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Abstract. An improved class of Boussinesq systems of fourth order, using wave elevation
and velocity potential formulation is derived. Dissipative effects and wave generation
due to time dependent varying sea bed are included. Thus, high-order source functions
are considered. With the inclusion of an extra O(h0µ

6) term in the velocity potential
expansion, with h0 the constant part of the depth h = h0 + h1(x, y, t), we are able to
reduce the system order maintaining some dispersive characteristics of the higher-order
ones. We introduce a nonlocal continuous/discontinuous Galerkin finite element method
(C/DG-FEM) with inner penalty terms to approximate the solutions of the fourth-order
models. Improved stability is achieved. To demonstrate the applicability of the model,
several test cases are considered.
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1 INTRODUCTION

We implement a solver for some of the Boussinesq type systems to model the evolution
of surface water waves in a variable depth seabed. This type of models is used, for
instance, in harbour simulation, tsunami generation and propagation as well as in coastal
dynamics.

There are several Boussinesq models and some of the most widely used are those based
on the wave Elevation and horizontal Velocities formulation (BEV) (see, e.g., [1, 2]).

In the next section, the governing equations for surface water waves are presented.
From these equations different types of models can be derived. We consider only the wave
Elevation and velocity Potential (BEP) formulation (see, e.g., [3]). Thus, the number of
system equations is reduced when compared to the BEV models.

In the subsequent sections, we derive a class of improved fourth and sixth-order models,
which are derived in order to maintain some of the dispersive characteristics of the higher
order ones. These models are complemented with the inclusion of effects like dissipation
and wave generation by moving an impermeable bottom. In our approach, instead of the
assumption of a slowly varying bottom (cf., e.g., [4]), we make a decomposition of the
bottom in the form h(x, y, t) = h0 + h1(x, y, t).

An important characteristic of the derived models, including dissipative effects, is pre-
sented in the fourth section, namely, the dispersion relation.

In the fifth section, we describe several types of wave generation, absorption and re-
flection mechanisms. Total reflective walls are modelled by homogeneous Neumann con-
ditions.

The second part of the work is presented in the following sections. The sixth section
is dedicated to the numerical methods used in the discretization of the variational formu-
lation of the improved fourth-order model. We propose a continuous/discontinuous finite
element method (C/DG-FEM) with inner penalty terms to approximate the solutions of
the problem. Note that this type of methods uses the same number of degrees of freedom
as the standard continuous finite element methods. This scheme has nonlocal character-
istics since we encounter terms on interior boundaries contributing to the two elements
adjacent to the respective interfaces. In consequence, it requires an additional loop over
interior boundaries (cf. [5]). This feature is provided by the open source libraries from the
FEniCS project [6] and described in the work by Olgaard et al. [7]. The discretization of
the spatial variables is accomplished with low order Lagrange finite elements whereas the
time integration is implemented using Runge-Kutta and Predictor-Corrector algorithms.
Thus, the presented scheme stands as an alternative to the discontinuous local schemes
proposed for other Boussinesq models (cf., e.g., [8, 9]). Concerning the usage of FEM
methods in this type of problems we also refer the works of P. Avillez-Valente and F.J.
Seabra Santos [10] as well as Codina et al. [11]. In the first work a Petrov-Galerkin
scheme is presented for an high-order BEV model. In the second paper a subgrid scale
stabilized FEM is developed.
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We have been developing DOLFWAVE [12], i.e., a FEniCS based application for BEP
models which incorporates the numerical implementation of the presented fourth-order
model as well as some other second-order ones.

In the seventh section we validate the model and numerical scheme with test cases.
Good agreement between the solutions of several models and improved stability is achieved.

2 MODEL DERIVATION

As usual we consider the following set of equations for the irrotational flow of an
incompressible and inviscid fluid:

∂~u

∂t
+ (~u · ∇xyz)~u = −∇xyz

(
P

ρ
+ g z

)
,

∇xyz × ~u = ~0,

∇xyz · ~u = 0,

(1)

where ~u is the velocity vector field of the fluid, P the pressure, g the gravitational ac-
celeration, ρ the mass per unit volume, t the time and the differential operator ∇xyz =(
∂
∂x
, ∂
∂y
, ∂
∂z

)
. A Cartesian coordinate system is adopted with the horizontal x and y-axes

on the still water plane and the z-axis pointing vertically upwards (see Fig. 1). The fluid
domain is bounded by the bottom seabed at z = −h(x, y, t) and the free water surface at
z = η(x, y, t). In Fig. 1, L, A and H are the characteristic wave length, wave amplitude

Figure 1: Cross-section of the water wave domain.

and depth, respectively. Note that the material time derivative is denoted by D
Dt

.
From the irrotational assumption (see (1)2), one can introduce a velocity potential

function, φ(x, y, z, t), to obtain Bernoulli’s equation:

∂φ

∂t
+

1

2
∇xyzφ · ∇xyzφ+

P

ρ
+ g z = f(t), (2)

where f(t) stands for an arbitrary function of integration. Note that one can remove f(t)
from equation (2) if φ is redefined by φ+

