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Abstract. This paper describes the implementation of bottoiction and wave
breaking physical processes in the BOUSS3W mod2UIE3W is a finite element
numerical model for wave propagation in near sha¥gions and wave penetration in
harbours and sheltered zones. The extended Bosgsawuations derived by Nwogu
(1993) are solved. These equations describe théineam evolution of waves over a
sloping impermeable bottom and are able to repredsome of the most important
physical effects associated with the nonlinear w#assformation in near shore
regions. Their range of validity extends from stallup to intermediate water depths.
Both regular and irregular waves can be generated.

Previous applications of the model confirm that thedel is able to simulate quite well
the main characteristics of the wave field outsishel inside harbour configurations.
However, neither bottom friction nor wave breakpizenomena were included in the
model. These two phenomena constitute an impoftant of energy dissipation that
cannot be neglected in near shore areas.

This paper presents a general description of BOW$%8d its newest developments,
namely, bottom friction and wave breaking. Therg #pplication of the numerical
model to simple test cases as well to a real caslescribed.
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1 INTRODUCTION

The most important physical effects associated wille nonlinear wave
transformation of waves in nearshore regions carddscribed by Boussinesg-type
equations (Kirby (1997)). One example of this clagsquations was introduced by
Nwogu (1993). These equations describe the nomliesalution of waves over a
sloping impermeable bottom without considering wakeaking. Their range of validity
extends from shallow up to intermediate water deptthere the nonlinear and
dispersive effects are mild. Therefore, they sedeqaate to describe the wave field
outside and inside ports, harbours and shelteradszdn the last few decades several
authors have been working to extend the appliggldtbmain of these equations to deep
as well as very shallow waters and also to inclathter physical phenomena such as
currents, wave breaking, bottom friction, etc... Ndasgs there is a large family of
extended Boussinesq equations (Madseml. 1991, 2002, 2006; Beji and Nadaoka
1996; Nwogu 1993; Weet al. 1995b; Gobbi and Kirby 1996; Madsen and Schaffer
1998a, 1998b; Agnoet al.1999; Zou 2000; Kennedst al.2000).

The numerical resolution of Boussinesg-type equatibave mostly used finite
diference methods (Peregrine 1967; Madstkal. 1991; Madsen e Sgrensen 1992; Beji
and Battjes 1994; Wei and Kirby 1995; Kirlet al. 1998 and Lynett 2002). But,
although computationally more complex, the finiteneent method deals directly with
unstructured grids that correctly represent thesmay boundaries of the domain,
including the coastline, islands and other obsgadWoreover the finite element method
allows minimizing the number of points in the gtding local refinement techniques.
Several authors have used this method with sudéegapodes e Wu 1987; Ambrosi
1997; Grassellet al. 1997; Antunes do Carmo and Seabra Santos 1994;4dli 1999;
Walkley 1999; Walkley and Berzins 1999; 2002). Thaesodels use different time
integration schemes and either triangular or repikm linear elements. Recent
advances in computational resources allow for siolu of higher levels of non-linear
and frequency dispersion terms as well as more mipterpolation functions (Woo
and Liu 2001 and Eskilssat al. 2006).

Developments on the Walkey's model (Walkley 199%lMéy and Berzins 1999;
2002) led to BOUSS3W model, which includes intemalve generation (using the
source function method with which regular and inleag waves can be generated),
artificial numerical viscosity (to control numerlgastabilities) and numerical sponge
layers (placed on radiation boundaries to absortgaing waves) and numerical
porosity layers (placed whether on physical bouiledasr inside the domain to simulate
the reflection, transmission and energy dissipagtiacts of porous structures on the
waves).

In the following section, the governing equatiome aummarized. The boundary
conditions and the source function methods are dismussed. Numerical examples to
validate the model are given. The numerical resatts compared with results from
other numerical models, demonstrating the main ataeges and limitations of using
this model in real life case studies.

2 BOUSS3W NUMERICAL MODEL

2.1 Model description

The extended Boussinesq equations derived by Nw@§A3) are given by the
following equations, at dep#,=6h.



