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Abstract. A robust optimization procedure based on a multi-objective genetic algorithm
(MOGA) is used to generate airfoil profiles for transonic inviscid flows of dense gases,
subject to uncertainties in the upstream thermodynamic conditions. The effect of the ran-
dom variations on system response is evaluated using a non-intrusive Polynomial Chaos
(PC) based method known as the Probabilistic Collocation Method (PCM). After initial
PCM simulations which showed that the dense gas system was highly sensitive to input
parameter variation, a multi-objective genetic algorithm coupled to the PCM produced a
Pareto front of optimized individual geometries which exhibited improvements in mean
performance and/or stability over the baseline NACA0012 airfoil. This type of analysis
is essential in improving the feasibility of Organic Rankine Cycle (ORC) turbines, which
are typically designed to recover energy from variable sources such as waste heat from
industrial processes.
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1 INTRODUCTION

Dense gases are defined as single phase vapors, characterized by complex molecules and
moderate to large molecular weights. Flows of dense gases are of considerable interest
for many applications in energy production,1–3 refrigeration,4,5 and chemical processing.6

For dense gases operating at temperatures and pressures of the same order of magnitude
of their critical point, the ideal gas approximation is no longer valid and real gas effects
become influential in the dynamic behavior of the fluid. Real gas effects are particularly
strong for highly complex molecules which display a non-monotonic variation of the sound
speed with respect to pressure. Some fluids characterized by particularly high molecular
complexity have been theoretically predicted7–10 to display a region of negative values of
the Fundamental Derivative of Fluid Dynamics11 Γ in the vapor phase. This thermo-
dynamic region is called the inversion zone12 and the locus of thermodynamic states in
the vapor phase such that Γ < 0 is referred to as the transition line. Fluids of this type
are said to possess Bethe-Zel’dovich-Thompson (BZT) properties. For transonic flows of
BZT type fluids, compression shock waves may be suppressed if the upstream thermo-
dynamic conditions are selected within the inversion zone, since for Γ < 0 compression
shocks violate the second principle of thermodynamics.12 Harnessing the unusual proper-
ties of BZT type fluids could potentially have a significant impact on the performance of
low temperature energy conversion cycles, such as in the case of Organic Rankine Cycle
(ORC) turbines.2,3, 13

Whereas a traditional Rankine Cycle operates with water vapor as the working fluid,
ORC turbines use an organic fluid such as hydrocarbons, silicon oils or other organic
refrigerants. The low critical temperature, high density and elevated heat capacities
of these fluids result in high suitability for low temperature operation, even as low as
80◦C.14 Furthermore, the slope of the saturated vapor line for organic fluids eliminates
the risk of condensate at the turbine outlet, without heating the working fluid into the
superheated vapor region. ORCs represent a promising technology for the development
of widely distributed, small yield (less than 1MW) thermal energy conversion devices.15

Additional practical advantages are the self lubricating nature of organic fluids and the
absence of a superheating requirement. ORC turbines typically utilize a single-stage
turbine operating in the transonic/supersonic regime, where a major source of losses
arises from the formation of shock waves and their interaction with boundary layers. The
use of organic fluids possessing BZT properties could potentially avoid shock formation
and the consequent losses, if only turbine expansion occurred entirely within or very close
to the inversion zone.

In order to improve the feasibility of BZT flows in ORC turbines, a compromise is sug-
gested by Cinnella & Congedo.16 The proposition is to allow the dense gas flow to evolve
partially outside the inversion zone, thus permitting loss inducing compression shocks and
mixed waves. Such waves are expected to be relatively weak if the thermodynamic states
on either side of the discontinuity are in the vicinity of the transition line.12 These weak
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waves would result in associated losses which are lower than in the case of an ideal gas,
leading to increased turbine efficiency. Operating the turbine cascade partially outside
the inversion zone also allows for a larger difference between the maximum and minimum
temperature of the thermodynamic cycle, boosting the overall power output. However,
this approach of allowing variation in the upstream thermodynamic state of the dense gas
flow introduces a complex challenge at the modeling stage of development.

ORC turbines are often designed to exploit waste heat from other processes, where inlet
operating conditions are likely to be highly variable. For the BZT working fluids currently
considered, the inversion zone, where the turbine isentropic efficiency is expected to be
the most favorable, is found to be relatively small and in close proximity to the saturated
vapor curve. As a result, variations in upstream thermodynamic conditions may induce
dramatic changes in the flow physics and ultimately in the system performance. Given the
relatively small size of the inversion zone and the variability of proposed energy sources,
the physical behavior of the system is likely to be highly sensitive and difficult to model
using a classic approach. The variability of the operating conditions represents a crucial
issue for all ORC turbines, not restricted to those using BZT working fluids. Another
important point is that the serialization of ORC turbogenerators leads to the development
of a standard turbine geometry which is applied to a relatively wide range of situations.
As a consequence, even when turbine admission conditions remain relatively stable for a
given application, the final performance may vary considerably according to the proximity
of these conditions to the design point. Taking account of the variability of operating
conditions is therefore critical to ensure optimal turbine performance and durability. This
variability can be evaluated implementing a non-deterministic (i.e. stochastic) approach
known as uncertainty quantification. This type of analysis consists of measuring the
system response to random and unknown variations in input parameters. Dense gas flows
are particularly suited to stochastic analysis due to their high sensitivity to variations in
upstream thermodynamic conditions. A recent study17 has already applied a stochastic
analysis to a BZT type dense gas flow simulation over an airfoil in order to quantify the
effect of uncertainties of parameters in different models of the Equation of State (EOS).

