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Abstract. This paper describes the implementation of bottom friction and wave 
breaking physical processes in the BOUSS3W model. BOUSS3W is a finite element 
numerical model for wave propagation in near shore regions and wave penetration in 
harbours and sheltered zones. The extended Boussinesq equations derived by Nwogu 
(1993) are solved. These equations describe the nonlinear evolution of waves over a 
sloping impermeable bottom and are able to reproduce some of the most important 
physical effects associated with the nonlinear wave transformation in near shore 
regions. Their range of validity extends from shallow up to intermediate water depths. 
Both regular and irregular waves can be generated. 

Previous applications of the model confirm that the model is able to simulate quite well 
the main characteristics of the wave field outside and inside harbour configurations. 
However, neither bottom friction nor wave breaking phenomena were included in the 
model. These two phenomena constitute an important form of energy dissipation that 
cannot be neglected in near shore areas. 

This paper presents a general description of BOUSS3W and its newest developments, 
namely, bottom friction and wave breaking. Then, the application of the numerical 
model to simple test cases as well to a real case is described. 
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1 INTRODUCTION 

The most important physical effects associated with the nonlinear wave 
transformation of waves in nearshore regions can be described by Boussinesq-type 
equations (Kirby (1997)). One example of this class of equations was introduced by 
Nwogu (1993). These equations describe the nonlinear evolution of waves over a 
sloping impermeable bottom without considering wave breaking. Their range of validity 
extends from shallow up to intermediate water depths where the nonlinear and 
dispersive effects are mild. Therefore, they seem adequate to describe the wave field 
outside and inside ports, harbours and sheltered zones. In the last few decades several 
authors have been working to extend the applicability domain of these equations to deep 
as well as very shallow waters and also to include other physical phenomena such as 
currents, wave breaking, bottom friction, etc… Nowadays there is a large family of 
extended Boussinesq equations (Madsen et al. 1991, 2002, 2006; Beji and Nadaoka 
1996; Nwogu 1993; Wei et al. 1995b; Gobbi and Kirby 1996; Madsen and Schäffer 
1998a, 1998b; Agnon et al. 1999; Zou 2000; Kennedy et al. 2000). 

The numerical resolution of Boussinesq-type equations have mostly used finite 
diference methods (Peregrine 1967; Madsen et al. 1991; Madsen e Sørensen 1992; Beji 
and Battjes 1994; Wei and Kirby 1995; Kirby et al. 1998 and Lynett 2002). But, 
although computationally more complex, the finite element method deals directly with 
unstructured grids that correctly represent the physical boundaries of the domain, 
including the coastline, islands and other obstacles. Moreover the finite element method 
allows minimizing the number of points in the grid using local refinement techniques. 
Several authors have used this method with success (Katapodes e Wu 1987; Ambrosi 
1997; Grasselli et al. 1997; Antunes do Carmo and Seabra Santos 1996; Li et al. 1999; 
Walkley 1999; Walkley and Berzins 1999; 2002). These models use different time 
integration schemes and either triangular or rectangular linear elements. Recent 
advances in computational resources allow for inclusion of higher levels of non-linear 
and frequency dispersion terms as well as more complex interpolation functions (Woo 
and Liu 2001 and Eskilsson et al. 2006).  

Developments on the Walkey’s model (Walkley 1999; Walkley and Berzins 1999; 
2002) led to BOUSS3W model, which includes internal wave generation (using the 
source function method with which regular and irregular waves can be generated), 
artificial numerical viscosity (to control numerical instabilities) and numerical sponge 
layers (placed on radiation boundaries to absorb outgoing waves) and numerical 
porosity layers (placed whether on physical boundaries or inside the domain to simulate 
the reflection, transmission and energy dissipation effects of porous structures on the 
waves).  

In the following section, the governing equations are summarized. The boundary 
conditions and the source function methods are also discussed. Numerical examples to 
validate the model are given. The numerical results are compared with results from 
other numerical models, demonstrating the main advantages and limitations of using 
this model in real life case studies. 

