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Abstract. In this work an approach is presented for the analysis of the effects of geomet-
ric tolerances in fluid dynamic behaviour of manufactured components. The Tensorial-
expanded Chaos Collocation method coupled to Fictitious Domain Method has been used
to solve Fluid Dynamic problems with geometric uncertainties. The main advantage of the
Tensorial-expanded Chaos Collocation method is its non-intrusive formulation, so existing
deterministic solvers can be used. The Least-Squares Spectral Element Method has been
employed for the analysis of the deterministic differential problems obtained by Tensorial-
expanded Chaos Collocation. This algorithm exploits a Fictitious Domain approach, so it
is particularly suitable to solve differential problems defined on stochastic domains. The
capabilities of the Tensorial-expanded Chaos Collocation method combined to the Ficti-
tious Domain-Least- Squares Spectral Element Method are demonstrated by a numerical
experiment.
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1 INTRODUCTION

In the engineering design phase of a component tolerance specifications are provided
and, since geometric tolerances can influence the performance of the component, an anal-
ysis on the way this affects its behavior should be performed. Moreover the sensitivity of
the performances respect to the geometric uncertainties should be investigated. Therefore
there is a great interest in developing a methodology to face differential problems where
the geometrical domain is treated as a stochastic phenomenon.

To introduce the concept of geometric uncertainty, let us consider a one-dimensional
model problem:

d2φ

dx2
= 0 in [0, L]

with φ(0) = φ0 , φ(L) = φL and L = N (LMean, σL) (1)

where φ0 and φL are constants and L is a random parameter with Gaussian distribution.

Figure 1: (a) Representation of the stochastic domain of the problem Eq.(1) with normal distribution
of length L. (b) Probability P (x) of a point of belonging to domain Ω(θ). (c) Representation of the
stochastic solution φ(x, θ) of problem Eq.(1): the mean value µφ and the uncertainty bars µφ ± σφ are
shown, referring to absolute coordinates. (d) Representation of different deterministic solutions φ(x)
corresponding to different domains Ω(θi) of the problem Eq.(1).

In figure 1(a) the stochastic domain of the problem Eq. (1) is shown. The geometric un-
certainty, due to the probabilistic distribution P (L) of domain length L, is an uncertainty
on the position of boundary condition. A deterministic solution in the domain Ω(θi) cor-
responds to each length of domain Li with probability P (Li) (see figure 1(d)). So, given
P (L), the probability distribution of the stochastic solution φ(x∗, θ) can be computed by
all the possible deterministic solutions in the point x∗, using a methodology for the un-
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certainty quantification. It follows the solution of the problem, shown in figure 1(c), has a
probability distribution P (φ) associated to each point of domain in absolute coordinates.

Obviously the points have not the same probability to belong to the domain. In
figure 1(b) the probability P (x) of a point of belonging to domain, which depends on the
probabilistic distribution of L, is shown for the problem Eq. (1).

According to this concept of geometric uncertainty, we avoid the mapping of the
stochastic domain onto a deterministic domain as in Ref. [1] and every point of the
domain is studied in absolute coordinates.

Now to solve a differential problem with geometric uncertainties, Polynomial Chaos
methodologies can be used. If the Chaos Polynomial method is employed, we have to
solve a set of coupled differential problems, whereas if the Chaos Collocation method is
used, we have to solve a set of decoupled differential problems defined in deterministic
domains.

Here a Chaos Collocation methodology coupled to a Fictitious Domain solver is used.
The basic idea is to avoid the mapping of the stochastic domain onto a deterministic
domain referring the stochastic solution to absolute coordinates and at the same time to
avoid the remeshing of domain geometry exploiting the Fictitious Domain approach.

In the Fictitious Domain method, problems formulated on a complex domain can be
solved on a simple-shaped Fictitious Domain containing the original one. In this way
the computational domain of state problem, i.e. the Fictitious Domain, is not influenced
by small variations of the original domain boundaries subject to the uncertainty, which
are now immersed into the computational domain. Being the computational domain
independent by random geometric parameters, the remeshing has not to be performed
when the domain geometry changes.

Here, we employ the Tensorial-expanded Chaos Collocation method with the Fictitious
Domain-Least Squares Spectral Element Method [2] to solve stochastic Fluid Dynamic
problems. The CFD problems under study is the flow past a backward-facing step with
perpendicularity tolerance on the step.

2 UNCERTAINTY QUANTIFICATION: TENSORIAL-EXPANDED CHAOS

COLLOCATION METHOD

In this work we use a non-intrusive methodology, the Tensorial-expanded Chaos Collo-
cation method (TeCC), for the description of stochastic phenomena, whose capabilities
have been demonstrated in Ref. [2].