The most basic type of stochastic analysis is the Monte Carlo (MC) method, which
consists of randomly sampling N values of an input variable with a known or supposed
input distribution, and then calculating the deterministic solution for each input value.
Theoretically, the MC method will converge to the exact stochastic solution when the
number of samples N →∞. In practice, several thousand samples are required to obtain
an acceptable level of accuracy. As a result, the MC method is very computationally
intensive when applied to fluid flow simulations. A more sophisticated class of stochastic
analysis methods are known as the Polynomial Chaos (PC) methods. Essentially a spec-
tral approach, PC methods can provide detailed statistical information of system response
to input parameter variations at a fraction of the computational cost of the MC method.
PC methods can efficiently obtain accurate estimates of uncertainty for models which
describe physical phenomena in terms of partial differential equations, even in situations
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exhibiting strong non-linear dependence on random input variations.18 The classic PC
approach is an intrusive method, which requires significant modifications of the underlying
CFD flow solver. However, a non-intrusive method is preferable to increase the flexibility
of the stochastic analysis for complex CFD problems, as the simulation is considered an
independent “black box”and direct modification of the CFD code is not required Several
PC based non-intrusive methods have been proposed in the literature19–21 In the present
study, the Probabilistic Collocation Method (PCM) proposed by Loeven et al.19,20 is
selected due to its exponential convergence and non-intrusive properties.

The aim of the present work is to demonstrate the feasibility and usefulness of robust
design techniques for dense gas flows, given uncertainties applied to the upstream thermo-
dynamic conditions. The robust design procedure involves the use of a PCM stochastic
solver coupled with a multi-objective genetic algorithm (MOGA). At this early stage of
the research work, we focus our attention on a simplified geometry, namely an airfoil
placed into a dense gas stream with randomly varying thermodynamic conditions. The
study is divided into two main sections. The first section considers uncertainty quantifica-
tion applied to transonic dense gas flows using a Polynomial Chaos (PC) based stochastic
approach known as the Probabilistic Collocation Method (PCM). The PCM algorithm,
initially validated for complex flow problems in Hercus,22 is then applied to an existing
solver23 of a inviscid transonic dense gas flow over half of a symmetrical NACA0012 air-
foil at M∞ = 0.95. The working fluid used is pf-perhydrofluorene (C13F22, commercially
known as PP10) with the thermodynamic properties modeled by the Martin-Hou equation
of state. The aerodynamic performance of the airfoil at 0◦ incidence is examined with
Gaussian random variations in the upstream pressure and temperature.

In the second section of this study, a PCM stochastic analysis is coupled with an
existing multi-objective Pareto-based genetic algorithm (MOGA), previously applied to
transonic dense gas flows.24–26 The robust optimization procedure generates a series of
optimized 2D airfoils for dense gas flows, based on minimization of the mean and standard
deviation of the drag coefficient. The high computational cost of the genetic algorithm is
mitigated by the use of the Richardson extrapolation method (REX) on each individual
calculated. This mesh extrapolation method, already applied to robust profile optimiza-
tion of dense gas flows,26 accelerates convergence and increases the solution accuracy for
each individual, which can improve MOGA convergence. Optimal individual geometries
from the MOGA optimization process are selected and their aerodynamic performance
analyzed and verified with both deterministic and stochastic simulations. Finally, a poste-
riori testing of the optimized individuals is carried out in the turbulent flow regime using
the Baldwin-Lomax turbulence model.
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2 GOVERNING EQUATIONS AND FLOW SOLVER

2.1 Physics of dense gas flows

In this study, we focus our attention on a class of dense gases of the retrograde type
(gases which superheat when expanded) known as Bethe-Zel’dovich-Thompson (BZT)
fluids. In a specific range of thermodynamic conditions in the vapor region, BZT gases
exhibit non-classical dynamic behavior, such as expansion shock waves, mixed shock/fan
waves and splitting shocks. This unusual behavior arises when the value of the Funda-

mental Derivative of Gas Dynamics11 Γ = 1 + ρ
a

(
∂a
∂ρ

)
s
, becomes negative. Note that a

represents the speed of sound, ρ the fluid density and s the entropy of the fluid. The
fundamental derivative measures the rate of change of the sound speed in isentropic per-
turbations. For perfect gases, Γ = (γ + 1) /2 > 1, where γ (the specific heat ratio of
the fluid) is strictly greater than 1 due to thermodynamic stability requirements. For the
majority of classical working fluids, an isentropic compression leads to an increase in the
speed of sound.

