a glottis width of 0.3 mm

(b) Acoustic spectra of vibrational and fluid in-
duced sound at a glottis width of 0.7 mm

Figure 6: Comparison of acoustic spectra for fluid induced and vibrational induced sound
simulation for different glottis widths.
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