∫
f(t) dt. From the incompressibility condition
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(see (1)3) the velocity potential satisfies Laplace’s equation:

∇2φ+
∂2φ

∂z2
= 0, (3)

where ∇ is the horizontal gradient operator given by ∇ =
(
∂
∂x
, ∂
∂y

)
. To close this problem,

the following boundary conditions must be satisfied:

i) the kinematic boundary condition for the free water surface:

∂φ

∂z
=
∂η

∂t
+∇φ · ∇η +D1(η), z = η; (4)

ii) the kinematic boundary condition for the impermeable sea bottom:

∂φ

∂z
+ (∇φ · ∇h) = −∂h

∂t
, z = −h; (5)

iii) the dynamic boundary condition for the free water surface:

∂φ

∂t
+ gη +

1

2

(
|∇φ|2 +

(
∂φ

∂z

)2
)

+D2(φ) = 0, z = η, (6)

where Di(φ)(i = 1, 2) is a dissipative term (see, e.g., the work by Duthyk and Dias
[13, 14]). We assume that these dissipative terms are of the following form:

D1(φ) = −ν1∇2η, D2(φ) = ν2
∂2φ

∂z2
, (7)

with νi =
µ̄i
ρ

and µ̄i an eddy-viscosity coefficient (i = 1, 2). Note that a nondissipative

model means that there is no energy loss. This is not acceptable from a physical point of
view, since any real flow is accompanied by energy dissipation.

Note that using Laplace’s equation it is possible to rewrite (7)2 as D2(φ) = −ν2∇2φ.
Throughout the literature, analogous terms (sponge layers) were added to the kinematic
and dynamic conditions to absorb the wave energy near the boundaries.

A more detailed description of the above equations is found in G. B. Whitham’s refer-
ence book on waves [15], or in the more recent book by R. S. Johnson [16].

To transform equations (3)-(7) in a dimensionless form, the following scales are intro-
duced:

(x′, y′) =
1

L
(x, y), z′ =

z

H
, t′ =

t
√
gH

L
, η′ =

η

A
, φ′ =

Hφ

AL
√
gH

, h′ =
h

H
, (8)
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together with the small parameters

µ =
H

L
, ε =

A

H
. (9)

In the last equation, µ is usually called the long wave parameter and ε the small amplitude
wave parameter. Note that ε is related with the nonlinear terms and µ with the dispersive
terms. For simplicity, in what follows, we drop the prime notation.

The Boussinesq approach consists in reducing a 3D problem to a 2D one. This may
be accomplished by expanding the velocity potential in a Taylor power series in terms
of z. Using Laplace’s equation, in a dimensionless form, one can obtain the following
expression for the velocity potential:

φ(x, y, z, t) =
+∞∑
n=0

(
(−1)n

z2n

(2n)!
µ2n∇2nφ0(x, y, t) + (−1)n

z2n+1

(2n+ 1)!
µ2n∇2nφ1(x, y, t)

)
,

(10)
with

φ0 = φ |z=0, φ1 =

(
∂φ

∂z

)
|z=0 . (11)

From asymptotic expansions, successive approximation techniques and using the kine-
matic boundary condition for the sea bottom, it is possible to write φ1 in terms of φ0 (cf.,
e.g., [3, 17]). In this work, without loss of generality, we assume that the dispersive and
nonlinear terms are related by the following equation:

ε

µ2
= O(1). (12)

Note that the Ursell number is defined by Ur =
ε

µ2
. The dimensionless eddy-viscosity

parameters ν̂1 and ν̂2 are given by:

ν̂i = νi
L√
gHH2

µ2 (i = 1, 2). (13)

We assume that ν̂i (i = 1, 2) is of order O(µ2).
In our approach we decompose the dimensionless depth h in the form:

h(x, y, t) = h0 + h1(x, y, t) (14)

with h0 a reference constant and h1 an O(µ1/4) perturbation of the dimensionless sea
bottom. In this framework φ1 is rewritten as follows:

φ1 = −µ2∇ · (h∇φ0) +
µ4

6
∇ · (h3∇3φ0

)− µ4

2
∇ · (h2∇2 · (h∇φ0)

)−
− µ6h5

0

2

15
∇6φ0 − µ2

ε

∂h

∂t
− µ2

ε

µ2

2
∇ ·
(
h2∇∂h

∂t

)
− µ2

ε

5h4
0µ

4

24
∇4∂h

∂t
+O(µ7). (15)
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Note that the dispersive terms of order O(µ6) that are only dependent on the constant
depth are kept, i.e., the model equations retain the terms up to the order O(µ2, h0µ

4, ε,
h0µ

2ε).
Our goal is to derive a complete fourth-order model with an extra sixth-order term.

