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Abstract. This paper presents new developments within the numerical resolution of Navier-
Stokes equations using HLLC-Finite volume method. The main contributions include new lim-
iter design based on a stability analysis and an accurate gradient reconstruction. Viscous ex-
ternal flow tests are used to demonstrate the efficiency of the method.
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1 INTRODUCTION

Unstructured mesh methods are now widely employed for the simulation of general indus-
trial aerodynamic flow problems. This is mainly due to the ease and rapidity with which com-
plex geometrical domains may be meshed, using automatic mesh generation procedures. An
additional attractive feature of the approach is that it allows naturally for the incorporation of
adaptive mesh techniques, though this has not been fully exploited to date. A variety of solu-
tion algorithms have been proposed for aerodynamic flow simulations on unstructured meshes,
employing both finite volume methods and continuous or discontinuous finite element meth-
ods [1, 2, 3, 4, 5, 6, 7]. The major difficulty that is often encountered with these methods is the
maintenance of an acceptable level of accuracy while, simultaneously, ensuring robustness and
stability over a range of flow speeds.

In this paper, we concentrate upon the use of the finite volume approach. Several variants
of this method have been developed and applied to the solution of the Navier–Stokes equa-
tions, with the essential difference between the methods generally being the manner in which
the contributions of the inviscid fluxes are computed. For centered schemes, these fluxes are
taken simply as the average of adjacent fluxes and, in this case, an artificial viscosity operator is
required to ensure stability. The alternative approach is to evaluate the fluxes using an approx-
imate solution to a Riemann problem, with the implicit upwinding that is involved resulting in
stability without the requirement for the explicit addition of artificial viscosity. Here, an up-
wind approach is incorporated within our standard cell vertex finite volume based system for
the simulation of compressible high speed flows [8, 9]. The method chosen involves the use
of the HLLC Riemann solver to evaluate the contributions of the inviscid. First a stability and
conservation analysis is developed, based on, a new robust and suitable limiter is designed. As
part of this algorithm, a new accurate method for constructing the solution gradient is achieved.
A number of 3D Navier-Stokes and Euler simulations are included to demonstrate the conver-
gence and stability of the method, over a range of flow speeds from subsonic to supersonic,
without the requirement of any tuning of user defined parameters.

2 Governing Equations

The equations governing three dimensional unsteady viscous compressible flow are ex-
pressed, relative to a Cartesian (x1, x2, x3) coordinate system, over a fixed volume V with a
closed surface S , in the integral form

d

dt

∫
V

~QdV =

∫
S

~Fα( ~Q)nα dS −
∫

S

~Gα( ~Q)nα dS α = 1, 2, 3 (1)

where the summation convention is employed and ~n = (n1, n2, n3) denotes the unit outward
normal vector to S . In this equation,
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~Q =


ρ
ρu1

ρu2

ρu2

E

 ~Fα =


ρuα

ρu1uα + pδα1

ρu2uα + pδα2

ρu2uα + pδα3

(E + p)uα

 ~Gα =


0
τ1α

τ2α

τ3α

uβτβα − qα


where ρ, p and E denote the density, pressure and total energy of the fluid respectively, uα is the
velocity of the fluid in direction xα, t is the time and δα,β is the Kronecker delta. The averaged
deviatoric stress tensor is defined by

τβα = −2

3
µ
∂uk
∂xk

δβα + µ

(
∂uβ
∂xα

+
∂uα
∂xβ

)
(2)

and the averaged heat flux is

qα = −k ∂T
∂xβ

(3)

Here, µ denotes the sum of the laminar and turbulent viscosities, k is the sum of the laminar
and turbulent thermal conductivities and T is the averaged absolute temperature.

The equation set is completed by the addition of the perfect gas equation of state in the form

p = (γ − 1)(E − 0.5ρuαuα) (4)

where γ is the ratio of the specific heats. Steady state solutions of this equation set are sought
in a fixed spatial computational domain Ω.