 
2 BOUSS3W NUMERICAL MODEL 

2.1 Model description 

The extended Boussinesq equations derived by Nwogu (1993) are given by the 
following equations, at depth Zα=θ h. 
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where η is the free surface elevation, v)(u,),,( == tyxuu is the velocity vector, h the 
water depth. 

The original Nwogu’s equations were further extended to take into account some 
important physical processes (wave transmission through porous structures, bottom 
friction and wave breaking) as well as other source/damping terms for numerical 
reasons. The BOUSS3W model equations result as follows: 
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where fS  is a source function, ( ) ηυυ 2∇+ st  is a viscous damping term, uuu tl fnfn +  are 

laminar and turbulent friction terms, uuwf
h η+

1  is a wave induced bottom friction term 

and ( )uηυ
η

+∇∇
+

h
h e

1  is the wave breaking term. These additional terms are detailed in 

the following sections. 

2.1.1. Source function 

It is possible to specify incident wave conditions at the entrance boundary, but the 
characteristics of reflected waves in the computational domain cannot be determined a 
priori . This poses a problem when using complex geometries and long term 
simulations. Walkley’s (1999) solution to solve the issue of reflected waves inside the 
domain returning to the generation region was based upon a time varying sea bed. This 
method lacked a rigorous derivation and was difficult to extend to irregular waves, since 
no mathematical relation between wave amplitude and seabed elevation was 
established. 

Wei et al. (1999) presented a similar method to that of Walkley (1999) but, instead, 
introduced a source function term (Sf(x,t), equation (5)) in the mass balance equation.  

( ) ( ) ( )teDtxS xx
f
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2)(

 (5) 

where D is the amplitude of the source function, σ is a parameter corresponding to the 
width of the source region and xs is the centre of the source region. In their calculations 
an assumption was made that the nonlinear effects are small in the narrow source 
region. A linearization of the Boussinesq equation is made and by using Green’s 
theorem, and an analytical relation between source function amplitude and wave 
amplitude is obtained, equation (6). 
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where α1 = α + 1/3, and I1 is given by equation (7). 
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The σ parameter is defined in order to get the desired width, W, for the source 
function. The source function width is given in terms of half wavelength, equation (8). 

2
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Hence σ is given by equation (9). 
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The source function will have maximum amplitude equal to D and a width equal to 
W. 

2.1.2. Viscous damping 

A viscous term (νs) was added to the the free surface equation .This viscous term grows 
quadratically in the part of the domain corresponding to the sponge layer, equation (31), 
see Figure 1: . 
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where, v1 is the viscosity used throughout the domain to control the numerical 
instabilities, and v2 is the maximum viscosity at the sponge layer.  

It was found in practice that the width of the sponge layer must be one to two 
wavelengths, in order to provide sufficient damping, Kirby et al. 1998. 

2.1.3. Porous structures 

The modified equations for the porous region are obtained by replacing u with u/n, 
where n is the porosity, and including a term to account for energy dissipation inside the 
structure: 

 

uuu tlp fnfnF +=  (12) 
 
where lf  and tf  are laminar and turbulent friction factors, respectively. These factors 
are obtained using the empirical relationships recommended by Engelund (1953): 
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where υ  is the kinematic viscosity of water, d is the characteristic stone size, and 0α  

and 0β  are empirical constants that range from 780 to 1500, and from 1.8 to 3.6 
respectively. The characteristic stone size is given by: 
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where sW  is the stone weight in kN and sρ  is the mass density of armor material (2.65 
kg/m3 for quarrystone and 2.3 kg/m3 for concrete blocks). 

However, porosity layers, as well as viscosity layers, also must be introduced 
gradually to avoid large discontinuities which lead to instability. So, a Gaussian 
function is used to distribute growing porosity in half a wavelength width. Figure 1:  
shows an example of varying viscosity and porosity. 
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Figure 1: Viscosity (quadratic growth in sponge layer) and Porosity (Gaussian growth in porous 

layer). 

2.2 Boundary conditions 

The boundary conditions can be of three types: full reflection, full absorption or 
partial reflection.  

2.2.1. Full reflection condition 

Solid boundaries can fully or partially reflect incident waves. Full reflection 
represents a solid impermeable vertical wall. Non permeability and mass conservation 
conditions lead to the following boundary conditions: 

0nu =⋅  and 0nw =⋅  (16) 

Where n is perpendicular to the boundary. 

