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Abstract. The article deals with the numerical simulation of the flow pattern around
a moving body in a stratified fluid. The flow is assumed to be unsteady, incompressible
and stratified. Initial system of equations is the Boussinesq approximation of the Navier—
Stokes equations. The flow field in the towing tank with a moving sphere and flat strip is
modeled for a wide range of Richardson numbers. The obstacle is modeled via penalization
technique. The resulting set of partial differential equations is then solved by the fifth-order
finite difference WENQO scheme, or by the second-order finite volume AUSM MUSCL
scheme. For the time integration, the second-order BDF method was used. Both schemes
are combined with the artificial compressibility method in dual time.
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1 Introduction

Stratification plays important role in many industrial and environmental problems.
Thoroughly study of the effect of stratification leads to a better modeling and finally to a
better understanding of these processes. Since this is a very complicated problem, study
of the simplified cases has a long tradition. One of the most popular cases is the moving
body in stratified medium. The flow structure around a uniformly moving obstacle is
subject of intensive numerical and experimental studies. This investigation help us to
better understanding nature of the stratified flow and re-structuring with changing of the
flow parameters. The processes occurring from the impulsive started body up to formation
of internal waves are computed.

2 Boussinesq approximation

For description of this type of flow, the Navier-Stokes equations for viscous incom-
pressible flow with variable density in 2D are used. These equations are simplified by the
Boussineq approximation. Density and pressure are divided into two parts: a background
field (with subscript o) plus a perturbation. The background field fulfill the hydrostatic
balance equation dpg(z)/0y = —po(y)g. The system of equations obtained is partly lin-
earized around the average state p,. The resulting set of equations can be written in the
form

PW; + FY (W), + G'(W), = v(F*(W), + G*(W),) + S(W). (1)
F' = [pu,u® + Qﬁ,uv,u}T, G = [pv,uv,v* + QE,U]T,
FY = [0,uz, v, 007, GY = [0,uy,v,,0]".
where W = [p, u, v, p|”, is vector of unknown variables respectively, the density perturba-
tion, three velocity components and the pressure perturbation. S = [—vdpy/dy, 0, —g,0]”
is the gravity and source term and P = diag(1,1,1,0). To describe the stratification, the
following parameters were used. An exponential profile oo = ggo exp(y/A) of the undis-

turbed density is characterized by a constant length scale of stratification A = 1/ dcllzg

where 0g9 = 00(0) is a reference density, buoyancy frequency N = 2x /T, = /g/A where
T, is a buoyancy frequency and bulk Richardson number

dpo
. 9 dy
RZ = W

whereU? is velocity of the moving obstacle.

3 Numerical schemes

Two different numerical schemes were used. The time discretization is the same in
both cases. For the spatial were used either the flux-splitting method with WENO inter-
polation or the finite volume AUSM MUSCL scheme with the Hemker-Koren limiter.
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3.1 Flux splitting for incompressible flows

The discretization in space is achieved by standard fourth-order differences for viscous
terms. For discretization of the inviscid fluxes the high-order flux-splitting method of
the following form was used. Divide the inviscid flux F™ (W) into two parts, the con-
vective flux F¢(W) = [pu, u?, uv,0]T and the pressure flux FP(W) = [0, p, 0, 3?u]T, then
approximate the flux derivative by

% 1 c c 1
FY(W),|, ~ Ar [Fiiie = Foap] + Az [Fﬁuz —F ) (2)

The high-order weighted ENO scheme!! is chosen as the interpolation method (only the
spatial index ¢ in the xz— direction is preserved). The original WENO interpolation uses
an upwind bias and it can be formally written in the following form (function weno5 is
described in!!):

& _ { ¢;;1/2 = Wen05(¢¢72, Gi—1, Pis Pit1, ¢i+2) if Wit1/2 > 0, (3)
e Gir1/2 = Weno5(Piys, Piva, Gir1, @i Gio1) il Uisyp <0

The final scheme can be written in the form

Uit1/2 = (“ZA/Q + ui_+1/2>/2a Pit1/2 = (p;‘:_l/g +pi_+1/2)/27 (4>
FOW)igry2 = ((pu)i-l/w (U2)i1/2» (Uv)iﬂ/z? (Uw)iyzvo)T
uz_‘:l/Z — Uiy p;r+1/2 — Pit1)2 )T

FP(W) = (Oupi—‘rl/Q + ﬁ ,0, O, Ui+1/2 +

2 203

where + or — is taken in the convective flux according to the sign of u;;1/s.
A similar algorithm is applied for the fluxes G. The resulting scheme has high-order
accuracy in space. It was validated for the case of compressible inviscid flows by a com-

putation of shock-vortex interaction; see!©.

3.2 AUSM scheme

The finite volume AUSM scheme was used for spatial discretization of the inviscid
fluxes in our second scheme.

/Q (Fi+GlydS = ]{ (Fing + G'n,)dl

o0
| .
1 v ny
3 0
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where n is the normal vector, u, the normal velocity vector, and (¢)z/r are quantities
on the left/right hand side of the face. These quantities are computed using MUSCL
reconstruction with the Hemker-Koren limiter® in the form*:

1 1
= G — 508 4L =i+ 50L,
qr = Qi1 50R qrL CI+2L

aL/R(b%/R —|— 2) + bL/R(Qa%/R —f- ].)

2ai/R + Qb%/R —ar/rbr/r +3

L/R =

aRp = Giv2 — Gi+1, AL =Giy1 — G, br=¢qit1— G, bL=¢q — g1
Since the pressure is discretized using central differences, the scheme is stabilized follow-
ing® by a pressure diffusion of the form

T
A i — Dij 2u
Fdi+1/2,j = (07 0, 0, U%) ) B = wy + M

where T denotes transpose and w, is a reference velocity (in our case the maximum veloc-
ity in the flow field). Viscous fluxes are discretized using central differences on the dual
mesh. This scheme is second-order accurate in space.