3 Finite Volume Method

The domain Ω is discretised into a mesh of tetrahedral cells, using a Delaunay mesh genera-
tion process with automatic point creation [8, 9]. To enable the implementation of a cell vertex
finite volume solution approach, a median dual mesh is constructed by connecting edge mid-
points, element centroids and face centroids such that only one node is present in each control
volume [8, 9]. Each edge of the grid is associated with a segment of the dual mesh interface
between the nodes connected to the edge. The dual mesh interface inside the computational
domain surrounding node I is denoted ΓI . The lines which define the control volume interface
surrounding node I are denoted byΓkI . The segment of the dual associated with an edge is a
surface. This surface is defined using triangular facets, where each facet is connected to the
midpoint of the edge, a neighboring element centroid and the centroid of an element face con-
nected to the edge. This is illustrated in Figure 1. The midpoint of the edge between node I
and J is termed xIJm , the centroid of the face with vertices I , J and K is named and the element
centroid is designated by xc. The bold lines on the dual mesh in the figure illustrate the bound-
aries between the edges of which the dual mesh segment is associated. With this dual mesh
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Figure 1: Illustration of that part of the dual mesh surrounding node I that is contained within a tetrahedral cell.

Figure 2: Illustration of the dual mesh surrounding an internal node I .
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definition, the control volume can be thought of as constructed by a set of tetrahedra with base
on the dual mesh. A complete dual mesh cell around an internal node I is shown in Figure 2.

Equation (1) is applied to each cell ΩI of the dual mesh in turn. To perform the numerical
integration of the inviscid fluxes over the surface ∂ΩI of this cell, a set of coefficients is calcu-
lated for each edge using the dual mesh segment associated with the edge. The values of these
coefficients for an internal edge are evaluated as

nαIJ =
∑
K∈ΓIJ

AΓK
I
nαΓK

I
(5)

where AΓK
I

is the area of facet ΓKI and nα
ΓK
I

is the component, in direction xα, of the outward
unit normal vector of the facet from the viewpoint of node I . The integral of the inviscid flux
over the surface ∂ΩI is then approximated as∫

∂ΩI

~FαnαdS ≈
∑
J∈ΛI

~̃FIJ (6)

~̃F =


ρqIJ

ρu1qIJ + pn1
IJ

ρu2qIJ + pn2
IJ

ρu3qIJ + pn3
IJ

(E + p)qIJ


is a consistent numerical flux function. The solution is advanced in time to steady state using

an explicit multi-stage Runge Kutta procedure and the convergence is accelerated by the use of
local time stepping and by the addition of an agglomerated multigrid process.

4 HLLC Flux Function

The numerical flux function is computed using the HLLC Riemann solver [10, 11], which is
a modication of the original HLL scheme [11]. The central idea is to assume a wave configu-
ration for the solution that consists of three waves separating four constant states, as illustrated
in Figure 3. The solution of the Riemann problem in this case consists of a contact wave and
two acoustic waves, which may be either shocks or expansion fans. The solver is based on
Godunov’s method, where the approximate solutions are constructed by averaging intermedi-
ate states in the exact solution, respecting certain principles, such as exactly resolving isolated
shocks and contact discontinuities. The HLLC solver employed is based on an exact resolution
of a Riemann problem, while averaging the wave speeds SL , SM and SR in an appropriate man-
ner. In this paper the acoustic waves approximation proposed in [11] are modified to improve
the transition from subsonic to supersonic speeds. Suppose ~QI that is the numerical solution at
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Figure 3: Schematic illustration of the HLLC Riemann solver.

node I . The entries in the vector ~QL
IJ are then evaluated as

ρL
IJ = ρI

(SL
IJ − qL

IJ)

SL
IJ − SM

IJ

(ρuα)L
IJ =

(SL
IJ − qL

IJ)ρIuαI + (p∗IJ − pI)nαIJ
SL
IJ − SM

IJ

(E)L
IJ =

(SL
IJ − qL

IJ)EI − pIqL
IJ + p∗IJS

M
IJ

SL
IJ − SM

IJ

(7)

and the entries in the vector ~QR
IJ are defined similarly. In these equations,

p∗IJ = ρI(q
L
IJ − SL

IJ)(qL
IJ − SM

IJ ) + pI , q
L
IJ = uαIn

α
IJ , q

R
IJ = uαJn

α
IJ (8)

and the wave speeds are computed as

SM
IJ =

ρJq
R
IJ(SR

IJ − qR
IJ)− ρIqL

IJ(SL
IJ − qL

IJ) + pI − pJ
ρJ(SR

IJ − qR
IJ)− ρI(SL

IJ − qL
IJ)