Pinheiro L.V., Fortes C. J., Teixeira P.R., WalkiA.

?9_17 +0((h+n)u)+0O [E( Zgz _h_;]hD(D W)+ (Za +gth(D [ﬂhu))} =0 (1)
g_f+(u M)u + gOn + Z," D(D %)+ZHD(D Eﬁhaujj=0 (2)

2 ot
where 77 is the free surface elevation,=u(x, y,t) = (u,v) is the velocity vectorh the
water depth.
The original Nwogu’s equations were further extehde take into account some
important physical processes (wave transmissiooutiit porous structures, bottom

friction and wave breaking) as well as other sold@@ping terms for numerical
reasons. The BOUSS3W model equations result asifsil
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where s; is a source functior(y, +uv,)0% is a viscous damping termf,u+nfulu are
laminar and turbulent friction termsh% fyulul is a wave induced bottom friction term
n

1
h+n
the following sections.

and Ou.O(h+n)u is the wave breaking term. These additional tesnesdetailed in

2.1.1.Source function

It is possible to specify incident wave conditicatsthe entrance boundary, but the
characteristics of reflected waves in the compoati domain cannot be determined
priori. This poses a problem when using complex geonsetaed long term
simulations. Walkley's (1999) solution to solve tissue of reflected waves inside the
domain returning to the generation region was bagech a time varying sea bed. This
method lacked a rigorous derivation and was diffitnextend to irregular waves, since
no mathematical relation between wave amplitude @edbed elevation was
established.

Wei et al. (1999) presented a similar method to that of WslKIL999) but, instead,
introduced a source function ter@(k,t), equation (5)) in the mass balance equation.

s, (x1) = D & 7®") tgin( - i) (5)

whereD is the amplitude of the source functianis a parameter corresponding to the
width of the source region andis the centre of the source region. In their dakions

an assumption was made that the nonlinear effaetssmall in the narrow source

region. A linearization of the Boussinesq equatisnmade and by using Green’s
theorem, and an analytical relation between soduretion amplitude and wave

amplitude is obtained, equation (6).

wz—althk4[E13

D=2t oo (6)

wherem = a + 1/3, and is given by equation (7).
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I, = \/g Ee[“%] (7)

The o parameter is defined in order to get the desirédthwW, for the source
function. The source function width is given innter of half wavelength, equation (8).

W= 5[—% (8)
Hencegis given by equation (9).

_ 80
7T 9)

The source function will have maximum amplitude &ado D and a width equal to
W.

2.1.2.Viscous damping

A viscous term\{g) was added to the the free surface equation Mist®us term grows
quadratically in the part of the domain correspagdp the sponge layer, equation (31),
see Figure 1: .

v=v, ey, (10)
30

V, = — 11

= (11)

where, v; is the viscosity used throughout the domain totrobnthe numerical
instabilities, and/, is the maximum viscosity at the sponge layer.

It was found in practice that the width of the sperayer must be one to two
wavelengths, in order to provide sufficient dampikgby et al. 1998.

2.1.3.Porous structures

The modified equations for the porous region ar@iabd by replacing with u/n,
wheren is the porosity, and including a term to accowntenergy dissipation inside the
structure:

Fo =nfiu+nfulul (12)

where fi and . are laminar and turbulent friction factors, regpmety. These factors
are obtained using the empirical relationships meovended by Engelund (1953):

f=a, (13)
n> d?

S (14)
n° d

where U is the kinematic viscosity of wated,is the characteristic stone size, ¢Q

and B, are empirical constants that range from 780 to0O1%hd from 1.8 to 3.6
respectively. The characteristic stone size isrgivg
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whereW: is the stone weight in kN ar O5 is the mass density of armor material (2.65
kg/m?® for quarrystone and 2.3 kg#rfor concrete blocks).

However, porosity layers, as well as viscosity tayealso must be introduced
gradually to avoid large discontinuities which le&d instability. So, a Gaussian
function is used to distribute growing porosity half a wavelength width. Figure 1:
shows an example of varying viscosity and porosity.