This term is only associated with the constant depth factor. In this framework, some
properties of the higher-order models are maintained. The resulting model is given by:[ T 1

h (η)
T 2
h (φ0)

]
+

[ L1
h(η)
L2
h(φ0)

]
+

[L3
h(φ0)
L4
h(η)

]
+

[N 1
h (η, φ0)
N 2
h (η, φ0)

]
=

[S1(h)
S2(h)

]
, (16)

with

T 1
h (η) =

∂η

∂t
, T 2

h (φ0) =
∂φ0

∂t
,

L1
h(η) = −ν̂1∇2η, L2

h(φ0) = −ν̂2∇2(φ0) + µ2h0∇2φ0
∂h

∂t
,

L3
h(φ0) = ∇ · (h∇φ0)− µ2

6
∇ · (h3∇3φ0

)
+
µ2

2
∇ · (h2∇2 · (h∇φ0)

)
+ µ4h5

0

2

15
∇6φ0,

L4
h(η) = η − µ2η

∂2h

∂t2
,

N 1
h (η, φ0) = ε∇ · (η∇φ0), N 2

h (η, φ0) =
ε

2
|∇φ0|2 +

1

2
εµ2h2

0

(∇2φ0

)2 − εηµ2h0∇2∂φ0

∂t
,

S1(h) = −1

ε

∂h

∂t
− 1

ε

µ2

2
∇ ·
(
h2∇∂h

∂t

)
− 1

ε

5h4
0µ

4

24
∇4∂h

∂t
, S2(h) = −1

2

µ2

ε

(
∂h

∂t

)2

.

(17)

Note that
∂h

∂t
is assumed to be of order O(µ2, ε) (cf. [18]). Since the Boussinesq models

are, in general, composed of a very high number of terms, we express all the systems in
the above matrix notation.

Taking into account the variable transformation:

φ0 = Φ− 2

15
µ4h4

0∇4φ0, (18)

we deduce the improved 4th-order model given by (16) and (17), replacing in (17) φ0 by
Φ as well as T 2

h and L3
h by the following expressions:

T 2
h (Φ) =

∂Φ

∂t
− 2

15
µ4h4

0∇4∂Φ

∂t
,

L3
h(Φ) = ∇ · (h∇Φ)− µ2

6
∇ · (h3∇3Φ

)
+
µ2

2
∇ · (h2∇2 · (h∇Φ)

)
.

(19)

3 MODEL IMPROVEMENTS

As we will see in the next section, in order to improve the linear dispersion properties,
it is useful to replace φ0 by an auxiliary function denoted by Φα. In our work Φα is given
by

Φα = φα +Bµ4h4
0∇4φα, (20)
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with φα = φ(x, y,−αh, t) the flow potential evaluated at an arbitrary level z = −αh, α ∈
[0, 1] (see, e.g., [19, 20]) and B a real constant depending on α.

Using successive approximations (or an asymptotic expansion in φ0) we are able to
express φ0 in terms of φα:

φ0 = φα + µ2

(
−αh∇ · (h∇φα) +

(αh)2

2
∇2φα

)
+

+µ4

(
5

24
α4 − 5

6
α3 + α2 − α

3

)
h4

0∇4φα− (αh)
µ2

ε

∂h

∂t
+µ2µ

2

ε

(
−α

3

3
+ α2 − α

2

)
h3

0∇2∂h

∂t
.

(21)

Now we can use (20) and (21) to replace φ0 by Φα in (16) and (17).
As a consequence we are able to propose a class of improved models described as

follows:

T 1
h (η) =

∂η

∂t
,

T 2
h (Φα) =

∂Φα

∂t
− µ2α

∂

∂t
(h∇ · (h∇Φα)) + µ2α

2

2

∂

∂t

(
h2∇2Φα

)
+ µ4B0h

4
0

∂

∂t
∇4Φα,

L1
h(η) = −ν̂1∇2η − αµ2h0∇ ·

(
η∇∂h

∂t

)
,

L2
h(Φα) = −αh0µ

2∇Φα∇∂h
∂t
− ν̂2∇2(Φα)− ν̂2B1µ

2h2
0∇4Φα + µ2h0∇2Φα

∂h

∂t
,

L3
h(Φα) = ∇ · (h∇Φα)− µ2

6
∇ · (h3∇3Φα

)
+
µ2

2
∇ · (h2∇2 · (h∇Φα)

)
+ µ4h5

0B2∇6Φα,

−αµ2∇ · (h∇ (h∇ · (h∇Φα))) +
α2

2
µ2∇ · (h∇ (h2∇2Φα

))
,

L4
h(η) = η − µ2η

∂2h

∂t2
,

N 1
h (η,Φα) = ε∇ · (η∇Φα) + µ2εB1h

2
0∇ · (η∇3Φα),

N 2
h (η,Φα) =

ε

2
|∇Φα|2 +

1

2
εµ2h2

0

(∇2Φα

)2
+ µ2h2

0ε∇Φα∇3Φα + εηµ2h0∇2η,

S1(h) = −1

ε

∂h

∂t
− 1

ε

µ2

2
∇ ·
(
h2∇∂h

∂t

)
+ µ2µ

2

ε
B3h

4
0∇4∂h

∂t
+ α

µ2

ε
∇ ·
(
h∇(h

∂h

∂t
)