2.2.2. Full absorption condition - Sponge layers 

It is important to fully absorb all incident waves at the outgoing boundaries. Due to 
the dispersive nature of the equations modeled, a simple radiation boundary condition is 
not completely effective, as the dispersive waves have no single phase speed. Therefore, 
a viscous damping layer, termed sponge layer, is introduced near the outflow boundary 
in order to absorb incident waves at those boundaries. These sponge layers take the 
form of: 

 

ηυ 2∇= sSL  (17) 
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2.2.3. Partial reflection condition – Porous layers 

To partially absorb wave energy at a given boundary the sponge layer can be tuned to 
do so, as described in Nwogu and Dermirbilek (2001). However, this method is not 
linear, so further investigation must be done to determine a mathematical expression 
that correlates the reflection coefficient to the amount of viscosity and to the width of 
the sponge layer. 

Another method, also presented by Nwogu and Dermirbilek (2001) is to modify the 
Boussinesq equations to simulate partial wave reflection and transmission through 
porous structures such as breakwaters.  

2.3 Time integration 

The solution of the differential-algebraic system is carried out by the DASPK 
package (Brown et al 1989). Sparse matrices are preconditioned using incomplete 
lower-upper (ILU) factorisations of the original matrix, which reduces the 
computational time and storage requirements of the full LU factorisation by 
disregarding a certain amount of the fill-in entries based on numerical tolerances. The 
DASPK software contains routines from the SPARSKIT package (Saad 1996) for the 
iterative solution of large sparse equation systems with the method GMRES. Absolute 
and relative errors are controlled using variable step size and order. It was determined, 
after some trials, that the relative (rtol) and absolute (atol) tolerances should be set to 
rtol=atol=10-6. 

2.4 Initial conditions 

Initial conditions for this problem are those for an undisturbed free surface. For this 
initial condition, as the wave enters the domain, the integration software will identify 
that as a discontinuity, forcing the use of very small time steps. In order to avoid this, a 
smoothing function (vt) is introduced:  

T

t
m

t emv
2

1

−
⋅=  

(18) 

where T is the wave period and m1 and m2 are constants that must be determined 
experimentally. This term is added to the free surface equation as a viscous coefficient. 
In the first time steps this will damp the solution, allowing the use of larger time steps. 
Due to the exponential decay nature of this damping term, it will not affect the solution 
obtained after a suitably large time. 

2.5 Inputs and outputs 

For a friendly use of the numerical model BOUSS3W a Graphical User Interface 
(GUI) was developed in Microsoft Excel™ Environment using Visual Basic for 
Applications™ (VBA) as the programming language. This GUI builds all the data files 
and executes the model. The inputs needed for a correct use of the model are: 

• Wave characteristics: period, wave height and tide level, or time series of 
surface elevation; 

• Mesh characteristics: nodes, elements, depths and boundary conditions; 
• Time integration parameters; 
• Numerical diffusion parameters; 
• Output parameters. 
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The finite element mesh is created using the mesh generator, GMALHA, Pinheiro et 
al. (2007a). This mesh generator produces unstructured triangular finite element mesh 
with optimized node density according to local wavelength, optimized element 
geometry and minimized bandwidth with the Reverse Cuthill McKee method (Cuthill 
and McKee 1969).  

The model produces several types of outputs, such as: 
• Plots of surface elevation; 
• Plots of velocities; 
• Plots of wave height index; 
• Time series of surface elevation at given points. 
 

3 BOTTOM FRICTION 

The bottom boundary layer of flow associated with the passage of waves is normally 
restricted to a small region above the sea floor, unlike river and tide flows where it 
stretches all the way till the free surface. There is therefore a very small amount of 
energy dissipation due to bottom friction in typical wave propagation distances of the 
order of 1km used in Boussinesq-type models. The energy dissipation due to bottom 
friction, however plays an important role in the wave transformations near shore, in 
very shallow waters, Jonhson and Kofoed-Hansen (2000).  