Viscosity
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Figure 1: Viscosity (quadratic growth in spongeglgyand Porosity (Gaussian growth in porous
layer).

2.2 Boundary conditions
The boundary conditions can be of three types: riefllection, full absorption or
partial reflection.
2.2.1.Full reflection condition

Solid boundaries can fully or partially reflect ident waves. Full reflection
represents a solid impermeable vertical wall. Nempeability and mass conservation
conditions lead to the following boundary condison

uln=0 gngwin=0 (16)
Where n is perpendicular to the boundary.

2.2.2.Full absorption condition - Sponge layers

It is important to fully absorb all incident wavasthe outgoing boundaries. Due to
the dispersive nature of the equations modeletmpls radiation boundary condition is
not completely effective, as the dispersive wawegemo single phase speed. Therefore,
a viscous damping layer, termed sponge layer,tisdnced near the outflow boundary

in order to absorb incident waves at those bouadafhese sponge layers take the
form of:

SL=u 0% (17)
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2.2.3.Partial reflection condition — Porous layers

To partially absorb wave energy at a given boundla@ysponge layer can be tuned to
do so, as described in Nwogu and Dermirbilek (20BHgwever, this method is not
linear, so further investigation must be done ttedeine a mathematical expression
that correlates the reflection coefficient to tmecaint of viscosity and to the width of
the sponge layer.

Another method, also presented by Nwogu and Derl@k§2001) is to modify the
Boussinesq equations to simulate partial wave ¢iefle and transmission through
porous structures such as breakwaters.

2.3 Time integration

The solution of the differential-algebraic system darried out by the DASPK
package (Brown et al 1989). Sparse matrices areopdiioned using incomplete
lower-upper (ILU) factorisations of the original tra, which reduces the
computational time and storage requirements of thik LU factorisation by
disregarding a certain amount of the fill-in ergrizased on numerical tolerances. The
DASPK software contains routines from the SPARSIKHACckage (Saad 1996) for the
iterative solution of large sparse equation systentls the method GMRES. Absolute
and relative errors are controlled using varialddp size and order. It was determined,
after some trials, that the relativdo{) and absoluteagol) tolerances should be set to
rtol=atol=10°.

2.4 Initial conditions

Initial conditions for this problem are those for andisturbed free surface. For this
initial condition, as the wave enters the domalrg integration software will identify
that as a discontinuity, forcing the use of veryalirtime steps. In order to avoid this, a
smoothing functiony) is introduced:

t

w=me T (18)

where T is the wave period andy and m, are constants that must be determined
experimentally. This term is added to the freearafequation as a viscous coefficient.
In the first time steps this will damp the soluti@lowing the use of larger time steps.
Due to the exponential decay nature of this damgenq, it will not affect the solution
obtained after a suitably large time.

2.5 Inputs and outputs

For a friendly use of the numerical model BOUSS3VGraphical User Interface
(GUI) was developed in Microsoft Excel™ Environmemsing Visual Basic for
Applications™ (VBA) as the programming languageisT@UI builds all the data files
and executes the model. The inputs needed forraatarse of the model are:

* Wave characteristics: period, wave height and lelel, or time series of
surface elevation;

* Mesh characteristics: nodes, elements, depths amadlary conditions;

* Time integration parameters;

e Numerical diffusion parameters;

¢ Output parameters.
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The finite element mesh is created using the mesiergtor, GMALHA, Pinheiret
al. (2007a). This mesh generator produces unstructuigtgular finite element mesh
with optimized node density according to local wawgth, optimized element
geometry and minimized bandwidth with the Reversghl McKee method (Cuthill
and McKee 1969).

The model produces several types of outputs, ssich a

* Plots of surface elevation;

* Plots of velocities;

* Plots of wave height index;

« Time series of surface elevation at given points.