)
,

S2(h) = −1

2

µ2

ε

(
∂h

∂t

)2

+ α
µ2

ε

∂

∂t

(
h
∂h

∂t

)
− µ2µ

2

ε
B4h

3
0∇2∂

2h

∂t2
− αh0ν̂2

µ2

ε
∇2

(
∂h

∂t

)
,

(22)
where B, B0, · · · , B4 are α dependent and Rα

(·) is defined by:

Rα
p±q = (α− p + q) (α− p − q) , Rα

p = (α− p) , p, q ∈ R. (23)

We obtain the following sets of coefficients for the two models. For the first case (6o-A)
we have a 6th-order model with α 6= 0 and

B0 =
5

24
αRα

2Rα
1±
√

5/5
, B2 =

5

24

(
Rα

1±
√

5/5

)2

, B = 0. (24)
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The second case (4o-A) is the 4th-order model with α 6= 0 and

B0 = −1

6
Rα

1±
√

5/5
, B2 = 0, B =

5

24

(
Rα

1±
√

5/5

)2

. (25)

For the two cases we have:

B1 =
1

2
αRα

2 , B3 =
1

3
αRα

3/2±i1/2 −
5

24
, B4 = −1

3
αRα

3/2±
√

3/2
. (26)

To finish this section, we just recall that if α = 0 we recover the models given in section
2. Namely, if B0 = 0, B2 = 2/15 and B = 0 the sixth-order system presented in (16) and
(17) arises and if B0 = −2/15, B2 = 0 and B = 2/15 we recover the fourth-order system
presented in (16) and (17)–(19). On the other hand if we take α = 1−√5/5, the model
given by (16), (22)–(24) could be reduced to a 4th-order system since in this case B2 = 0.
We show in the next section that the last case has the same dispersion relation as the
model proposed in [4].

We stress that if we do not consider in (15) the extra O(h0µ
6) terms then we obtain

the generalization of the model proposed by Chen and Liu [3] to a time dependent sea
bed. In the following section, we illustrate the improvement over the referred model.

4 DISPERSION RELATION

In this section, we present the dispersion relation for the linearized model with a
constant depth. We use the standard procedure available throughout the literature (cf,
e.g., [21]). For simplicity only the 2D case is taken into account and a constant depth
(h = H) is assumed. The dimensional variables are used throughout this section.

We start by introducing the linearized equations for the full potential flow with dissi-
pative effects: 

∂2φ

∂z2
+∇2φ = 0, (x, z) ∈ R× [−h, 0]

∂η

∂t
− ∂φ

∂z
− ν1∇2η = 0, z = 0

∂φ

∂t
+ gη − ν2∇2φ = 0, z = 0

∂φ

∂z
= 0, z = −h.

(27)

This problem admits solutions defined by:

η(x, t) = a exp(i(kx− ωt)), φ(x, z, t) = b∗(z) exp(i(kx− wt)), (28)

as long as the following dispersion relations are satisfied:

ω2
1 = −1

4
(ν1 − ν2)2k4 + gHk2 tanh(kH)

kH
, (29)

8



N. D. Lopes, P. J. S. Pereira and L. Trabucho

ω2 = −k
2

2
(ν1 + ν2). (30)

We consider that the angular frequency is defined by ω = ω1 + iω2 with ωi ∈ R (i = 1, 2),
where a is the wave amplitude, b∗(z) is a function related with the potential magnitude
and k = 2π

L
is the wave number. If one has ν1 = ν2 then the dissipative terms do not

contribute to the real part of the angular frequency.
On the other hand, the linearization of the system described by (16), (22), (24)–(26)

with a constant depth (h = H), could be written in the generic form:
∂η

∂t
+H∇2Φα +B5H

3∇4Φα +B2H
5∇6Φα − ν1∇2η = 0,

∂Φα

∂t
+B1H

2∇2∂Φα

∂t
+B0H

4∇4∂Φα

∂t
+ gη − ν2∇2Φα−

−ν2B1H
2∇4Φα = 0,

(31)

with B5 = 1
2
Rα

1±
√

3/3
.

System (31) admits solutions of the form:

η(x, t) = a exp(i(kx− ωt)), φ(x, t) = −ib exp(i(kx− wt)), (32)

as long as the associated dispersion relations are satisfied:

ω2
1 = −1

4

(
T4

T2

ν1 +
T3

T2

ν2

)2

k4 +
T3

T2

ν1ν2k
4 + gHk2T1

T2

, (33)

ω2 = −k
2

2

(
T4

T2

ν1 + ν2
T3

T2

)
, (34)

with b the potential magnitude and Ti (i = 1, · · · , 4) given by:

T1 = 1−B5(Hk)2 +B2(Hk)4, T2 = 1−B1(Hk)2 +B0(Hk)4,
T3 = 1−B1(Hk)2, T4 = 1−B2(Hk)2 +B0(Hk)4.