The effect of energy dissipation due to a turbulent bottom boundary layer is 
simulated using a term of bottom shear stress, Fb, to the momentum equation, following 
the procedure adopted by Nwogu and Demirbilek (2001). 

ααη
UUf

h
F wb +

= 1  ( 19 ) 

where wf  is the wave friction factor. This equation is expressed in terms of αU  instead 
of the bottom velocity in order to minimize the computational effort to detrmine it.  

The wave friction factor estimates the bottom shear stress induced by the passage of 
the wave. Many authors have tried to estimate this factor (Jonsson, 1963; Jonsson, 
1965; Jonsson, 1966; Schlichting, 1968; Komar and Miller, 1973; Swart, 1974) but 
normally their approach depends on a number of variables, sometimes very hard to 
estimate. The wave friction factor evaluated with all these different approaches can 
differ by a factor of 3. 

In the BOUSS3W model two approaches are made available. The first one is very 
expedite and is related solely to the Chezy coefficient ( fC ): 

2
f

w
C

g
f =

 
(20) 

In Figure 2:  a method of evaluating the Chezy coefficient according to the type of 
sea bed and water depth is presented, Soulsby (1997). In Figure 3:  the variation of the 
wave friction factor with the Chezy number. 
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Figure 2: Variation of Chezy numbers from Soulsby (1997). Adapted from Lambkin (2010). 
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Figure 3: Variation of the wave friction factor with Chezy numbers. 

The other way of estimating the wave friction factor included in the model is the 
method presented by Leroux (2003). This author proposes a rigorous form of expressing 

wf  using solely two variables, the equivalent diameter of the particles, D, and the wave 
period, T.  

ρ

ρβ γ
2
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w
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f =  (21) 

where γρ  e ρ  are the densities of the submerged particles and of water, respectively. 
The Shields parameter, β , is given by: 
 

( )
( )









>⇐
<<⇐+

<⇐+−
=

11045.0

115.20272.0log0717.0

5.20625.0log0717.0

ds

dsds

dsds

W

WW

WW

β  (22) 

 
The critical orbital velocity, wcrU  is given by: 
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with 6757.0027.0 −= dswcr Wθ , where dsW  is the nondimensinal sedimentation velocity and 
can be evaluated according to the empirical formulation of Dietrich (1982): 

5832
68.0

2D
Wds =  ( 24 ) 
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In Figure 4:  the variation of the wave friction factor with the equivalent diameter of 
the particles, D, and the wave period, T, is presented using the procedure of LeRoux 
(2003), considering the particles density of 2.65x103kgm-3. 
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Figure 4: Variation of the wave friction factor with D and T, using LeRoux´s method (2003). 

4 APPLICATIONS 

The numerical model was applied to the simulation of regular wave propagation over 
a constant depth flume and to a real test case: Faro beach. All numerical calculations 
were done on a workstation LINUX CORVUS with four processors AMD Opteron™ 
265, 2GHz, 8GB RAM memory. 

4.1 A constant slope bottom 2D-Channel 

To validate the bottom friction implementation BOUSS3W was run in a simple test 
case of a flat bottom 2D-Channel. The wave friction factor effect was investigated. 

4.1.1. Numerical conditions 

The channel is 35 m long, 2 m wide and has a water depth of 0.4 m, Figure 5: . A 
regular wave of 0.01 m of amplitude and 2.0 s period was generated at x = 8 m. The 
wave length is of 3.7 m. The domain was discretized with 10428 triangular finite 
elements containing 5511 points. The bandwidth of the mesh is of 34.  

Two sponge layers were placed at each end of the flume with 2 m length each. Two 
sets of values were tested for the wave friction factor, Table 1. The simulation time was 
of 60s. 

 

Table 1 Wave friction factors tested. 

chezy fw chezy fw 
1 9.81 15 0.0436 
2 2.45 25 0.0157 
3 1.09 35 0.0080 
4 0.61 45 0.0048 
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5 0.39 55 0.0032 
6 0.27 65 0.0023 
7 0.20 75 0.0017 
8 0.15 85 0.0014 
9 0.12 95 0.0011 
10 0.10 105 0.0009 

 

Zona de
Geração

Zona de
absorção

Zona de
absorção

2 m

35m

2m

8m
2m

0
.4

 m

Figure 5: Flat bottom 2D-channel. 