For introducing this uncertainty quantification method, let us consider the following
stochastic differential equation:

L(x, t, θ; φ) = f(x, t, θ) (2)

where L is a differential operator which contains space and time differentiation and can be
non linear and dependent on random parameters θ; φ(x, t, θ) is the solution and function
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of the space x ∈ <d , time t and random parameters θ; f(x, t, θ) is a space, time and
random parameters dependent source term.

Substituting the Polynomial Chaos series (see Ref.s [3, 4, 5, 6]), given by

φ(x, t, θ) =
N
∑

i=0

φi(x, t)Ψi (ξ)

=

P1
∑

p1=0

P2
∑

p2=0

. . .

Pn
∑

pn=0

φp1p2...pn
(x, t)Hp1

(ξ1) Hp2
(ξ2) . . . Hpn

(ξn) (3)

for Gaussian random inputs, where Hpk
(ξk) is the Hermite polynomial of order pk in terms

of the k-th random variable ξk with Gaussian distribution N (0, 1), into the stochastic
differential Eq. (2) we obtain:

L

(

x, t, θ;
N
∑

i=0

φi(x, t)Ψi (ξ(θ))

)

∼= f(x, t, θ). (4)

The method of Weighted Residuals is adopted to solve this equation. The coefficients
φi(x, t) are obtained imposing the inner product of the residual with respect to a weight
function equal to zero.

The Collocation method is obtained using a Dirac delta function as weight function.
Using a collocation projection on both sides of Eq. (4), we obtain:

L (x, t, θj; φj) = f(x, t, θj) j = 0, . . . , N. (5)

This formulation is a linear system equivalent to the solution of a deterministic problem
at each collocation point, called Chaos Collocation [7, 8]. If in Eq. (4) the spectral rep-
resentation is based on the tensorial product of one-dimensional orthogonal polynomials,
as that defined in Eq. (3) for Gaussian random variables, the Chaos Collocation approach
will be referred as the Tensorial-expanded Chaos Collocation method [2]. So that the
collocation points are unambiguously defined and they are the Gauss quadrature points
of the polynomial with order Pk + 1 in each dimension.

Solving the linear system Eq. (5) we obtain the coefficients φi(x, t) of the spectral
expansion and the expected value and the variance of the stochastic solution φ(x, t, θ)
will be:

EPC(φ) = µφ = φ0(x, t) (6)

V arPC(φ) = σ2
φ =

N
∑

i=1

[

φ2
i (x, t)

〈

Ψ2
i

〉]

. (7)

with 〈·, ·〉 inner product.
Once the stochastic solution is obtained a sensitivity analysis can be easily performed

to understand how the problem is affected by the uncertain input parameters and their
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respective influence. In most practical problems, we are interested not only in stochastic
solution of the problem, but also how the solution changes when the parameters of the
problem change. There are several possible procedures to perform the sensitivity analysis
[9]. The local methods [10] are based on the first-order approximation of function φ(x, t, θ),
which takes the form:

φ(x, t, θ) = φ(x, t, θ0) +
∂φ(x, t, θ)

∂θ

∣

∣

∣

∣

θ=θ0

(θ − θ0). (8)

We define the first-order sensitivity coefficient of the function φ to the uncertain parameter
variation as

S φ
θ0

=
∂φ(x, t, θ)

∂θ

∣

∣

∣

∣

θ=θ0

(9)

and θ0 is the nominal parameter value for which the sensitivity analysis is performed.
Sensitivity analysis is very useful to investigate the robustness of the results respect to

the input variables and to identify what source of uncertainty weights more on the solution.
Sensitivity analysis has the role of ordering by importance the strength and relevance of
the input parameters in determining the variation in the output and in models involving
many input variables sensitivity analysis is an essential ingredient.

3 FICTITIOUS DOMAIN - LEAST SQUARES SPECTRAL ELEMENT

METHOD

If we have to compute the mean and standard deviation of an analytical function, the
implementation of TeCC methodology is quite simple, but in Fluid Dynamic problems we
compute the mean and standard deviation of solutions of differential equations. It appears
clear that, if we can not solve analytically the differential equation, we have to remesh
the computational domain for each new simulation and it is well-known that to find an
appropriate parameterization of partitions of domain, which is good for all geometries, is
a difficult task for two- or three-dimensional problems.

To overcome this problem we introduce the Fictitious Domain methodology and exploit
it to solve differential problems with uncertain parameters. In this way the stochastic
domain does not coincide with the computational domain, which is the same for all
simulations (Fig. 2) and therefore only the trace of Lagrange multipliers has to be modified
in order to enforce the immersed boundary conditions defining the geometry.

The approach we use in this work is the coupling of Fictitious Domain according to
Boundary Lagrangian approach [11] together with the Least Squares Spectral Element
Method (LSqSEM) [12].