(35)

Now we discuss the choice for the value of α. The main idea is to optimize the coef-
ficients Ti (i = 1, · · · , 4) in (33) and (34) in order to reproduce (29) and (30). Note that
the effects of the dissipative terms in the presented Boussinesq systems are not taken into
account, i.e., ν1 = ν2 = 0.

It is usual to compare the dispersion relations of the derived models with Padé’s ex-
pansions of the one given by the full linear theory (see, e.g., [20, 22]). The normalized
square of the phase velocity C̄2

p is defined by:

C̄2
p =

ω2

gHk2
=

tanh(kH)

kH
. (36)

9
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The Padé’s expansions of order [2, 2] and [2, 4] of C̄2
p are given by:

i)
1 + (kH)2/15

1 + 2(kH)2/5
, ii)

1 + 2(kH)2/21

1 + 3(kH)2/7 + (kH)4/105
, (37)

respectively. We can choose α in order that
(
T1

T2

)
reproduces the expansions presented in

(37). Namely, α = 1−√5/5 and α = 1−√7/7 reproduce (37)i) and (37)ii), respectively.

Note that for α = 1 − √5/5 both cases 6o-A and 4o-A are the same. For this case
we obtain the dispersion relations presented, for instance, in the second-order model of
Zhao et al. [4]. In Fig. 2 we present C̄2

p , relative to our model, together with that
one of the Chen and Liu’s model as a function of kH. We stress that it is possible to

0 5 10 15 20 25
kH

0.0

0.2

0.4

0.6

0.8

1.0

C̄
2 p

Full linear

α = 1− 1
5

√
5 Zhao et Al.

4-order Chen Liu
6-order α = 1

4-order α = 1

6-order α = 1− 1
7

√
7

4-order α = 1− 1
7

√
7

Figure 2: The normalized square of the phase velocity as a function of kH. Chen and Liu dispersion
relations are also presented.

improve the dispersion relation approximation with another value of α, if we consider
as the optimization criterion, for instance, the relative least-square error between the
dispersion relations. As an example, we refer the following errors obtained for a fixed
interval kH ∈ [0, 20]: for α = 1−√5/5 an ≈ 8.6% error is obtained; for α = 1 the error of
the fourth-order model is improved to ≈ 2.39% and if α = 1−√7/7 we obtain ≈ 0.49%
and ≈ 0.55% errors relative to the sixth and fourth-order models, respectively. We note
that the error produced by the [4,4] Padé’s approximation is ≈ 0.29%. Nevertheless, if
one chooses α = 0.583948 we can improve the dispersion relation obtaining an 0.08% error
for the 4o-A model.

10
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5 BOUNDARY CONDITIONS

In this section some of the physical mechanisms to induce, absorb or reflect surface
water waves are presented. We note that the moving bottom approach is useful for wave
generation due to seismic activities. However, some physical applications are associated
with other wave generation mechanisms.

Sometimes called passive generation, the simplest way of inducing a wave into a certain
domain is to consider an appropriate initial condition. This is the case presented in the
first numerical test (see subsection 7.1).

For time-dependent wave generation, it is possible to consider waves induced by a
boundary condition. This requires that the wave surface elevation and the velocity po-
tential must satisfy appropriated boundary conditions, e.g., Dirichlet or Neumann condi-
tions. We do not use this method in this work. Nevertheless, this method is implemented
in some of our examples in the DOLFWAVE library (see [12]).

Besides the incident wave boundaries where the wave profiles are given, one must close
the system with appropriate boundary conditions. Let us denote Γ as the boundary of Ω
and Γr as the subset of Γ where reflective boundaries are considered.

We consider two more types of boundaries:

i) full reflective boundaries;

ii) partial reflective or absorbing boundaries.

The first case is modelled by the following equations:{ ∇2n−1Φα · n = 0,∀n = 1, 2
∇η · n = 0,

∀(x, y) ∈ Γr (38)

where n is the outward unit vector normal to the computational domain Ω (see [9]).
Coupling the reflective case and an extra artificial layer, often called sponge or damping

layer, we can simulate partial reflective or full absorbing boundaries. In this way, the
reflected energy can be controlled. Moreover, one can prevent unwanted wave reflections
and avoid complex wave interactions. It is also possible to simulate effects like energy
dissipation by wave breaking.

6 NUMERICAL METHOD

In this section, we introduce a continuous/discontinuous finite element formulation for
the fourth-order Boussinesq model described by equations (16), (22) and (25)–(26). Our
numerical scheme arises from the concepts introduced by Engel et al. [5] for the fourth-
order elliptic problems in structural and continuum mechanics. In what follows, we just
consider the Neumann boundary conditions, since the Dirichlet boundary conditions are
applied in the classical way.