For a BZT fluid, if Γ < 1, then (∂a
∂ρ

) > 1, and the flow exhibits a reversed variation in the
speed of sound, where a grows in isentropic expansions and falls in isentropic compressions.
An important consequence of this phenomenon is observed when considering a weak shock
wave. It can be shown (Cramer & Kluwick12) that the entropy difference ∆s across the
shock is given by the expression:

∆s =
−a2Γ

v3

(∆v)3

6T
+ O

(
(∆v)4) (1)

where ∆ is the change in a fluid property across the shock, v = 1/ρ is the specific volume,
and T is the absolute temperature. It follows that in regions where Γ < 0, compression
shocks cannot form as a consequence of the entropy inequality, whereas expansion shocks
are theoretically admissible. The region where Γ < 0 is referred to as the inversion zone,
and the Γ = 0 contour is known as the transition line. These features can be observed on
the state diagrams shown in Figure 1 for the heavy perfluorocarbon pf-perhydrofluorene,
commercially known as PP10. The thermodynamic properties of this gas are modeled
using the realistic Martin-Hou equation of state. The T-s diagram displayed in Figure 1
shows the retrograde behavior of the fluid: the liquid/vapor coexistence curve exhibits a
positive slope up to near-critical conditions.

Numerical simulation of BZT flows over isolated airfoils and wings27,28 has shown that
with a negative upstream value of Γ , the flow remains subsonic throughout the entire
domain, whereas a shock is observed for a perfect gas at the same operating conditions.
BZT effects can essentially delay shock wave formation and the related losses, increasing
the critical Mach number to near-sonic speeds. This is in clear contrast to the classical
behavior of regular gases such as air, oxygen, nitrogen and steam that exhibit much
lower critical Mach numbers (around 0.8 or even less). As a result of further numerical
simulations conducted by Brown & Argrow,2 Cinnella et al.29 and Congedo et al.,30 the
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Figure 1: (left) Pressure-volume diagram and (right) temperature-entropy diagram for PP10 (C13F22)
using the Martin-Hou equation of state. The subscript c represents a critical value.

conclusion has been made that the use of BZT fluids in turbine design could lead to a
potential increase in efficiency of approximately 3-8%, with advancement in fluid dynamic
design and non-classical effect exploitation.

2.2 Dense gas model and flow solver

Dense gas flows are governed by the equations for equilibrium for non-reacting flows.
In the present study we consider the Euler equations, written in integral form for a control
volume Ω with boundary ∂Ω:

d

dt

∫
Ω

w dΩ +

∫
∂Ω

f · n dS = 0 (2)

In equation (2), w is the conservative variable vector, n is the outer normal to ∂Ω,
and f , is the flux density:

w = (ρ, ρv, ρE)T ; f =
(
ρv, ρI, ρvv, ρvH

)T

where v is the velocity vector, E the specific total energy, H = E + p/ρ the specific total
enthalpy, p is the pressure and is the unit tensor. The preceding equations are completed
by a thermal equation of state, p = p (ρ(w), T (w)), and by a caloric equation of state for
the specific internal energy e, which must satisfy the compatibility relation:

e = e (ρ(w), T (w)) = er +

∫ T

Tr

cv,∞(T ′) dT ′ −
∫ ρ

ρr

[
T

(
∂p

∂T

)
ρ

− p

]
dρ′

ρ′ 2
(3)

In Equation (3), cv,∞ is the ideal gas specific heat at constant volume, quantities with
a prime superscript are auxiliary integration variables, and subscript r indicates a refer-
ence state. In the present work, the gas response is modeled through the comprehensive
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thermal equation of state of Martin & Hou,31 which provides a realistic description of
the gas behavior close to saturation conditions32,33 and requires just a minimum amount
of thermodynamic input data. Further detail concerning the Martin-Hou model and the
variation law for cv,∞ is presented in Cinnella & Congedo.25 The governing equations are
discretized using a cell-centered finite volume scheme for structured multi-block meshes
of third-order accuracy, which allows the computation of flows governed by an arbitrary
equation of state. A study of the accuracy of the numerical solver has been demonstrated
in previous works,16,23 and is not discussed further.

3 UNCERTAINTY QUANTIFICATION FOR DENSE GAS FLOWS

3.1 Polynomial chaos methods for uncertainty quantification

Recent research by Loeven et al.,19,20 has developed an efficient non-intrusive variation
on the standard Generalized Polynomial Chaos (GPC) method. Based on the idea of a
standard chaos transformation, the Probabilistic Collocation Method (PCM) approach
consists of two important modifications to the classic method. Firstly, a chaos version of
Lagrange interpolation is used to approximate the chaos polynomial, even with a mini-
mum of two collocation points. The second modification is to use Gaussian quadrature to
compute the Galerkin projection and the integration of the distribution function approx-
imation. In terms of calculation cost, both PC methods show significant improvements
over the MC analysis, and demonstrate exponential convergence with respect to the order
of the polynomial. For increasing values of the polynomial order, the PCM requires more
deterministic calculations than in the GPC case. Although this would suggest that the
GPC method is more rapid, the non-intrusive nature of the PCM provides a substantial
increase in flexibility. The PCM is therefore particularly suited to the study of complex
CFD simulations, without requiring modification to the CFD code framework. The PCM
is therefore the stochastic method used in the present study.