3 BOTTOM FRICTION

The bottom boundary layer of flow associated with passage of waves is normally
restricted to a small region above the sea floatike river and tide flows where it
stretches all the way till the free surface. Thisréherefore a very small amount of
energy dissipation due to bottom friction in typiegave propagation distances of the
order of 1km used in Boussinesqg-type models. Therggndissipation due to bottom
friction, however plays an important role in thewsatransformations near shore, in
very shallow waters, Jonhson and Kofoed-HansenQ(R00

The effect of energy dissipation due to a turbuleottom boundary layer is
simulated using a term of bottom shear strEgsto the momentum equation, following
the procedure adopted by Nwogu and Demirbilek (2001

1

Fb-mfwua|ua| (19)
where f,, is the wave friction factor. This equation is exgged in terms afa instead
of the bottom velocity in order to minimize the gomational effort to detrmine it.

The wave friction factor estimates the bottom slst@ass induced by the passage of
the wave. Many authors have tried to estimate thesor (Jonsson, 1963; Jonsson,
1965; Jonsson, 1966; Schlichting, 1968; Komar antleM 1973; Swart, 1974) but
normally their approach depends on a number ofalsbes, sometimes very hard to
estimate. The wave friction factor evaluated withthese different approaches can
differ by a factor of 3.

In the BOUSS3W model two approaches are made &aildhe first one is very
expedite and is related solely to the Chezy caeftic(C; ):

f g

vTe,? (20)

In Figure 2: a method of evaluating the Chezy ficeht according to the type of
sea bed and water depth is presented, Soulsby X1®@OFigure 3: the variation of the
wave friction factor with the Chezy number.
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Figure 2: Variation of Chezy numbers from Soulsb997). Adapted from Lambkin (2010).
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Figure 3: Variation of the wave friction factor wi€Chezy numbers.

The other way of estimating the wave friction factecluded in the model is the
method presented by Leroux (2003). This author @sep a rigorous form of expressing
f,, using solely two variables, the equivalent diamefehe particles, D, and the wave

period, T.
_ 2p9p,D
U e P

w

(21)

where #v e P are the densities of the submerged particles &ndater, respectively.
The Shields parametefi, is given by:

-0.0717log(W,) +0.0625 O W, < 25
B=100717logW,,)+0.0272 0O 25<W,y <11

0.045

0 W,y >11

The critical orbital velocity) ., is given by:

T 7%
Uper = _O'OO{(ewcr gDpy )2 Ej + 1-070{gwcr gDpy[Ej ]

with 6, =0.02m,,*%"*", wherew,, is the nondimensinal sedimentation velocity and

can be evaluated according to the empirical fortmreof Dietrich (1982):

D2
W, = 068——
5832

(22)

(23)

(24)
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In Figure 4: the variation of the wave frictiorctar with the equivalent diameter of
the particlesD, and the wave period,, is presented using the procedure of LeRoux
(2003), considering the particles density of 2.68kgm>.
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Figure 4: Variation of the wave friction factor Wi andT, using LeRoux’s method (2003).

4 APPLICATIONS

The numerical model was applied to the simulatibregular wave propagation over
a constant depth flume and to a real test case: b@ach. All numerical calculations
were done on a workstation LINUX CORVUS with foulopessors AMD Opteron™
265, 2GHz, 8GB RAM memory.

4.1 A constant slope bottom 2D-Channel

To validate the bottom friction implementation BOS®V was run in a simple test
case of a flat bottom 2D-Channel. The wave fricfiactor effect was investigated.

4.1.1.Numerical conditions

The channel is 35 m long, 2 m wide and has a wagpth of 0.4 m, Figure 5: . A
regular wave of 0.01 m of amplitude and 2.0 s mkf@s generated at x =8 m. The
wave length is of 3.7 m. The domain was discretinath 10428 triangular finite
elements containing 5511 points. The bandwidthhefrhesh is of 34.

Two sponge layers were placed at each end of timeeflwith 2 m length each. Two
sets of values were tested for the wave frictiaridig Table 1. The simulation time was
of 60s.