Let us consider the stationary Navier-Stokes equations governing the incompressible
flow, which in dimensionless form can be stated as follows:

(u · ∇)u + ∇p +
1

Re
∇ ·
[

(∇u) + (∇u)T
]

= f in Ω (10)
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(a) (b)

Figure 2: (a) Example of a fictitious rectangular domain Π containing the original domain Ω. (b)
Representation of Fictitious Domain approach to solve differential problems defined on a domain which
changes in time and space.

∇ · u = 0 in Ω (11)

u = us on Γu (12)

σ · n̂ = f s on Γf (13)

where Γ = Γu ∪ Γf and Γu ∩ Γf = ∅, Re is the Reynolds number, u is the velocity vector,

p is the pressure, f is a dimensionless force, σ = −pI + 1/Re
[

(∇u) + (∇u)T
]

, n̂ is the

outward unit normal on the boundary of Ω, us is the prescribed velocity on the boundary
Γu and f s are the prescribed tractions on the boundary Γf . We assume that the problem
is well posed and that a unique solution exists.

To implement the Fictitious Domain theory we extend the L2 least squares functional
for Navier-Stokes equations associated with its vorticity based first-order equivalent sys-
tem to the simple shaped domain Π ⊃ Ω and enforce the immersed boundary conditions
along Γ by Lagrange multipliers λ.

The resulting Lagrangian L : X × M → < writes:

L(u, p, ω, λ; f) =

1

2

(

∥

∥

∥

∥

(u · ∇)u + ∇p +
1

Re
∇× ω − f

∥

∥

∥

∥

2

0,Π

+ ‖ω −∇× u‖2
0,Π + ‖∇ · u‖2

0,Π

)

+

〈λ (u − us)〉0,Γu
+ 〈λ (σ · n̂ − f s)〉0,Γf

(14)

where we use the spaces

X =
{

(u, p, ω) ∈ H1(Π) × H1(Π) × H1(Π)
}

and
M =

{

λ ∈ H−1/2(Γ)
}

.
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To find the minimum of Lagrangian L we have to solve the corresponding saddle-point
problem. The solution of problem, Eq. (10)-(13), will be the restriction to Ω of the
minimum of Lagrangian function Eq. (14).

To get the approximated solution of the minimization problem of least squares func-
tional the spectral hp element method [13, 14, 15, 16] is used. So that the saddle point
problem is discretized and a system of equations is generated for the modal unknown
coefficients associated with velocity, pressure, vorticity and Lagrange multipliers. Once
the discrete problem is obtained, it is linearized by Newton’s method [17].

Let us remark that the choice of Lagrange multipliers discrete space is not independent
of the discrete spaces of variables u, p and ω. To ensure the convergence of the solution
of discretized model to that one of the continuous problem, the Ladyzhenskaja-Babuska-
Brezzi(LBB)-condition, also known as inf-sup condition, has to be satisfied [18, 19].

4 APPLICATION: BACKWARD-FACING STEP WITH GEOMETRIC TOL-

ERANCES

We want to examine the flow past a backward-facing step with geometric tolerances of
perpendicularity on the step.

The FD-LSqSEM model for the solution of the deterministic problems generated by the
TeCC implementation has been validated in Ref.[20], where the two-dimensional steady
flow over a backward-facing step at Re = 800 has been considered. The basic flow
situation is shown in Fig. 3. In Ref. [20] the obtained results have been compared with
those ones tabulated from the benchmark solutions of Ref.s [21, 22, 23, 24, 25] and an
excellent agreement has been found.

Figure 3: Schematic illustration of flow over a backward-facing step: geometry of flow field.

As the capabilities of the FD-LSqSEM have been demonstrated, let us examine by the
integrated approach TeCC and FD-LSqSEM the flow past a backward-facing step with
geometric tolerances of perpendicularity on the step (see Fig. 4).

The geometry dimensions, the boundary conditions and the connected model used to
solve the deterministic problems are the same used for the validation of FD-LSqSEM
solver in Ref.[20].
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Figure 4: Stochastic flow over a backward-facing step at Re = 600: geometric uncertainties.

The geometry and boundary conditions have been taken from the solution of Lee and
Mateescu [21]. The expansion ratio Hd/Hu tested is 2.0. The origin of the coordinate
system is centered at the step corner. Hu is equal to 1.5 and Lu, the length of the
upstream channel, is equal to 5.0. The total length of the channel L is 95.0. The flow is
characterized by a Reynolds number Re = UHd/ν where U is the average cross-section
velocity and ν the kinematic viscosity.