In practical terms, the Probabilistic Collocation method consists of calculating the de-
terministic solution at selected points (nodes) in the input distribution, then multiplying
the solutions by a weighting function in order to compute output statistical information.
As in the GPC method, each input distribution is associated with a corresponding orthog-
onal polynomial according to the Askey scheme (summarized in Xiu & Karniadakis34).
For example, in the case of a normal or Gaussian input distribution, the corresponding
quadrature polynomial is the Hermite polynomial. Here the PCM is presented considering
the case of a Gaussian random input distribution, thus Gauss-Hermite chaos quadrature is
employed to compute the Galerkin projection. For the case of a velocity field u subjected
to random input variable fluctuations ξ(θ), the solution is decomposed into deterministic:
ui(x, t), and stochastic: hi(ξ(θ)), parts:

u (x, t, ξ(θ)) =

PPCM∑
i=1

ui(x, t) hi(ξ(θ)) where hi(ξ(θ)) =

Np∏
k=1
k 6=i

ξ(θ)− ξ(θk)

ξ(θi)− ξ(θk)
(4)
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where ui(x, t) is the is the deterministic solution at the collocation point θi. In the PCM,
p is the order of the quadrature polynomial and the number of collocation points is given
by PPCM = pn, where n represents the number of random input variables. The term hi

is the Lagrange interpolating polynomial chaos of order Np = p − 1 that passes through
the PPCM collocation points, with hi (ξ(θk)) = δik. The collocation points θi are chosen
such that they correspond to the Gaussian quadrature points, which are simply the roots
of the quadrature polynomial. Finally, in order to compute the statistics of the output,
the solution is integrated using Gauss-Hermite chaos quadrature where the quadrature
nodes correspond to the collocation points θi. The output mean µu and variance σ2

u are
determined by:

µu =

PPCM∑
i=1

ui(x, t) wi ; σ2
u =

PPCM∑
i=1

(ui(x, t))2 wi − (µu)
2 (5)

where the wi values correspond to the Gauss-Hermite weights. In the case of multiple
input variables, the PCM is slightly modified. The transformed input vector becomes
ξ(θ) = {ξs=1(θ), ξs=2(θ), · · · , ξs=n(θ)}, and the stochastic part of Equation (4) can be
rewritten in vector form:

hi(ξ(θ)) =
n∏

s=1

 Np∏
k=1
k 6=i

ξ(θ)− ξ(θk)

ξ(θi)− ξ(θk)

 (6)

In order to determine output statistics given multiple uncertain input parameters, Equa-
tion (5) must be analytically determined with the multivariable PC expansion (c.f. Equa-
tion (9), Xiu & Karniadakis34) and the standard definitions of the statistical moments.
This procedure is relatively time consuming and complex, especially with several uncer-
tain input variables (i.e. high values of s). A more practical approach to determine the
solution statistics is to reconstruct the problem using a simple MC method on the La-
grange interpolation equation, denoted the Reconstructed Monte Carlo method (RMC).
Once the deterministic solution at each collocation point, ui(x, t), has been determined, a
MC analysis is used to generate a large number, M , of values for ξs(θ), thereby construct-
ing M possible variations of hi(ξ(θ)). Since Equation (4) is linear in the terms ui(x, t),
the RMC can be carried out inexpensively for large values of M . The result is a complete
set of output solutions, from which the statistical moments can be easily calculated. The
PCM analysis coupled with the RMC has been validated for complex flow problems in
Hercus,22 and for brevity is not presented in this work.

3.2 Stochastic analysis of a transonic dense gas flow over the NACA0012
airfoil

The non-intrusive Probabilistic Collocation Method (PCM) stochastic analysis was
coupled to an existing dense gas code developed by Cinnella & Congedo23 to model the
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flow of a BZT type retrograde dense gas fluid over one half of a symmetrical NACA0012
airfoil at 0◦ incidence. The upstream Mach number was set to M∞ = 0.95. The upstream
thermodynamic conditions were fixed in terms of critical point values at p/pc = 0.91
and T/Tc = 1.02. In these conditions Γ = 0.43, which represents an operating point
just outside the inversion zone. For this choice of the operating conditions, the flow
over the airfoil is transonic and shock waves are formed at both airfoil surfaces. Due to
the symmetrical nature of the flow, only half of the domain is simulated by explicitly
enforcing a symmetry condition. A slip boundary condition was imposed on the surface
of the airfoil and non-reflecting boundary conditions are used at the far-field boundaries.
Three structured half-C grids were created to discretize the fluid domain, and the far-
field boundary was located approximately 10 chords away from the airfoil. The grid
convergence was studied by observing the drag coefficient CD obtained from the three
different grids for an initial set of deterministic simulations. The CD results are shown
in Table 1, where the calculation times are obtained with an Intel c© Xeon c© W3503 CPU
with a 2.40 GHz clock speed. To reduce the computational cost with respect to fine-
grid computations while preserving a comparable accuracy on the computed aerodynamic
coefficients, the Richardson Extrapolation (REX) method was applied to results from
the coarse and medium grids. The details of this method are presented in Cinnella &
Congedo26 and will not be outlined here. The advantage of the REX method was a
reduced calculation time with the same level of accuracy as the fine grid solution. For
this reason, the following computations are carried out using the REX method applied,
using the coarse and medium grids.

