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Abstract. The aim of this paper is to present the class of high order compact schemes in
the context of numerical simulation of stratified flow. The numerical schemes presented
here are based on the approach outlined in1. Up to now, these very high order schemes have
successfully been applied to various problems namely in the area of computational aeroa-
coustics where they have shown outstanding accuracy, and favorable diffusion/dispersion
properties.

The numerical model presented in this contribution is based on the solution of the
Boussinesq approximation by a finite-difference scheme. The numerical scheme itself fol-
lows the principle of semi-discretization, with high order compact discretization in space,
while the time integration is carried out by suitable Runge-Kutta time-stepping scheme.
In the case presented here the steady flow was considered and thus the artificial compress-
ibility method was used to resolve the pressure from the modified continuity equation.

The test case used to demonstrate the capabilities of the selected model consists of the
flow of stably stratified fluid over low, smooth hill. This case was chosen to simulate the
common situation appearing in the atmospheric boundary layer flows over orography.
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1 INTRODUCTION

The stratified fluid flows appear in many areas of applied physics. The work pre-
sented hereafter is motivated by air flow in the atmospheric boundary layer, where the
atmospheric stability conditions have a crucial influence on flow and consequently also
on pollution dispersion. In this work the stably stratified case is solved, searching for
typical artifacts of this kind of flow. One of the well known effects of stably stratified flow
over hills is generation of wave patterns in the flow field. These waves affect large areas
surrounding the hill both in downwind and upwind direction. The effect of orography
could thus be felt in much larger area than in the case of neutral stratification.

The correct numerical resolution of the flow-field in this case is very demanding con-
cerning the choice of the numerical discretization. Such numerical discretization should
have well controlled numerical diffusion/dispersion properties on one hand and on the
other hand should be simple enough to allow for solution of large scale problems occur-
ring in the atmospheric physics. This was the major reason that led us to the choice of
high order compact finite-difference space discretization and strong stability preserving
time-integration methods for the present study.

The results presented herein were obtained using the first generation of the numerical
code, which serves us as a technological demonstrator to verify the capabilities of the
selected numerical methods. Numerical simulations were carried out on a simple 2D case
for laminar flow. We were looking for qualitative behavior of the solution for various levels
of stratification.

2 MATHEMATICAL MODEL

2.1 Full incompressible model

The motion equations describing the flow of incompressible fluid could be written
in the following general form (1) and (2). Here we assume that the energy equation
is decoupled from the equations of motion and the consequences of this simplification
could be neglected. This e.g. means that heat production due to the mechanical energy
dissipation and the density change related to temperature variations are neglected..

∂ρ

∂t
+ div(ρu) = 0 (1)

∂ρu

∂t
+ div(ρu ⊗ u) = divS + ρf (2)

Here u = (u, v, w) is the velocity vector in coordinate system (x, y, z). Pressure is denoted
by p, density by ρ. These equations together with the incompressibility constrain divu = 0
and the constitutive relation for the stress tensor for Newtonian incompressible fluid
S = −pI+2µD and gravity force expressed as f = (0, 0, g) leads (exactly) to the following
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set of governing equations for unknowns u, p and ρ:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (3)

∂ρ

∂t
+

∂(ρu)

∂x
+

∂(ρv)

∂y
+

∂(ρw)

∂z
= 0 (4)

∂(ρu)

∂t
+

∂(ρu2 + p)

∂x
+

∂(ρuv)

∂y
+

∂(ρuw)

∂z
= µ∆u (5)

∂(ρv)

∂t
+

∂(ρuv)

∂x
+

∂(ρv2 + p)

∂y
+

∂(ρvw)

∂z
= µ∆v (6)

∂(ρw)

∂t
+

∂(ρuw)

∂x
+

∂(ρvw)

∂y
+

∂(ρw2 + p)

∂z
= µ∆w + ρg (7)

This system could alternatively be rewritten in an equivalent form:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (8)

∂ρ

∂t
+

∂(ρu)

∂x
+

∂(ρv)

∂y
+

∂(ρw)

∂z
= 0 (9)

ρ

(
∂u

∂t
+

∂(u2 + p)

∂x
+

∂(uv)

∂y
+

∂(uw)

∂z

)
= µ∆u (10)

ρ

(
∂v

∂t
+

∂(uv)

∂x
+

∂(v2 + p)

∂y
+

∂(vw)

∂z

)
= µ∆v (11)

ρ

(
∂w

∂t
+

∂(uw)

∂x
+

∂(vw)

∂y
+

∂(w2 + p)

∂z

)
= µ∆w + ρg (12)

2.2 Boussinesq approximation

Now assuming that the pressure and density fields are perturbation of hydrostatic
equilibrium state, i.e.:

ρ(x, y, z, t) = ρ
0
(z) + ρ′(x, y, z, t) (13)

p(x, y, z, t) = p
0
(z) + p′(x, y, z, t) (14)

and
∂p

0

∂z
= ρ

0
g (15)

The Boussinesq approximation is obtained by introducing the above relations into the
momentum equations (10), (11) and (12), where the density perturbation ρ′ is neglected
on the left-hand side while on the right-hand side it is retained.