Table 1 Wave friction factors tested.

chezy fw chezy fw
1 9.81 15 0.0436
2 2.45 25 0.0157
3 1.09 35 0.0080
4 0.61 45 0.0048
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5 0.39 55 0.0032
6 0.27 65 0.0023
7 0.20 75 0.0017
8 0.15 85 0.0014
9 0.12 95 0.0011
10 0.10 105 0.0009
/ / /‘ ‘
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Figure 5: Flat bottom 2D-channel.
4.1.2.Results

In Figure 6:, the reduction of the wave amplitude is presemtguercentage for each
of the wave friction factors values tested.
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Figure 6: Reduction of the wave amplitude.

In the first set ofw values, the reduction of the wave energy is céal grows as
the wave propagates reaching as high as a facé%ffor fw=10.

In the second set dv values, the reduction of the wave energy is vamytfout still
the tendency is consistent with the magnitude efwhave friction factor.

10
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In Figure 7: the maximum reduction of the wave height, @2%m (right before the
sponge layer takes effect on absorbing the wavaeisented.

These results confirm the adequate implementatioth® bottom friction in the
model, as the energy dissipation behaves like é¢gdewith the variation of the wave
friction factor.

The implementation of this new physical phenomenlmes not introduce any
instabilities in the model and the viscous dampiagn was not necessary in any
simulation.

100.00% 100.00%
< 4
10.00% - 10.00% -
1.00% - 1.00% -
0.10% 0.10% -
0.01% - y 0.01% -
0.00% T 0.00% T T T T
1 10 100 0.000 0.001 0.010 0.100 1.000 10.000
Chezy fw

Figure 7: Maximum reduction (at25m) of the wave height.

4.2 Real test case - Faro Beach

Faro beach, also known as “island of Faro”, is tedan the Ancéo peninsula which
delimitates the Ria Formosa lagoon to the west.s Theéach is art of the Faro
municipality in the Algarve region.

Faro beach is a sandy beach which extends foraekiBrmetersFigure 8

Figure 8: Faro Beach.
The area is characterized by a more or less repaldwymetry parallel to the shore.
Two topographic surveys, obtained in the scopehef BRISA project, were used to
characterize the bathymetry of the study agegr! Reference source not found.

11
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Figure 9: a) Bathymetryc surveys; b) Interpolatathpmetry, numerical domain and pressure sensor
Infinity location (IFT).

The wave climate offshore of the Faro beach is attarized by significant wave
heights between 0.14 m and 4.4 m, being more fragbetween 0.5 m and 1.0 m;
periods between 3.0 s and 10.7 s, being more fredaetween 3.0 s and 4.0 s and the
average directions between 0° and 340°, being rfnegeient between 250° and 270°.
These data were collected at a wave buoy deploged the area between 1986 and
1995, Raposeiret al. (2009).

4.2.1.Methodology

In this real test case, the performance of the inedevaluated with the new physical
phenomenon introduced. For this model results amepared with another Boussinesq-
type model, COULWAVE, Lynett (2002). This model limsed upon the extended
Boussinesq equations derived by Véeial, 1995. It also includes bottom friction and
has been previously tested successfully, makiagyiod comparison tool.

For the numerical runs of BOUSS3W the followingostare necessary:

» Definition of the numerical domain:
» Construction of a finite element mesh optimizedareghg local depths, using
GMALHA mesh generator;
e Generation of regular waves.
The analysis of the results includes:
* Free surface elevations in all points of the donfiaircertain time steps
* Time series of free surface elevations in desighptents of the domain.

4.2.2 .Numerical conditions

Regular waves of 0.3 m of amplitude, 8 s period aaVve direction of S37°W
(217°). The tide level was of +2.0 m (Z.H.).

The numerical domain was discretized with a tridaguinite element mesh
containing 110 828 nodes and 220 470 elements.vérage, the mesh contains 22
points per wave length considering a period of Bn& bandwidth is of 509.

In Figure 10: the numerical domain is depictedudmg the generation line and the
sponge layers two wave lengths (132 m) wide each.

12
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The time step was of 0.1 s. A viscous damping faotor0x10° m?/s was used. The
simulation time was of 200 s. The wave frictiontéaavas of fw=0.0023.
Six points were defined for results analysis, Tdble

Table 2: Loaction of points.