Grid Number CD Iterations Residual Calculation Time
of cells (10x) (MM:SS)

Coarse 50× 16 0.0728 5000 -6.0 01:22
Medium 100× 32 0.0724 7000 -9.0 08:18
Fine 200× 64 0.0723 10000 -5.6 46:25
Richardson

Coarse +
Medium

4000 + 5000Extrapolation 0.0723 -10.2 07:11
(REX)

Table 1: Drag coefficient CD results for the deterministic dense gas simulations.

A stochastic analysis was carried out in order to examine operating point variability
on the dense gas flow simulation. The non intrusive PCM approach was used to study
the effects of Gaussian random variations about the upstream states of p/pc = 0.91 and
T/Tc = 1.02, with the input coefficients of variation CV set to 1.0% and 2.3% respectively.
The Hermite polynomial was used, and a Reconstructed Monte Carlo (RMC) method with
M = 10000 linear simulations was used on the Lagrange interpolating polynomial in order
to generate a complete set of output solutions. The PCM analysis was implemented with
chaos polynomials of order Np = 2 and Np = 3 to enable a study of the stochastic method
convergence properties. The location of the thermodynamic operating conditions of the
collocation points can be observed on the p− v diagram in Figure 2.

Results for the mean µ, standard deviation σ, and the coefficient of variation CV of the
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Figure 2: Input collocation points for the
stochastic PCM analysis.

Figure 3: Probability density function of
the drag coefficient CD (REX method).

drag coefficient CD obtained by the PCM for Np = 2 and Np = 3 are shown in Table 2.
Good agreement is observed between the results of increasing polynomial order. In both
cases the stochastic solution exhibits a high sensitivity to input parameter variation, due
to the relatively significant changes in physical flow behavior. Several collocation points lie
within or very close to the inversion zone, resulting in a reduction in CD due to the reduced
magnitude of the compression shocks. As a result, the mean drag coefficient obtained by
the stochastic simulation is lower than in the case of the deterministic simulation at the
input mean (DSIM). Using the complete set of output solutions obtained by the RMC
method on the PCM solutions, a probability density function of the CD can be generated
(Figure 3). The distribution of the output CD is clearly non-Gaussian, due to the non-
linearity of the dense gas system. In physical terms, Figure 3 shows that a random
Gaussian variation in an operating point close to the saturation curve results in a non-
Gaussian distribution of the drag coefficient which tends towards the low drag side. This
is confirmed with a skewness value of -2.2.

Number of
Np deterministic µ(CD) σ(CD) CV (CD)

solutions
2 9 0.0682 0.0120 17.5%
3 16 0.0685 0.0123 17.9%

DSIM 1 0.0723 - -

Table 2: Results of the drag coefficient CD (REX method), for the PCM stochastic analysis.

Further evidence of the high sensitivity of the dense gas simulation to operating point
variability is visible by the large size of the error bars in Figure 4. The largest contributor
of variability the position and magnitude of the oblique shock, which is directly affected
by the reduction of the fundamental derivative Γ for operating points close to the in-
version zone. Figure 4 confirms the base of the shock as a principal source of solution
variation, with the largest values in standard deviation of the Mach number observed
in this region. The uneven representation of the shock waves in Figure 4 occurs due
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to the limited number of deterministic solutions used to model the discontinuity. These
discrete individual deterministic solutions at the collocation points can be seen in Figure
5 for the pressure coefficient Cp over the NACA0012 profile for the PCM analysis with
Np = 3 (therefore PPCM = 16). This figure clearly shows that compression shocks can be
avoided if the upstream operating point is located within the inversion zone. Using the
complete set of output solutions generated by the RMC method, it is possible to deter-
mine the percentiles of the output solution (Figure 5) and provide an envelope of possible
Cp values. Note that the median and the mean solutions are not coincident, suggesting
the presence of non-Gaussian effects. Figure 6 confirms this non-Gaussian behavior with
probability density functions of the pressure coefficient at two points on the surface of
the airfoil. Good overall convergence of the stochastic method is observed in Figure 6
with the close accordance of the local solution distributions obtained by the Np = 2 and
Np = 3 simulations. However, the increased solution variability close to the shock region
(x/c = 0.9) slightly reduces the quality of this convergence. In the following section of
this work where a robust optimization of the airfoil profile is carried out, a polynomial
chaos order of Np = 2 is selected in order to reduce scalar computation time. In the near
future, efficient parallelization of the robust optimization procedure will permit the use
of higher order polynomial chaos. Despite the limited number of deterministic solutions
used compared with the classic MC method, the stochastic PCM analysis coupled with
the RMC method can be used to provide critical uncertainty information for use in an
engineering application with a reduced computational effort.