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (16)
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∂ρ′

∂t
+

∂(ρ′u)

∂x
+

∂(ρ′v)

∂y
+

∂(ρ′w)

∂z
= −w

∂ρ
0

∂z
(17)

∂u

∂t
+

∂(u2)

∂x
+

∂(uv)

∂y
+

∂(uw)

∂z
=

1

ρ
0

(
−

∂p′

∂x
+ µ∆u

)
(18)

∂v

∂t
+

∂(uv)

∂x
+

∂(v2)

∂y
+

∂(vw)

∂z
=

1

ρ
0

(
−

∂p′

∂y
+ µ∆v

)
(19)

∂w

∂t
+

∂(uw)

∂x
+

∂(vw)

∂y
+

∂(w2)

∂z
=

1

ρ
0

(
−

∂p′

∂z
+ µ∆w + ρ′g

)
(20)

This system could equivalently be rewritten using the “complete” density ρ rather than
the perturbation ρ′.

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (21)

∂ρ

∂t
+

∂(ρu)

∂x
+

∂(ρv)

∂y
+

∂(ρw)

∂z
= 0 (22)

∂u

∂t
+

∂(u2)

∂x
+

∂(uv)

∂y
+

∂(uw)

∂z
=

1

ρ
0

(
−

∂p′

∂x
+ µ∆u

)
(23)

∂v

∂t
+

∂(uv)

∂x
+

∂(v2)

∂y
+

∂(vw)

∂z
=

1

ρ
0

(
−

∂p′

∂y
+ µ∆v

)
(24)

∂w

∂t
+

∂(uw)

∂x
+

∂(vw)

∂y
+

∂(w2)

∂z
=

1

ρ
0

(
−

∂p′

∂z
+ µ∆w + (ρ − ρ

0
)g

)
(25)

3 NUMERICAL METHODS

3.1 Space discretization

The spatial discretization used in this work is directly based on the paper Lele 2 , where
the class of very high order compact finite difference schemes was introduced and analyzed.
The main idea used to construct this family of schemes is that instead of approximating
the spatial derivatives φ′ of certain quantity φ explicitly from the neighboring values φi,
the (symmetric) linear combination of neighboring derivatives (. . . , φ′

i−1, φ
′
i, φ

′
i+1, . . .) is

approximated by weighted average of central differences.
The simplest compact finite difference schemes use the approximation in the form

a φ′
i−1 + φ′

i + a φ′
i+1 = α1

φi+1 − φi−1

2h
+ α2

φi+2 − φi−2

4h
(26)

Here h = xi − xi−1 is the spatial step, while a and αk are the coefficients determining the
specific scheme within the family described by (26).

This approach generalizes the classical finite-differencing, which now becomes just a
special case of the compact approach for a = 0.
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It is evident that the schemes (26) form a subclass of three-diagonal schemes with five-
point computational stencil. For the simulations presented here, the following coefficients
were used

α1 =
2

3
(a + 2) α2 =

1

3
(4a − 1) (27)

The parameter a = 5/14 was used within this study, which leads to a formally fourth
order accurate scheme. Other choices of parameters are possible, leading to schemes up
to order six (for a = 1/3).

The above presented schemes are based on central discretization in space with all
the well known advantages and also disadvantages of this class of methods. One of the
disadvantages the central methods is the occurrence of non-physical oscillations in the
numerical approximations. A very efficient algorithm for filtering out these high frequency
oscillations was also proposed in Lele 2 . The low-pass filter (for the filtered values φ̂i could
be formulated in a form very similar to (26):

b φ̂i−1 + φ̂i + b φ̂i+1 = 2β0φi + β1
φi+1 + φi−1

2h
+ β2

φi+2 + φi−2

4h
+ β3

φi+3 + φi−3

6h
(28)

The filters of different orders could be obtained vor various choices of coefficients. Here
the fourth order filter with coefficients

β0 =
1

8
(3b + 10) β1 =

1

2
(2b + 1) β2 =

1

8
(2b − 1) β3 = 0 (29)

was used. The parameter 0 < b < 0.5 is used to fine-tune the filter.
More details on the space discretization can be found in Lele 2 , Visbal & Gaitonde 5 ,

Gaitonde et al. 1 .

3.2 Temporal discretization

The system of governing Partial Differential Equations was discretized in space us-
ing the above described finite-difference technique (represented further by the space dis-

cretization operator L̃). This leads to a system of Ordinary Differential Equations for
time-evolution of grid values of the vector of unknowns W. This concept is called semi-
discretization or the method of lines. Resulting system of ODE’s could be solved by a
suitable time-integration method. In this study we have used the so called Strong Stability
Preserving Runge-Kutta methods.