The fictitious domain, Π = [−5.0, 90.0] × [−1.5, 1.5], has been discretized using sixty-
three finite elements. The connected model, Πh, is shown in Fig. 5. The immersed
boundary Γ, where no-slip conditions are enforced, has been discretized into four linear
finite elements. An 11th order modal expansion has been used in each element of fictitious
domain and a 5th order modal expansion in each element of immersed boundary.

X

Y

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

-1.5

0.0

1.5

Figure 5: Computational domain and mesh for flow over a backward-facing step: connected model. The
reference system is such that x : y = 1 : 4.

The resulting discrete model is linearized using Newton’s method. Non-linear conver-
gence is declared when the relative norm of the residuals in velocities,

∥

∥∆uhp
∥

∥ /
∥

∥uhp
∥

∥, is
less than 10−4.

The uncertain parameters are the angle of vertical wall of the step respect to the wall
of the channel (θv = N(0, 0.08)) and the angle of horizontal wall of the step respect
to the inlet section (θh = N(0, 0.08)). In practice this spawns the uncertainties on the
coordinates of the step corner point.
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The flow has been analyzed at Reynolds number Re = 600, in fact it has been no-
ticed that because of the presence of geometric tolerances the flow becomes unsteady at
Re = 800. The analysis starts with Re = 100 and steps to Re = 600 using a solution
continuation technique with increments of Re = 100.

The expansion polynomial order of TeCC has been chosen equal to 3, which requires
the solution of 16 deterministic decoupled problems.

Fig. 6 shows the field of mean of velocity module V and Fig. 7 the field of its standard
deviation. The flow separates from the lower wall after the step and there is a recirculation
zone in the upper flow, too. After that, the flow becomes fully developed. The dimen-
sionless length of reattachment on the lower wall of the mean velocity is xr = 5.30, the
dimensionless length of separation on the upper wall is xs = 4.65 and the dimensionless
length of reattachment on the upper wall is xrs = 8.03. The standard deviation of velocity
is higher in correspondence of the geometric uncertainties and it is low in correspondence
of the points of reattachment and separation, whereas the height of separation zones is
more influenced by uncertainty.

X

Y

-5.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0
-4.0

-2.0

0.0

2.0

4.0
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Velocity Mean

Figure 6: Stochastic flow over a backward-facing step at Re = 600: the mean field of the vector velocity.
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-2.0

0.0

2.0

4.0
0.0E+00 1.0E-03 2.0E-03 3.0E-03 4.0E-03 5.0E-03 6.0E-03

Velocity Std

Figure 7: Stochastic flow over a backward-facing step at Re = 600: the standard deviation field of the
vector velocity.
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In Fig. 8 there are the contours of mean of pressure p and in Fig. 9 the contours of
its standard deviation. It can be noticed the standard deviation of both velocity and

X

Y

-5.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0

-4.0

-2.0

0.0

2.0

4.0
-0.010 -0.007 -0.004 -0.001 0.002 0.005 0.008 0.011 0.014 0.017 0.020

Pressure Mean

Figure 8: Stochastic flow over a backward-facing step at Re = 600: the mean field of the pressure.
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Figure 9: Stochastic flow over a backward-facing step at Re = 600: the standard deviation field of the
pressure.

pressure is low in correspondence of the reattachment on the lower wall and the standard
deviation of pressure increases immediately before the reattachment on the lower wall and
on the upper wall.

In Fig. 10 horizontal velocity profiles along the height of the channel at x = 21 and
x = 45 are shown. Both the mean value and the standard deviation are plotted. As we
move away from the geometric uncertainties the standard deviation of flow decreases.

The first-order sensitivity coefficients of velocity and pressure respect to the uncertain
parameters have been computed. The absolute value of the coefficients, calculated in
the mean values of the uncertain parameters, are shown in Figs. 11 and 12. These plots
highlight that the flow is more influenced by the angle of horizontal step wall.
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Figure 10: Stochastic flow over a backward-facing step at Re = 600: horizontal velocity profiles along
the height of the channel at x = 21 and x = 45. The mean value and the standard deviation are shown.

5 CONCLUSIONS

In this work the Tensorial-expanded Chaos Collocation methodology coupled to a Fic-
titious Domain solver has been illustrated, in order to solve multi uncertain fluid dynamic
problems.

The Fictitious Domain solver we used is based on Least-Squares Spectral Element
method. This formulation is of particular interest to study problems defined in stochastic
domains, since the Fictitious Domain approach allows avoiding the remeshing of computa-
tional domain in the presence of geometric uncertainties. At the same time the exploiting
of an higher order discretization method ensures the accuracy of solution.

This paper represents an advanced work in the uncertainty analysis field, both for the
theoretical and applicative contents. The approach, which is used for the solution of
problems with geometric tolerances, is a novelty in Fluid Dynamics and it promises to
have interesting applications in the future.
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