4 ROBUST OPTIMIZATION UNDER UNCERTAIN OPERATING CON-
DITIONS

4.1 Robust optimization with a Multi-Objective Genetic Algorithm (MOGA)

In spite of their relatively high computational cost, genetic algorithms have been suc-
cessfully applied to aerodynamic shape optimization to a transonic dense flows.24–26 Evo-
lutionary optimization strategies employed in Pareto based genetic algorithms are a flex-
ible and robust means of determining global optima of multi-point problems. Imple-
mentation is relatively straightforward without significant code modification, as only the
evaluation of selected objective functions for each individual is required. In this study,
the PCM stochastic analysis of transonic dense gas flows presented earlier is coupled to an
existing multi-objective genetic algorithm (MOGA), based on the Non-Dominated Sorting
Algorithm proposed by Srinivas and Deb.35,36

In this study, the MOGA was used to generate a series of optimized symmetrical 2D
airfoils for dense gas flows, based on minimization of the mean and standard deviation
of the drag coefficient. 28 generations of 36 geometries were obtained, resulting in over
800 stochastic PCM analyses carried out (duplicated geometries were not recalculated).
Each individual PCM analysis was calculated with a chaos polynomial of order Np = 2
(requiring 9 deterministic simulations), which resulted in an overall calculation time of
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(a) (b)

(c) (d)

Figure 4: Stochastic PCM results on the medium grid (100×32) with Np = 3. (a) Contours of µ(M) and
σ(M). (b) Cp, (c) M (d) Γ over the airfoil x/c ∈ [0, 1]. Solid lines represent the mean solution, dotted
lines represent the DSIM solution. The error bars represent ±σ.

over 40 days on an Intel c© Xeon c© W3503 2.4 GHz processor. The high computational cost
of the genetic algorithm was mitigated by the use of the Richardson extrapolation method
(REX) on each individual calculated. This solution extrapolation method, already applied
to robust profile optimization of dense gas flows,26 accelerates convergence and increases
the solution accuracy for each individual. Furthermore, Cinnella & Congedo26 show that
an increase in solution accuracy can improve MOGA convergence. The structure of the
code for the robust optimization algorithm coupled with the stochastic dense gas analysis
is strongly modular and is therefore very well suited for parallel operation. This is a
critical point when considering potential industrial applications such as the design of ORC
turbines, where more complex and costly CFD simulations would be required. A complete
parallelization of the MOGA and of the PCM solver are warranted as forthcoming work.
For comparison, a deterministic single parameter optimization was also carried out for 28
generations of 36 individuals, with only the drag coefficient as the minimization function.
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Figure 5: (left) Pressure coefficient Cp over the NACA0012 profile for each deterministic solution at the
16 collocation points with Np = 3 and (right) percentiles of the pressure coefficient over the profile.

Figure 6: Probability distribution functions for the pressure coefficient Cp at two points on the airfoil
surface, for the Np = 2 and Np = 3 cases. The mean Cp values are shown by the vertical lines.

With only a single deterministic simulation to be carried out for each individual at p/pc =
0.91 and T/Tc = 1.02, the overall scalar calculation time was reduced by a factor of 9,
however this left the variation of the solution uncontrolled. Finally, several optimized
profiles were selected from both the deterministic and stochastic optimization procedures
and their performance verified on the medium grid (100×32 cells) with a higher polynomial
chaos order (Np = 3). Since optimization based on an inviscid flow model may lead to
airfoil shapes with low wave drag but with poor viscous behavior,25 the airfoil performance
was verified by applying the dense gas solver to the solution of the Reynolds-Averaged
Navier-Stokes (RANS) equations completed by the algebraic Baldwin-Lomax turbulence
model. We refer to Cinnella & Congedo23 for details about the viscous flow solver. The
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turbulent regime simulations were performed on a 160 × 64 half C-grid with a refined
boundary layer.

4.2 Results of the robust optimization procedure

The mean and standard deviation of the drag coefficients CD of all the solutions ob-
tained from the stochastic robust optimization procedure are shown in Figure 7, including
the final Pareto front and the stochastic results for the NACA0012 airfoil and the sin-
gle parameter optimization (#753d). Several individuals in the Pareto front exhibited
improvements in the µ(CD) and σ(CD) over the standard NACA0012 airfoil. Very good
agreement was observed between the Pareto front after 23 generations and the final 28
generations, indicating that convergence of the MOGA procedure was achieved. The fi-
nal Pareto front was found to be non-convex, due to the non-linearity of the dense gas
system. Three individual geometries were selected from the front to be examined in fur-
ther detail (Figure 7): individual #258 with the lowest value of µ(CD); individual #767
with a similar µ(CD) to the NACA0012 but with an improved stability; and individual
#791 as the most stable individual, with the lowest σ(CD). Note that for some industrial
applications, a certain loss in mean performance may be acceptable if a highly stable
solution is obtained. Finally, using a single objective deterministic optimization based
solely on a low deterministic CD, the lowest drag individual #753d is selected. The op-
timized geometries and the NACA0012 airfoil are shown in Figure 8. In the case of the
lowest drag airfoils (#258, #753d), the point of maximum thickness is located down-
stream (x ≈ 0.55) of the NACA0012 maximum thickness point. The more stable airfoil
profiles (#767, #791) have a maximum thickness in approximately the same region as the
NACA0012 airfoil (x ≈ 0.30) but exhibit a more shallow trailing edge gradient compared
to the other profiles. The only source of drag in the non-viscous simulations is the trailing
edge compression shock, so any modification of the location or magnitude of this shock
affects the overall drag coefficient for the airfoil.