11
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In order to implement the interior penalty continuous/discontinuous finite element
method, let us define the finite-dimensional trial solution and weighting function spaces
as follows:

A h = Bh = V h = {ϑh ∈ H1(Ω) |ϑh|Ωe ∈ P2(Ωe)∀Ωe ∈P(Ω)}, (39)

where P(Ω) = {Ωe}Ne
e=1 is a regular and triangular finite element partition of the polygonal

domain Ω into Ne elements Ωe. P2(Ωe) is the finite-dimensional space of all polynomials
of degree less than or equal to 2 defined on Ωe. The method that we propose for the
solution of the problem given by (16), (22) and (25)–(26) can be written as follows: find(
ηh,Φh

α

) ∈ A h ×Bh such that{
a1

(
ηh
t , ϑ

h
1

)
= L1(ηh,Φh

α, ϑ
h
1 ),

a2

(
Φh
αt, ϑ

h
2

)
= L2(Φh

α, η
h, ϑh

2 ),
∀ϑh

1 , ϑ
h
2 ∈ V h (40)

where ai and Li (i = 1, 2) are derived from the variational formulation of the problem
and the subscript t denotes the time derivative, for simplicity. In the next equations we
use the following notation:

(·, ·)Ω̃ =
Ne∑
e=1

(·, ·)Ωe , (·, ·)Γ̃ =

Ni∑
j=1

(·, ·)Γ̃j
, (·, ·)Γh

=

Nh∑
j=1

(·, ·)Γj
, (41)

with Ni the number of interior boundaries, Nh the number of exterior boundaries and
(·, ·)Ω̃ stands for L2-inner product on element interiors whereas (·, ·)Γ̃ stands for the L2-
inner product over the interior boundaries. Moreover, the L2-inner product over the
exterior boundaries is denoted by (·, ·)Γh

.
The jump [[·]] operator is defined as [[v]] = v+ ·n+ + v− ·n− for a vector-valued function,

with v+ and v− the values of v as seen from Ω+
e and Ω−e , respectively. Here, n+ and

n− denote the outward unit vector normal to the given facet as seen from Ω+
e and Ω−e ,

respectively (see Fig. 3). The average operator 〈·〉 is defined, in a similar way, on the
element interfaces by 〈v〉 = 1

2
(v+ + v−) for a scalar function v. The penalty parameters,

on the interior and exterior boundaries, are defined by:

τ̄i =
τi
h+
e

, τ̄h
i =

τh
i

he

, (i = 1, 2), (42)

respectively. In (42) h+
e and he are functions of the size of the cells Ω+

e and Ωe, respectively.
In the numerical examples we consider τi = τh

i = τ over all the elements (i = 1, 2).
The forms ai and Li (i = 1, 2) are given by:

a1

(
ηh
t , ϑ

h
1

)
=
(
ηh
t , ϑ

h
1

)
Ω̃

+ τ̄1

([[∇ηh
t

]]
,
[[∇ϑh

1

]])
Γ̃

+ τ̄h
1

(∇ηh
t · n,∇ϑh

1 · n
)

Γh
, (43)
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n

n

Γh

Ωe
Ω+

e

Ω

Γ∼ 
Ωe

−

+

−

Figure 3: Sketch of a part of a polygonal domain Ω, interior elements Ωe, boundaries of the interface Γ̃
(thicker dashed line) and the domain boundary Γh (thicker solid line).

a2

(
Φh
αt, ϑ

h
2

)
=
(
Φh
αt, ϑ

h
2

)
Ω̃

+ (α− α2)
(
h∇Φh

αt,∇hϑh
2

)
Ω̃
−B1

(
h∇Φh

αt, h∇ϑh
2

)
Ω̃

+B0h
4
0

(∇2Φh
αt,∇2ϑh

2

)
Ω̃
−B0h

4
0

(〈∇2Φh
αt

〉
,
[[∇ϑh

2

]])
Γ̃

−B0h
4
0

(∇2Φh
αt,∇ϑh

2 · n
)

Γh
+ τ̄2

([[∇Φh
αt

]]
,
[[∇ϑh

2

]])
Γ̃

+ τ̄h
2

(∇Φh
αt · n,∇ϑh

2 · n
)

Γh
, (44)

L1

(
ηh,Φh

α, ϑ
h
1

)
= −ν1

(∇ηh,∇ϑh
1

)
Ω̃
− αh0

(
ηh∇ht,∇ϑh

1

)
Ω̃

+
(
h∇Φh

α,∇ϑh
1

)
Ω̃

+
1

6

(∇2Φh
α,∇ ·

(
h3∇ϑh

1

))
Ω̃
− 1

2

(∇ · (h∇Φh
α

)
,∇ · (h2∇ϑh

1

))
Ω̃

+ α
(
h∇ · (h∇Φh

α

)
,∇ · (h∇ϑh

1

))
Ω̃
− α2

2

(
h2∇2Φh

α,∇ ·
(
h∇ϑh

1

))
Ω̃

+
(
ηh∇Φh

α,∇ϑh
1

)
Ω̃

−B1h
2
0

(∇2Φh
α,∇ ·

(
ηh∇ϑh

1

))
Ω̃

+
(
S1(h), ϑh

1

)
Ω̃
− 1

6

(〈∇2Φh
α

〉
,
[[
h3∇ϑh

1

]])
Γ̃

+
α2

2

(〈
h2∇2Φh

α

〉
,
[[
h∇ϑh

1

]])
Γ̃

+B1h
2
0

(〈∇2Φh
α

〉
,
[[
ηh∇ϑh

1

]])
Γ̃

+

(
1

2
− α

)(〈∇ · (h∇Φh
α

)〉
,
[[
h2∇ϑh

1

]])
Γ̃

+

(
1

2
− α

)(∇ · (h∇Φh
α

)
, h2∇ϑh

1 · n
)