The family of explicit SSP Runge-Kutta schemes is usually written in the form intro-
duced in Shu & Osher 3 .

W
(0) = W

n

W
(r) =

r−1∑

p=0

(
αrpW

(p) + βrp∆tL̃(W(p))
)

r = 1, . . . , s (30)

W
n+1 = W

(s)
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It is not difficult to see that in the case the coefficients βrp are positive, the method (30) is
nothing but a convex combination of Euler stages with fractional time-steps of the length
βrp

αrp

∆t.

Here we just shortly present some of the optimal, in the sense of accuracy versus
stability, up to the order three SSP RK methods, originally studied in4. Hereafter the
SSP(s,o) denotes the Runge-Kutta method which consists of s stages and has order of
accuracy o.

Method αrp βrp CFL

SSP(1,1) 1 1 1

SSP(2,1)
1

0 1

1
2

0 1
2

2

SSP(3,1)

1

0 1

0 0 1

1
3

0 1
3

0 0 1
3

3

Table 1: First order SSP-RK methods coefficients

The method denoted by SSP(1,1) is nothing but the Euler method, while SSP(2,2)
stands for the modified Euler method. The coefficients of higher (second and third) order
SSP-RK methods can be found in4.

Method αrp βrp CFL

SSP(2,2)
1
1
2

1
2

1

0 1
2

1

SSP(3,2)

1

0 1
1
3

0 2
3

1
2

0 1
2

0 0 1
3

2

SSP(4,2)

1

0 1

0 0 1
1
4

0 0 3
4

1
3

0 1
3

0 0 1
3

0 0 0 1
4

3

Table 2: Second order SSP-RK methods coefficients
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The table 2 shows that the higher order of RK method could only be achieved at the
expense of the reduction of the allowable time-step, resp. the CFL.

The three stage second order SSP Runge-Kutta method was used to obtain the results
presented here.

4 NUMERICAL SIMULATIONS

4.1 Computational domain

The 2D computational domain is selected as a part of wall-bounded half space with
low smooth cosine-shaped hill. The hill height is h = 1m, while the whole domain has
dimensions 90 × 30 m.

H=30 h

L=90 h

h

6 h

z

x

30 h

Ω

Figure 1: Computational domain configuration

4.2 Boundary conditions

Two-dimensional case is considered and thus only boundary conditions are given for
this 2D case.

• Inlet . . . The velocity profile u = (u(z), 0, 0) is prescribed. The horizontal velocity
component u is given by u(z) = U

0
(z/H)1/r with U

0
= 1m/s and r = 40. Density

perturbation ρ′ is set to zero, while homogeneous Neumann condition is used for
pressure.

• Outlet . . . Homogeneous Neumann condition is prescribed for all velocity compo-
nents, as well as for the pressure and density perturbations.
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• Wall . . . No-slip conditions are used on the wall, i.e. the velocity vector is set to
u = (0, 0, 0). Homogeneous Neumann condition is used for pressure and density
perturbations.

• Free stream . . . Homogeneous Neumann condition is used for all quantities includ-
ing pressure and density perturbations.

The background density field is given by ρ
0
(z) = ρw + γz with ρw = 1.2 kg · m−3 and

γ = −0.01 kg ·m−4. A range of gravity acceleration g was used to test the behavior of the
model and numerical method for different Brunt-Väisälä frequencies. The values used are
g = 0, −2, −5, −10, −20, −50 m · s−2.

4.3 Computational grid

The numerical simulations were performed on a structured, non-orthogonal wall-fitted
grid shown in the figure 2. The grid has 152 × 68 points with the minimum cell size in
the near-wall region ∆z = 0.03m

x

z

-30 -20 -10 0 10 20 30 40 50 60
0

10

20

30

Figure 2: Computational grid

4.4 Numerical results

The figure 3 shows the comparison of horizontal velocity contours for six different values
of g. The first image in the series corresponds to the reference case where no gravity force
is applied. The zone of reversal flow is marked by white contour color. As expected the
increase of the (absolute) value of g leads to the more pronounced wave patterns in the
proximity of the hill. The wavelength of the waves decreases as it should based on the
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definition of Brunt-Väisälä frequency

N =

√
−

g

ρ̄

∂ρ
0

∂z
(31)
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Figure 3: Contours of the horizontal velocity for g = 0, −2, −5, −10, −20, −50 m · s−2

The stabilizing effect of the stratification is also visible in shortening of the recirculation
zone behind the hill.

5 CONCLUSIONS

• The mathematical model produced results that are in good qualitative agreement
with our expectations.

• The implementation of the selected numerical methods seems to work properly and
is free of obvious errors.

• Future work will concentrate on exploration of full capabilities of numerical method.

• More effort will be needed to extend the numerical solver for complex more realistic
geometries.

9
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