4.1.2. Results 

In Figure 6: , the reduction of the wave amplitude is presented in percentage for each 
of the wave friction factors values tested. 
 

 

0%

10%

20%

30%

40%

50%

7 9 11 13 15 17 19 21 23 25 27

fw  = 10

fw  = 3

fw  = 1

fw  = 0.6

fw  = 0.4

fw  = 0

 

0.0%

0.1%

0.2%

0.3%

0.4%

7 9 11 13 15 17 19 21 23 25 27

fw  = 0.0436

fw  = 0.0157

fw  = 0.0080

fw  = 0.0048

fw  = 0.0032

fw  = 0.0023

  

Figure 6: Reduction of the wave amplitude. 
 

In the first set of fw values, the reduction of the wave energy is clear and grows as 
the wave propagates reaching as high as a factor of 45% for fw=10. 

In the second set of fw values, the reduction of the wave energy is very faint but still 
the tendency is consistent with the magnitude of the wave friction factor. 
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In Figure 7:  the maximum reduction of the wave height, at x≈25m (right before the 
sponge layer takes effect on absorbing the wave) is presented. 

These results confirm the adequate implementation of the bottom friction in the 
model, as the energy dissipation behaves like expected with the variation of the wave 
friction factor. 

The implementation of this new physical phenomenon does not introduce any 
instabilities in the model and the viscous damping term was not necessary in any 
simulation. 
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Figure 7: Maximum reduction (at x≈25m) of the wave height. 

4.2 Real test case - Faro Beach 

Faro beach, also known as “island of Faro”, is located in the Ancão peninsula which 
delimitates the Ria Formosa lagoon to the west. This beach is art of the Faro 
municipality in the Algarve region.  

Faro beach is a sandy beach which extends for several kilometers, Figure 8 
 

 
Figure 8: Faro Beach. 

The area is characterized by a more or less regular bathymetry parallel to the shore. 
Two topographic surveys, obtained in the scope of the BRISA project, were used to 
characterize the bathymetry of the study area, Error! Reference source not found.. 
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Figure 9: a) Bathymetryc surveys; b) Interpolated bathymetry, numerical domain and pressure sensor 

Infinity location (IFT). 
 

The wave climate offshore of the Faro beach is characterized by significant wave 
heights between 0.14 m and 4.4 m, being more frequent between 0.5 m and 1.0 m; 
periods between 3.0 s and 10.7 s, being more frequent between 3.0 s and 4.0 s and the 
average directions between 0º and 340º, being more frequent between 250º and 270º. 
These data were collected at a wave buoy deployed near the area between 1986 and 
1995, Raposeiro et al. (2009). 

 

4.2.1. Methodology 

In this real test case, the performance of the model is evaluated with the new physical 
phenomenon introduced. For this model results are compared with another Boussinesq-
type model, COULWAVE, Lynett (2002). This model is based upon the extended 
Boussinesq equations derived by Wei et al., 1995. It also includes bottom friction and 
has been previously tested successfully, making it a good comparison tool. 

For the numerical runs of BOUSS3W the following steps are necessary: 
• Definition of the numerical domain: 
• Construction of a finite element mesh optimized regarding local depths, using 

GMALHA mesh generator; 
• Generation of regular waves. 

The analysis of the results includes: 
• Free surface elevations in all points of the domain for certain time steps 
• Time series of free surface elevations in designated points of the domain. 

 

4.2.2. Numerical conditions 

Regular waves of 0.3 m of amplitude, 8 s period and wave direction of S37ºW 
(217º). The tide level was of +2.0 m (Z.H.). 

The numerical domain was discretized with a triangular finite element mesh 
containing 110 828 nodes and 220 470 elements. In average, the mesh contains 22 
points per wave length considering a period of 8 s. The bandwidth is of 509. 

In Figure 10:  the numerical domain is depicted including the generation line and the 
sponge layers two wave lengths (132 m) wide each.  