(9)

The HLLC flux function is then evaluated as

~̃FHLLC
IJ =


~F ( ~QI) if SL

IJ > 0
~FL
IJ if SL

IJ ≤ 0 < SM
IJ

~FR
IJ if SM

IJ ≤ 0 ≤ SR
IJ

~F ( ~QJ) if SR
IJ < 0

(10)

Where ~FL
IJ and ~FR

IJ are obtained using the Rankine–Hugoniot conditions

~FL
IJ = ~F ( ~QI) + SL

IJ( ~QL
IJ − ~QI) ~FR

IJ = ~F ( ~QJ) + SR
IJ( ~QR

IJ − ~QJ) (11)
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5 Second Order HLLC

The HLLC solver described above turns the finite volume scheme first order, and it is well
known to be excessively diffusive. To overcome this shortcoming a second order HLLC is
generally used. This is obtained by a second order approximation in the Riemann problem of
the left and right primary variables, namely; density, velocity field and energy, That is

~̃QL
IJ = ~QL

IJ + δ ~QIJ

~̃QR
IJ = ~QR

IJ + δ ~QJI (12)

where δ ~QIJ and δ ~QJI are some gradient approximation.
However this makes the scheme instable around discontinuities and steep gradients. To re-

cover stability a limiter is used to turn the method first order around discontinuities and clip
excessive values of gradient. In the following we derive a robust, parameter free and efficient
limiter for a wide range of flow speeds. The performance of any limiter depends strongly on the
accuracy of the reconstructed gradient. Therefore we propose first a new accurate method for
gradient reconstruction.

6 Iteratively Corrected Least–Squares (ICLS) Method

First we consider the classical Least–Squares (LS) method. It is shown for instance in [20]
that this method produces accurate results on isotropic meshes, while a significant loss of ac-
curacy is observed in highly stretched meshes. It is proved in the same paper that accuracy is
recovered for vertex-based discretizations using weighted LS version by the inverse distance,
the method still exact for linear functions only however. Now, let us recall the LS formulation:
if I is a given vertex, we try to find a 3× 3 ∇ ~QI vector such that

~hIJ · ∇ ~QI = ~QJ − ~QI for J ∈ NI (13)

where NI is the set of node I neighbors’ indexes and ~hIJ is the edge vector connecting node I
to J . Writing equation (13) in matrix form gives

~AI∇ ~QI = 4 ~QI for I ∈ NI (14)

Where ( ~AI)JK = (~hIJ)K and (4 ~QI)J = ~QJ − ~QI .
In general ~AI is not a square matrix, and then equation (14) has no solution. Then alterna-

tively, we look for the best plan that fits the set { ~QK , K ∈ NI ∪ {I}} using a least squares
method. This consists of finding a vector ~VI minimizing the norm

‖ ~AI ~V −4 ~QI‖2 =

√
〈 ~AI ~V −4 ~QI , ~AI ~V −4 ~QI〉 that is

~VI = arg( min
V ∈IR3

‖ ~AI ~V −4 ~QI‖2) (15)
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and then set∇ ~QI ≈ ~VI .
Since in equation (14) the number of unknown is less than the number of equations, the

problem formulated in equation (15) is classical in optimization theory which solution is given
by

~VI =
(
~ATI

~AI

)−1
~ATI4 ~QI (16)

The matrix
(
~ATI

~AI

)−1
~ATI is known as the pseudo–inverse of the matrix ~AI .