Real Mesh 800 g
Point Coordinates Coordinateg

X Y X | Y | e
P1 | 12342.17 -296305.18 425 | 150
P2 | 12434.03 -296186.60| 425 | 300| s
P3 | 12556.53 -296028.49 425 | 500
P4 | 12679.01 -295870.39 425 | 700/ 2
P5 | 12511.02 -295740.25 212.5| 700

P6 | 12846.99 -20600053 637.5| 700, ‘r——F— w3

X
Figure 10: Location of generation line, sponge tayend points P1 to P6

Sponge Layer

Prof {m)

Wave Generation Line

(=R N R RN - S ]

4.2.3.Results

In Figure 11: the results of the free surface elevation at 2@60& the wave height
indexes (H/HO) are presented as well as a 3D vietlveofree surface elevation at 200 s.
This shows the wave transformations and interastisith the bottom along the beach
slope as the wave propagates.

Figure 11: Free surface elevation (3D and 2D viearg) wave height indexes at time instant t = 200 s.

Figure 12 presents the free surface elevation at the sixntpavith the two models
BOUSS3W and COULWAVE.

In general, both models reproduce well the wavesfarmations. Both reproduce the
shoaling of the wave dua to decrease of water d8&gith reproduce the nonlinear wave
interactions and the harmonics generation. Howebhere are some differences in the

13
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points closer to the shore, where the second haorappears stronger in BOUSS3W
than in COULWAVE. Overall it is considered that B&@B3W behaved quite well
considering that it is weakly nonlinear while COUIBWE is fully nonlinear, and so it
is expected that differences occur in very shallmaters for these two models.

In future work a more rigorous validation will berformed using the data collected
in the scope of the BRISA project, where wave deda collected with several types of
equipments.
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Figure 12: Free surface elevation at points P16tdB®USS3W (blue), COULWAVE (orange).

°

5 CONCLUSIONS

This paper described the implementation of bottomtibn and wave breaking
physical processes in the BOUSS3W model.

Previous applications of the model confirm that thedel is able to simulate quite
well the main characteristics of the wave field siad¢ and inside harbour
configurations. However, neither bottom frictionrneave breaking phenomena were
included in the model. These two phenomena comstdn important form of energy
dissipation that cannot be neglected in near sti@as.

The bottom friction implementation follows the wodt Nwogu and Dermirbilek
(2001) .The effect of energy dissipation due tasdulent bottom boundary layer is
simulated by adding a term of bottom shear st@$ise momentum equation.

To validate the bottom friction implementation BO®B®SN was run in a simple test
case of a flat bottom 2D-Channel. The wave friciactor effect was investigated.

The results showed that:

e The wave energy decreases as the wave propagatessteatly with the

magnitude of the wave friction factor;

e The bottom friction was adequately implementechmodel;

e The implementation of this new physical phenomedoas not introduce any
instability in the model and the viscous dampimgntevas not necessary in any
simulation.
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After that a real test case was simulated in ordewvaluate the model’s performance
with the new physical phenomenon introduced. Reswitre compared with another
Boussinesqg-type model, COULWAVE, Lynett (2002).

The results showed that:

e The model was able to simulate correctly the wawpg@gation and most of the
wave transformations present at Faro beach case;

e In general, both models reproduce well the wavensfiamations. Both
reproduce the shoaling of the wave due to decredseater depth. Both
reproduce the nonlinear wave interactions and #mmbnics generation;

e There are some differences in the points closeéhd¢oshore, where the second
harmonic appears stronger in BOUSS3W than in COUMEA

e Overall BOUSS3W behaved quite well considering thas weakly nonlinear
while COULWAVE is fully nonlinear, and so it is eapted that differences
occur in very shallow waters for these two models.

In future work a more rigorous validation will berformed using the data collected
in the scope of the BRISA project, where wave deda collected with several types of
equipments. Also the implementation of wave bregk#in validation stage and could
not be presented in this work.
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