A verification of the stochastic performance for Np = 3 of the dense gas flow over the
optimized airfoils is shown in Figure 9. Evidence of the instability of individuals #258
and #753d is observed by the small region of elevated values of σ(M) at the base of the
shock region. The the steep trailing edge gradient of these individuals induces an oblique
and unstable trailing edge shock. In comparison, the most stable airfoil (#791) exhibits
smaller values of σ(M) spread over a larger region at the base of the shock. The shallow
trailing edge gradients of these more stable individuals (#767 and #791) promote the
formation of stronger shock waves. Although this induces a larger drag coefficient, the
stability of the shock is improved and the variation of the drag coefficient is reduced. Good
convergence of the stochastic PCM analysis was observed in the comparison of the drag
coefficient data for Np = 2 and Np = 3 (Table 3). The hierarchy of stability was preserved
in the higher order case, with individuals #258 and #753d exhibiting the highest CV
values. The stochastic convergence of µ(CD) and σ(CD) shown in Table 3 validates the
selection of Np = 2 in the MOGA to reduce the overall scalar computational effort.
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Figure 7: Final population generated by the two
parameter PCM stochastic robust optimization
problem. NACA0012 and the single parameter op-
timal individual (#753d) are also shown.

Figure 8: Geometries of selected optimized airfoils
from the Pareto front. Also shown is the geome-
try obtained from the deterministic optimization
(#753d) and the NACA0012 airfoil.

Airfoil Np = 2 Np = 3
Geometry CD(DSIM) µ(CD) σ(CD) CV (CD) µ(CD) σ(CD) CV (CD)
NACA0012 0.0722 0.0682 0.0120 17.5% 0.0685 0.0123 17.9%

#258 0.0595 0.0573 0.0104 18.7% 0.0566 0.0116 20.5%
#767 0.0717 0.0687 0.0083 12.1% 0.0690 0.0095 13.8%
#791 0.0803 0.0782 0.0060 7.7% 0.0782 0.0079 10.1%
#753d 0.0599 0.0565 0.0138 24.5% 0.0567 0.0130 22.9%

Table 3: Drag coefficients (REX grid) for optimized airfoils, Np = 2 and Np = 3.

As a final validation of the performance of the optimized individuals, a series of simula-
tions in the turbulent regime was carried out using the Baldwin-Lomax turbulence model
on a 160× 64 cell grid with a refined boundary layer. The performance of the optimized
airfoils is summarized in Table 4, where the mean, standard deviation and DSIM drag
coefficients are presented. The total viscous drag coefficient included both wave drag and
viscous drag components. However, the viscous drag component was relatively minor,
typically contributing less than 7% to the total drag coefficient. Consequently, the results
obtained by simulations in the turbulent regime were relatively similar to the inviscid
case. As in the inviscid case for the NACA0012 airfoil examined earlier, all of the mean
drag coefficients obtained by the stochastic simulations are smaller than the DSIM results
for all of the optimized profiles considered. All of the airfoils show a high sensitivity to
input parameter variation, with the most stable airfoil #791 only achieving minimum
CV (CD) of 7.7% in the inviscid case and 7.9% in the turbulent regime. Once again, the
hierarchy of stability is preserved.

The results of stochastic simulations of dense gas flow over the optimized airfoils pre-
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(a) (b)

(c) (d)
Figure 9: Contours of the mean µ and standard deviation σ of the Mach number for the optimized airfoils.
(Np = 3, medium grid 100× 32). Airfoils (a) #258. (b) #767 (c) #791 and (d) #753d.

sented in Tables 3 and 4 show the trend that a highly stable airfoil can be obtained with
a shallow trailing edge gradient. The price of this improved stability is an increased shock
wave intensity and a subsequent increase in the drag coefficient. The characteristics of
the turbulent dense gas flow over the most stable (#791), most unstable (#753d), and
the NACA 0012 airfoils are presented in Figure 10, via contours of the mean and standard
deviation of the Mach numbers. Superimposed on the contour plot of the mean Mach
number values is a streamline representing the approximate extent of the separated recir-
culation bubble (when this is present). In the case of the unstable but low drag #753d
airfoil, a small region of intense variation of the Mach number is observed at the base
of the trailing edge shock. Additionally, the steep trailing edge gradient of this airfoil
promotes the formation of a large region of separated flow. These two effects are largely
responsible for the poor stability performance of this airfoil. On the other hand, the sta-
bilizing effects of a shallow trailing edge gradient are clear for the #791 airfoil. The flow
does not separate at the trailing edge, and the values of the standard deviation of the
Mach number are lower than in the #753d airfoil case and are spread over a larger region
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Airfoil Geometry CD(DSIM) µ(CD) σ(CD) CV (CD)
NACA0012 0.0704 0.0669 0.0108 16.2%

#258 0.0544 0.0568 0.0099 17.5%
#767 0.0730 0.0707 0.0085 12.0%
#791 0.0821 0.0804 0.0064 7.9%
#753d 0.0467 0.0526 0.0104 19.9%

Table 4: Viscous drag coefficients (turbulent grid, 160× 64 cells) for optimized airfoils, Np = 2.

at the trailing edge. However, the cost of this increased stability is an increase in drag
coefficient due to the formation of a stronger shock wave. The elevated cost of the two
parameter stochastic optimization is justified when a compromise between a low mean
drag coefficient and a small solution variation is desired. The airfoil #753d obtained from
the single parameter optimization exhibits very high CV values of 24.5% (inviscid) and
19.9% (turbulent regime) for the same order of polynomial chaos, as the variation of the
solution is not taken into account during the optimization procedure.