Prof (m)

Domínio de cálculo

IFT
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The time step was of 0.1 s. A viscous damping factor of 6100.7 −×  m2/s was used. The 
simulation time was of 200 s. The wave friction factor was of fw=0.0023. 

Six points were defined for results analysis, Table 2. 
 

Table 2: Loaction of points. 

Real 
Coordinates 

Mesh 
Coordinates Point 

X Y X Y 

P1 12342.17 -296305.18 425 150 

P2 12434.03 -296186.60 425 300 

P3 12556.52 -296028.49 425 500 

P4 12679.01 -295870.39 425 700 

P5 12511.02 -295740.25 212.5 700 

P6 12846.99 -296000.53 637.5 700 

Figure 10: Location of generation line, sponge layers and points P1 to P6 
 

4.2.3. Results 

In Figure 11:  the results of the free surface elevation at 200 s and the wave height 
indexes (H/H0) are presented as well as a 3D view of the free surface elevation at 200 s. 
This shows the wave transformations and interactions with the bottom along the beach 
slope as the wave propagates. 

 
Figure 11: Free surface elevation (3D and 2D views) and wave height indexes at time instant t = 200 s. 

 
Figure 12 presents the free surface elevation at the six points with the two models 

BOUSS3W and COULWAVE. 
In general, both models reproduce well the wave transformations. Both reproduce the 

shoaling of the wave dua to decrease of water depth. Both reproduce the nonlinear wave 
interactions and the harmonics generation. However, there are some differences in the 
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points closer to the shore, where the second harmonic appears stronger in BOUSS3W 
than in COULWAVE. Overall it is considered that BOUSS3W behaved quite well 
considering that it is weakly nonlinear while COULWAVE is fully nonlinear, and so it 
is expected that differences occur in very shallow waters for these two models. 

In future work a more rigorous validation will be performed using the data collected 
in the scope of the BRISA project, where wave data was collected with several types of 
equipments. 
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Figure 12: Free surface elevation at points P1 to P6. BOUSS3W (blue), COULWAVE (orange). 

 

5 CONCLUSIONS 

This paper described the implementation of bottom friction and wave breaking 
physical processes in the BOUSS3W model.  

Previous applications of the model confirm that the model is able to simulate quite 
well the main characteristics of the wave field outside and inside harbour 
configurations. However, neither bottom friction nor wave breaking phenomena were 
included in the model. These two phenomena constitute an important form of energy 
dissipation that cannot be neglected in near shore areas. 

The bottom friction implementation follows the work of Nwogu and Dermirbilek 
(2001) .The effect of energy dissipation due to a turbulent bottom boundary layer is 
simulated by adding a term of bottom shear stress to the momentum equation. 

To validate the bottom friction implementation BOUSS3W was run in a simple test 
case of a flat bottom 2D-Channel. The wave friction factor effect was investigated. 

The results showed that: 
� The wave energy decreases as the wave propagates consistently with the 

magnitude of the wave friction factor; 

� The bottom friction was adequately implemented in the model; 

� The implementation of this new physical phenomenon does not introduce any 
instability in the model and the viscous damping term was not necessary in any 
simulation. 
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After that a real test case was simulated in order to evaluate the model’s performance 
with the new physical phenomenon introduced. Results were compared with another 
Boussinesq-type model, COULWAVE, Lynett (2002). 

The results showed that: 
� The model was able to simulate correctly the wave propagation and most of the 

wave transformations present at Faro beach case; 

� In general, both models reproduce well the wave transformations. Both 
reproduce the shoaling of the wave due to decrease of water depth. Both 
reproduce the nonlinear wave interactions and the harmonics generation; 

� There are some differences in the points closer to the shore, where the second 
harmonic appears stronger in BOUSS3W than in COULWAVE; 

� Overall BOUSS3W behaved quite well considering that it is weakly nonlinear 
while COULWAVE is fully nonlinear, and so it is expected that differences 
occur in very shallow waters for these two models. 

In future work a more rigorous validation will be performed using the data collected 
in the scope of the BRISA project, where wave data was collected with several types of 
equipments. Also the implementation of wave breaking is in validation stage and could 
not be presented in this work. 
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