Now re–write equation (14) as

~hIJ

|~hIJ |
· ∇ ~QI =

~QJ − ~QI

|~hIJ |
for J ∈ NI (17)

In equation (14) we try to fit the dot product of the gradient with vectors representing the edges
to the variable differences, while 17 tries to fit the derivatives in directions defined by the con-
nected edges to the corresponding first order derivatives approximation, which is more consis-
tent. Equations 14 and 17 are obviously the same, however the LS corresponding solutions are
different. When the 2-norm used in 15 is replaced by a weighted 2-norm we get what known as
the weighed LS method. The weighted 2-norm is defined as

‖ ~AI ~V −4 ~QI‖2
2,w =

∑
J∈NI

w2
IJ

(
~hIJ ~V − ( ~QJ − ~QI)

)2

Now let us express the unweighted norm for equation (17)

‖ ~AI ~V −4 ~QI‖2
2 =

∑
J∈NI

(
∇ ~QI

~hIJ

|~hIJ |
− ( ~QJ − ~QI)

|~hIJ |

)2

=
∑
J∈NI

1

|~hIJ |

(
∇ ~QI

~hIJ − ( ~QJ − ~QI)
)2

Consequently, the unweighted LS solution of 17 is obtained from the weighted LS solution of
equation 14 with weights wIJ = 1/|~hIJ | the inverse distance, we then end with the method
proposed in [20].

In the following we still refer by ~AI and4 ~QI to the matrix and the right hand side of matrix
form of equation 17, in this case

( ~AI)IJ =

(
~hIJ

|~hIJ |

)
( ~QI)J =

~QJ − ~QI

|~hIJ |
(18)

Now we propose to improve this method by an interactive process. We refer to the new method
by ICLS standing for iteratively corrected LS method. Using the second order Taylor’s formula
we have

~QJ − ~QI

|~hIJ |
=

~hIJ

|~hIJ |
∇ ~QI +

1

2|~hIJ |

〈
H(η)~hIJ ,~hIJ

〉
(19)
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In the remainder term, H is the Hessian and η is some point on the edge ~hIJ . By approximating
η by the midpoint of ~hIJ , the remainder term could is approximated as〈

H(η)~hIJ ,~hIJ

〉
=
(
~hIJ∇ ~QJ − ~hIJ∇ ~QI

)
and then

~QJ − ~QI

|~hIJ |
=

~hIJ

|~hIJ |
∇ ~QI +

1

2|~hIJ |

(
~hIJ∇ ~QJ − ~hIJ∇ ~QI

)
(20)

In equation 20∇ ~QI and ∇ ~QJ are unknown, therefore we propose the following
iterative scheme:

1. First compute the LS estimate of the gradient, ∇ ~Q0
I using 17

2. Compute iteratively LS estimate of ∇ ~Qn
I using equation

~hIJ

|~hIJ |
∇ ~Qn

I =
~Qn
J − ~Qn

I

|~hIJ |
− 1

2|~hIJ |

(
~hIJ∇ ~Qn−1

J − ~hIJ∇ ~Qn−1
I

)
︸ ︷︷ ︸

Correction term

The algorithm using the pseudo-inverse solution reads:

1. First compute the LS estimate of the gradient, ∇ ~Q0
I as:

∇ ~Q0
I =

(
~ATI

~AI

)−1
~ATI4 ~QI

2. Compute iteratively LS estimate of ∇ ~Qn
I

∇ ~Qn
I =

(
~ATI ~AI

)−1
~ATI

4 ~QI +
1

2
4∇ ~Qn−1

I︸ ︷︷ ︸
Correction term


Note that only the right-hand side in ∇ ~Qn

I expression is modified, moreover the pseudo-
inverse depends only on the mesh, that means that it could be computed ones and stored. This
makes the algorithm not expensive. Note also that the algorithm uses larger stencil as it iterates,
which improves its accuracy at each step. The efficiency of the method is demonstrated in the
numerical results section.

7 Limiter Design

To design our limiter, we investigate in the following some relevant proprieties the scheme
should satisfies and then establish the necessary conditions to build such a limiter.
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7.1 Conservative Condition

The cell vertex finite volume method is inspired from the conservative principle used to
derive the Navier-Stokes equations. The correction 12 to achieve second order HLLC changes
the variables value at both sides of cells interface. To preserve conservative principle the integral

Figure 4: A 2D representation of two adjacent dual cells.

of each variable on the volume defined by the interface and the vertices of the adjacent cells has
to be constant. That is: ∫

VIJ

Q̄IJ =

∫
VIJ

QIJ (21)

Where Q, Q̄ refer to any variable before and after modification and VIJ is the shaded volume
shown in figure 4.