Γh

− 1

6

(∇2Φh
α, h

3∇ϑh
1 · n

)
Γh

+
α2

2

(
h2∇2Φh

α, h∇ϑh
1 · n

)
Γh

+B1h
2
0

(∇2Φh
α, η

h∇ϑh
1 · n

)
Γh
,

(45)
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L2

(
Φh
α, η

h, ϑh
2

)
= αh0

(∇Φh
α∇ht, ϑh

2

)
Ω̃
− ν2

(∇Φh
α,∇ϑh

2

)
Ω̃

+ ν2B1h
2
0

(∇2Φh
α,∇2ϑh

2

)
Ω̃

+ h0

(∇Φh
α,∇

(
htϑ

h
2

))
Ω̃
− g (ηh, ϑh

2

)
Ω̃

+
(
ηhhtt, ϑ2

)
Ω̃
− 1

2

(∣∣∇Φh
α

∣∣2 , ϑh
2

)
Ω̃

− 1

2
h2

0

((∇2Φh
α

)2
, ϑh

2

)
Ω̃

+ h2
0

(∇2Φh
α,∇ ·

(∇Φh
αϑ

h
2

))
Ω̃

+ gh0

(∇ηh,∇ (ηhϑh
2

))
Ω̃

− α (h∇Φh
α,∇

(
htϑ

h
2

))
Ω̃
− α (ht∇Φh

α,∇
(
hϑh

2

))
Ω̃

+ α2
(∇Φh

α,∇
(
hhtϑ

h
2

))
Ω̃

+
(
S2(h), ϑh

2

)
Ω̃
− ν2B1h

2
0

(〈∇2Φh
α

〉
,
[[∇ϑh

2

]])
Γ̃
− ν2B1h

2
0

(∇2Φh
α,∇ϑh

2 · n
)

Γh
. (46)

Note that the boundary conditions referred in (38) are taken into account. We remark
that if the weighting and trial functions are smooth enough, for instance C2((0, T ); Ω)
with T an upper bound for the time variable, then all the penalty terms vanish and we
obtain a standard finite element formulation.

The above formulation does not include the (non)symmetrization terms as described
in [5] or in the book by Brenner and Scott [23]. Although, we do not obtain significant
differences in the solutions, a slight improvement in the stability is achieved if these extra
terms are not included. Note that the non penalized formulation is not symmetric.

We use a predictor-corrector scheme with an initialization provided by an explicit
Runge-Kutta method for the time integration of (40). We denote the presented numerical
model as 4o-M-CDG-P2, standing for mildly nonlinear model discretized by a C/DG-FEM
with inner penalty terms using P2-Lagrange elements.

In the DOLFWAVE package, several sets of equations and finite element methods are
already implemented. We extend the second-order and O(µ4) weakly nonlinear model of
Zhao et al. (cf. [4]) in order to consider waves generated by moving bottoms (cf. [17]).
This model is spatially discretized using pure continuous Galerkin P1 or P2 triangular
Lagrange elements, which is denoted by 2o-ZTC-P1 or 2o-ZTC-P2, respectively.

We also consider the weakly nonlinear version, namely, 4o-W-CDG-P2 where only O(ε)
nonlinear terms are taken into account. The same predictor-corrector scheme is considered
for all the cases. In the following section, we compare numerical solutions provided by
some of the referred models.

7 MODEL VALIDATION

For the model validation, we consider a benchmark available in the literature together
with another one. Note that the post-processing of all 3D figures is only made using P1

elements. No dissipative terms are used in the following tests. In all the cases we assume
that the numerical model blows-up if a limit of 5 corrector-steps iterations is exceeded.

7.1 The Gaussian hump in a square basin

For the first test case we simulate the evolution of a Gaussian hump in a square basin.
We compare the results with those obtained by Liu and Woo [1], where a weakly nonlinear
BEV model is used (cf. [11, 24]).
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The computational domain is a 6× 6 m2 square that we discretize using a symmetric
uniform mesh with 900 elements and an unstructured triangular mesh with 1998 elements.

Reflective wall boundary conditions are applied which are described by (38). As initial
conditions we consider:{

η(x, y, 0) = 0.045 e−2((x−3)2+(y−3)2) (m),
Φα(x, y, 0) = 0 (m2 s−1).

(47)

A constant depth h = 0.45 m is considered. We also compare the surface elevation given
by the proposed fourth-order model with 2o-ZTC-P1 and 2o-ZTC-P2.