Note that for all of the simulations carried out in the present work, only the upper
surface of the airfoils were considered. In this configuration, it is possible for a detached
fluid flow to reattach to the virtual boundary downstream of the airfoil profile. In the full
profile case, this is not possible and an unstable recirculation zone may be created. As a
result, the airfoils with the lowest drag coefficients (#258, #753d) may eventually exhibit
poorer drag performance in an unsteady simulation of the full profile. Overall, the robust
optimization procedure based on a genetic algorithm coupled to a stochastic uncertainty
quantification method proves to be a powerful design tool. The robust optimization
provides detailed engineering information of system response to input parameter variation,
which will allow increased design confidence. In the case of an ORC turbine where the
input energy source is highly variable, predictable knowledge of the variation of system
response is critical for evaluating system feasibility.

5 CONCLUSIONS

In the present work, a series of optimized airfoils was developed for dense gas flows
under uncertain operating conditions using a robust optimization procedure based on a
multi-objective genetic algorithm (MOGA). This type of analysis is essential in improving
the feasibility of Organic Rankine Cycle (ORC) turbines, which are typically designed to
recover energy from variable sources such as waste heat from industrial processes.

A validated22 PCM algorithm with a subsequent RMC is then applied to an existing
solver23 of an inviscid transonic dense gas flow over half of a symmetrical NACA0012
airfoil at M∞ = 0.95. The working fluid used is pf-perhydrofluorene (C13F22, commer-
cially known as PP10) with the thermodynamic properties modeled by the Martin-Hou
equation of state. The aerodynamic performance of the airfoil at 0◦ incidence is examined
with Gaussian random variations in the upstream pressure and temperature. Using a
small number of deterministic solutions, the PCM determined that the dense gas system
was highly sensitive to input parameter variation, due to the large changes in physical
flow behavior close the the inversion zone of PP10. In this zone where the fundamental
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(a)

(b)

(c)

Figure 10: Contours of the mean (left) and standard deviation (right) of the Mach number for the
airfoils (a) NACA 0012, (b) #753d [most unstable], (c) #791 [most stable]. The streamline shows the
approximate extent of the separated flow. NB: aspect ratio not preserved.

derivative of gas dynamics Γ > 0, compression shock waves can be suppressed as a con-
sequence of the entropy inequality. Furthermore, the set of statistical output solutions
was found to be non-Gaussian, due to the non-linearity of the dense gas system, tending
towards the low drag side.

Finally, the PCM analysis of the dense gas system with Np = 2 was coupled with
an existing MOGA based robust optimization procedure, which generated a series of
optimized 2D airfoils for dense gas flows based on minimization of the mean and standard
deviation of the drag coefficient. Several individual optimized geometries were selected
from the final Pareto front which exhibited improvements in mean performance and/or
stability over the NACA0012 airfoil. A posteriori testing of the the stochastic performance
of these individuals was verified for a polynomial chaos order Np = 3 on a standard
medium grid (100 × 32 cells) grid in the inviscid case, and for Np = 2 on a grid with a
refined boundary layer (160×64 cells) in the turbulent regime simulation. The viscous drag
component was found to be a relatively minor contributor to the overall drag coefficient,
whereas the wave drag of the trailing edge shock proved to be the dominant factor.
The position, intensity and sensitivity of the trailing edge shock to fluctuations in the
operating conditions was modified by the geometry of the optimized individuals, which in
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turn strongly influenced the drag coefficient. In particular, airfoils with a shallow trailing
edge gradient were found to exhibit increased stability at the cost of an increased mean
drag coefficient.

The two parameter stochastic robust optimization was compared to a standard deter-
ministic optimization procedure where only the mean drag coefficient was optimized. The
elevated cost of the two parameter stochastic optimization is justified when both a low
mean drag coefficient and a small solution variation are desired. Several methods exist
to mitigate the elevated computational cost of a multi-parameter optimization procedure.
Large scale parallelization of the PCM analysis and the MOGA codes could be imple-
mented with relative ease, as each collocation point of each individual in a generation
could be calculated concurrently. Other methods to reduce calculation cost include sur-
rogate models such as the Artificial Neural Network (ANN), already employed to shape
optimization of dense gas flows.25 Following the implementation of these computational
cost reduction methods, multi-objective robust optimization procedures could help to de-
velop the next generation of highly efficient turbomachinery. The present study has shown
that a robust optimization based on a genetic algorithm coupled to a stochastic analysis
proves to be a powerful design tool. The robust optimization provides detailed engineer-
ing information of system response to operating point variation, which could ultimately
lead to refinements in the robust design of ORC turbines.
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