21 implies
Q̄L
IJ + Q̄R

IJ = QL
IJ +QR

IJ

That is
δQIJ = −δQJI (22)

Relation (25) implies that if derivatives at nodes I and J have opposite sign they have to be
zero, and if they are of the same sign they have to have same value. This condition is satisfied
using for instance the well known minmod function 23 at values δQIJ and δQJI , which could
be seen therefore as a conservative condition.

Minmod(a, b) =


0 if ab < 0

else
a if |a| ≤ |b|
b if |a| ≥ |b|

(23)
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7.2 Monotonicity Property

Second order schemes are oscillatory not only in the vicinity of discontinuities but also in re-
gions showing steep gradients. To ensure non-oscillatory scheme, we impose one of the several
criteria developed in the literature for this purpose to be satisfied. Among them; the monotonic-
ity preservation, the total variation diminishing (TVD), and the local extremum diminishing
(LED), see [21, 22] for details. In practice the last one is easier to enforce by flux limiting
ensuring that we always have:

Min
J

(QJ −QJ) ≤ ∇QI
~hIK ≤Max

J
(QJ −QJ) (24)

In the following the (LED) creation is selected. To satisfy 24 let us first compute the Barth
and Jespersen limiter [21] and express it as in [?] but for vertex-centered scheme rather than
element-centered scheme. For each edge ~hIK , ΦIK is define as

ΦIK =


Min

(
1, MaxJ QJ−QI

∇QI
~hIK

)
if∇QI

~hIK > 0

Min
(

1, MinJ QJ−QI

∇QI
~hIK

)
if∇QI

~hIK < 0

1 ielse

And then take the minimum on the connected edges to node I

ΦI = Min
K∈NI

ΦIK

And then the gradient∇QI
~hIK is replaced by ΦI∇QI

~hIK .
In practice, this limiter shows an excessive smoothing of the gradient, especially for transonic

flows. This is due to the fact that in the case condition 24 is violated, the gradient in all directions
are normalized by the dominated one. This causes the relatively small gradients to be reduced
to almost zero. The limiter suffers also from non-differentiability, that could affect convergence
for high order finite volume schemes see [22]. To obtain gradual gradient normalization and
differentiable limiter, we propose the following formula:

ΦIK =



(
Max
J

QJ −QI

∇QI
~hIK

)
sgn

(
∇QI

~hIK
Max
J

QJ −QI

)
if∇QI

~hIK > 0(
Min
J

QJ −QI

∇QI
~hIK

)
sgn

(
∇QI

~hIK
Min
J

QJ −QI

)
if∇QI

~hIK < 0

1 else

(25)

With sgn(t) = t

(1+tn)
1
n

being a family of functions we derived from a sigmoid function.

First note that this limiter is used without taking the minimum over index K which may reduce
excessively the gradient. In addition, the sigmoid function has the following nice properties:

sgn(t) ≤ t and sgn(t) ≤ 1, for t ≥ 0 (26)
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This property guaranty condition (24) to be fulfilled and non amplification of local gradients.
sgn(t) is a good approximation of the Min(., .) function since we have

Limit
n→∞

(sgn(t)) = Min(1, t), for t ≥ 0 (27)

Note that in practice the value of n is taken to be equal to 4 for inviscid flows and 2 for
viscous flows.

8 Summary of the Method

In summary, we have developed and discussed through sections 6 and 7 the essential ingre-
dients for a suitable limiter ensuring an efficient and robust second order HLLC-Finite volume
scheme. This is therefore achieved by modifying the left and right variables values in the HLLC
Riemann solver as follows:

Q̄L
IJ = QL

IJ + δQIJ

Q̄R
IJ = QR

IJ + δQJI

Where δQIJ = 1
2
Minmod

(
ΦIJ∇QI

~hIJ ,−ΦJI∇QJ
~hJI

)
∇QI being the reconstructed gra-

dient using ICLS and ΦIJ is given by (25)

9 Numerical Results

To demonstrate the efficiency of the ICLS, the method is applied to reconstructing a quadratic
function and a fourth order polynomial gradient on a cubic domain. Results of the gradient
norm obtained by the LS corresponding to the ICLS initial estimation and iterated solutions are
compared to the exact solution. Figure 5 shows the tetrahedral mesh used for tests.