In the present simulation the time-steps are given by4t = 0.0005 s and4t = 0.00025 s
for the uniform symmetric and unstructured meshes, respectively. Several values are
tested for the penalty coefficients. One can see that higher penalty parameters improve
the stability of the scheme. Even though, we do not know the exact solutions of the
nonlinear equations, higher values of the penalty parameters produce numerical solutions
with a strong dependence on the mesh geometry. Thus, the accuracy of the method is
compromised.

In Fig. 4 one can see some surface elevation snapshots at t1 = 4 s and t2 = 8 s provided
by 4o-M-CDG-P2 as well as 4o-W-CDG-P2, for the symmetric mesh (left column) and
for the unstructured meshes (right column), respectively. As expected, the inclusion of
higher order nonlinear terms increases the instability of the model.

In Fig. 5 we show the time history of the surface elevation for two different points of
the domain, namely, P1 = (3, 3) m (center of the domain) and P2 = (1, 1) m, using the
uniform and unstructured meshes, respectively. We illustrate the blow-up of the numerical
models 2o-ZCT-P1 and 2o-ZCT-P2 in the subfigure 5(b) corresponding to the point P2.

From the numerical results one can observe a good agreement between the solutions
given by the three different approaches, namely, the BEV model by Liu and Woo, the
second-order BEP model by Zhao et al. and the models developed in this work. We can
also conclude that our proposed fourth-order model has better stability properties than
the referred second-order models.

7.2 Object moving in an horizontal floor

We simulate a wave generated by an object moving on an horizontal bottom with a
constant speed. We consider a two-dimensional simplified version of the moving slide used
in the works of Lynett and Liu, 2002 [25] as well as Fuhrman and Madsen, 2009 [26]. The
numerical domain is a 30 m line discretized with 300 P2 elements.

The bottom is defined by h(x, t) = h0 + h1(x, t), with h0 = 0.45 m and

h1(x, t) = − ∆h

(1 + tanh(1))2
X̄(x, t) (48)

where
X̄(x, t) = {1 + tanh[2x− 2xl(t)]}{1− tanh[2x− 2xr(t)]}, (49)
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Figure 4: Surface elevation at the time t1 = 4 s and t2 = 8 s. 4o-M-CDG-P2 with a symmetric mesh,
τ = 0.1 and ∆t = 0.0005 s (left column). 4o-W-CDG-P2 with an unstructured mesh, τ = 0.004 and
∆t = 0.00025 s (right column). Vertical scale z=0.005 m.

xl(t) = xc(t)− 1

2
, xr(t) = xc(t) +

1

2
, xc(t) = x0 + S0t, (50)

with a constant speed S0 = 1 m s−1, x0 = 0 m and ∆h = 0.045 m stands for the maximum
thickness of the slide.

We only compare the solutions of the weakly non linear models, namely, 4o-W-CDG-P2
and 2o-ZCT-P2. Note that the later model only incorporates lower order terms for the
source function. In Fig. 6 one can observe the evolution of the surface wave generated by
the movement of the slide (red) during ten seconds. Full reflective boundaries and zero
initial conditions are considered. The main difference of the two tested models lies in the
shorter waves in the wake of the wave. Again the 2o-ZCT-P2 model blows-up around
t ≈ 8 s. We can clearly observe that the generated front wave travels at a higher speed
than the bottom slide.

8 CONCLUSIONS

A class of sixth and fourth-order Boussinesq type equations is developed for modelling
surface water waves. Dissipative effects and wave generation due to moving bottom are
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Figure 5: Time history of the surface elevation at P1 = (3, 3) m (a) and P2 = (1, 1) m (b) using an
unstructured mesh and τ = 0.01. In (a) 4o-M-CDG-P2 and 4o-W-CDG-P2. In (b) 4o-W-CDG-P2,
2o-ZCT-P1 and 2o-ZCT-P2.

considered. Improved dispersion relation characteristics are obtained due to the inclusion
of the higher order extra O(h0µ

6) term in the velocity potential expansion.
A C/DG-FEM scheme is proposed for the solution of the fourth-order Boussinesq sys-

tem. Several numerical tests are presented, showing good agreement with the solutions
provided by the other models and validating the C/DG numerical method. A drawback of
the proposed method is the choice of the penalty parameters. Relations between penalty
parameters, mesh size and geometry as well as the time steps should be further inves-
tigated. Thus, the convergence of the numerical scheme should be studied in the near
future. Note that in the time dependent moving bottom cases, the numerical method
may become very time-expensive. This is due to the complexity of the source functions,
the need to rebuild the system matrices and vectors at each time step together with the
calculation of the element boundary penalty terms. However, this C/DG-FEM scheme
has a higher stability than the other ones used in this work.
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Figure 6: Evolution of the surface wave elevation η and slide positions (red), given by 4o-W-CDG-P2
(blue) and 2o-ZCT-P2 (green). The time step used is ∆t = 0.00025 s and the penalty parameter for
4o-W-CDG-P2 is τ = 0.1.
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