Figure 5: Tetrahedral triangulation of the cubic domain.
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Figure 6 shows the exact solution of the quadratic function on a cut through the cube center
and on faces. Initial and after 10 iteration results are shown in figures 7 and 8. The gradient

Figure 6: Quadratic function gradient norm: Exact Solution.

is perfectly reconstructed, especially on boundaries where the gradient is much more difficult
to estimate. A convergence curve of the l2 error logarithm is drawn in figure 9 proving the

Figure 7: Quadratic function gradient norm: ICLS Initial Estimate (LS method).

convergence of the method to the exact solution. This demonstrates that ICLC is exact for
quadratic functions while the classical LS is exact only for linear functions. Figures 10 to 13
show the same results for a fourth order polynomial function, we can appreciate the sensitive
improvement with iterations. Note finally that the most improvement occur during the few first
iterations, which means that we don’t need to iterate for a long time.
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Figure 8: Quadratic function gradient norm: ICLS after 10 Iterations.

Figure 9: ICLS Quadratic function gradient estimation: Convergence error curve.
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Figure 10: fourth order polynomial function gradient norm: Exact Solution.

Figure 11: ICLS Fourth order Polynomial function gradient norm: ICLS Initial Estimate.
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Figure 12: Fourth order Polynomial function gradient norm: ICLS after 100 Iterations.

Figure 13: ICLS Fourth order Polynomial function gradient estimation: Convergence error curve.
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To demonstrate the effectiveness of the proposed flow solver, a viscous transonic flow over
an ONERA M6 wing and an inviscid supersonic flow over a fighter F15 have been simulated.
For the ONERA M6 a hybrid mesh is generated using FLITE package (described in for instance
[8] and [9]). The mesh contains 4880340 tetrahedral elements with a 10 prismatic layers. The
imposed flight conditions are M=0.8395, AoA =3.06 and Re=11.e7. Figures 14 shows the mesh
and the λ shock of the steady state obtained after 9500 time iterations as shown on figure 15
where the Log of L2 norm of the residual is drawn.

Figure 14: Transonic flow over ONRA M6 wing. Used mesh and Cp profile.

Figure 15: Convergence error curve.

TheCp chordwise profiles are compared to experimental results for different stations in Figure16.
The results show a very good agreement with experiment, especially the result at 80% of wing
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semi span, which is the most difficult to obtain since the cut is too close to the λ shock corner.

(a) (b)

(c) (d)

Figure 16: Cp chordwise profile compared to experimental results

To test the robustness of the proposed scheme, it is applied as it is,without tuning any parameter,
to inviscid supersonic hight speed flows over F15 fighter. The F15 geometry is discretised using
FLITE system to 7599995 tetrahedral elements. The test is run at flight condition M = 2.
and AoA = 3. Figure 17 shows the mesh and the density profile, we can appreciate the well
capturing of the physics, the shocks especially. Figure 18 shows a good convergence of the
residual.

10 Conclusions

We presented in this paper new developments within the numerical resolution of Navier-
Stokes equations using HLLC-Finite volume method. The main contributions include HLLC
acoustic waves improvement, a new limiter design based on a stability analysis and an accurate
gradient reconstruction. Viscous and inviscid external flows simulations over an ONERA M6N
wing and F15 fighter are performed. The Mach number was varied from 0.8395 to 2. The
results demonstrate the accuracy and robustness in terms of convergence and stability of the

18



L. Remaki, O. Hassan and K. Morgan

(a) (b)

(c) (d)

Figure 17: Supersonic flow over the F15 fighter: Mach = 2.

Figure 18: Residual error curve.
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method, over a wide range of flow speeds, without the requirement of any tuning of user defined
parameters.
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