3.3 Time integration

The spatial discretization yields a system of ODE in the physical time ¢ variable, which
is solved by the second-order BDF formula

3wntl —4qwn Wt o - .
P A + (4 G (W) = By + Gy () = 5 (6)
By " is denoted above described numerical approximation of the fluxes. Arising set of
equations is solved by an artificial compressibility method in the dual time 7 by an explicit

3-stage second-order Runge-Kutta method of the second order.

4 Obstacle modeling

Our computations are focused to the modeling of the flows past a moving body. There
are various possibilities how to model body (e.g. moving mesh, immersed boundary see®).
In our computations, the obstacle is modeled using by penalization technique as a source
term emulating a porous media with high resistance. The source term S(V) in this case
takes the form

—w® o g0 "Xyt [0,U% — u, v —v,0]" (7)
dz Y ) Y K ) ) Y )
where K corresponds to small permeability and x(z,y,t) is the characteristic function of
the obstacle, which moves with velocity (U, V).
To estimate the influence of the permeability K, and also numerical tests were published

in!.
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5 Numerical results

Laboratory studies of flow around the body and produced internal waves has a long
tradition. It was recognized in experiments and theory that the flow pattern around
obstacles in a deep continuously stratified fluid depends on internal Froude number

U2

Fr=1ppe

where U is the flow velocity and D vertical size of obstacle. When the Froude number
is large, relatively long internal waves are generated which are located mostly past the
obstacle. On the other hand, when the Froude number is small, the upstream disturbance
is pronounced.

5.1 Flow past a moving sphere

The first validation of the schemes mentioned above was performed by the simulation
of the towing tank problem with moving sphere. The towing tank is a brimfull channel
with the moving obstacle inside. Other physical parameters are: dimensions 8 X 4m in
2D or 8 x 4 x 1m in 3D, p, = 1 kg/m?, the kinematic viscosity v = 107 m?/s and stable
density gradient dpo/dy = —0.1 kg/m*. The obstacle is a sphere of radius 0.1 m, located
1m from the left wall and at the middle of height and width. At time ¢ = 0 the obstacle
starts moving with constant velocity U®® = 1 m/s in the 2 direction.

Homogeneous Dirichlet boundary conditions for the velocity and Neumann conditions
for the density and pressure disturbances were used. Cartesian grid with 320 x 160 cells was
used. The simulations were performed for wide range of stratifications Ri €< 0,100 >.

RO -10E-02 -71E-03 -43E-03 -14E-03 14E-03 43E-03 71E-03 10E-02  Rho -1.0E-02 -7.1E-03 -4.3E-02 -14E-03 14E-02 43E-03 7.1E-03 1.0E-02
4

Figure 1: Comparison of isolines of the density disturbances at the time ¢ = 5s, ¢ = 100, Ri = 10. AUSM
MUSCL scheme left and WENOS right.
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Figure 2: Comparison of both schemes. Longitudinal (left) and transversal (right) distribution of the p
(right) Ri = 10, time t = 5s.

In the figures 1,2 we can see comparison of the schemes in 2D in the form of density iso-
lines and longitudinal and transversal distribution of the density perturbance. Performed
computations exhibit good agreement between both methods. For more information,
testing of the influence of mesh and permeability parameter see our previous studies,”,?.

5.2 Flow around moving strip

As a second case, the flow around the moving vertical strip was studied. A vertical
strip of the height h = 2.5¢m and thickness 0.43cm is placed vertically in the tank
of dimension 2.2 x 0.6m. Starting position 1m from the left and in the center of the
height. Coordinate system is placed to the center of the obstacle in the starting time. At
time t = 0 the obstacle starts moving with constant velocity U = 0.0026 m/s. Other
parameters: pgo = 1008.9kg/m?, the kinematic viscosity v = 107% m?/s and length scale
of stratification A = 38.75. Cartesian grids with 514 x 602 cells and 1500 x 602 cells were
used.

First of all, when impulsively started, the vertical body generates an initial perturbation
which is presented in the sequence of fig. 3. The temporal evolution of the v-velocity
component for three times ¢t = 16.5,49.4, 82.3s, which corresponds to the nondimensional
time t/T, = 1.32,3.96,6.6 describe process of wave generation.
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Figure 3: Evolution of the v-velocity component for three different times ¢ = 16.5,49.4,82.3s. Zoom view
close to the strip.

Next fig. 4 shows distribution of density (left) and density gradient %. The displace-
ment of isolines visualizes the location of the Lee wave crests and troughs. Wave field is
antisymmetric with respect to the r—axis.

Figure 5 shows flow structure in the form of Schlieren image obtained by Chashechkin
and Mitkin®. In this type of flow image, the illumination is proportional to the hori-
zontal component of index of refraction and is linearly connected with density gradient.
Black and white strips displays crests and troughs of internal waves. The flow structure
corresponds to computed flow field in fig.4.
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Figure 4: Density disturbance (left) and density gradient % (right) at given time t = 82.3s. Zoom view
close to the strip.

On the last figure 5, the comparison with computation performed by Houcine and
Fraunié is presented?®. Figures shows isolines of gradient of u-velocity component % at a
time t = 82.3s. The wave structure with the frequency given by the buoyancy frequency
is clearly visible. Another domain with significant gradient occupies strip around the
x—axis. Frequency of oscillations is given by the buoyancy frequency too.

Figure 5: Schlieren image of stratified flow past vertical strip.
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Figure 6: Gradient of u-velocity component g—; at a given time t = 82.3s. Our computation (left) and

computation of Houcine

6 Conclusion

The flow patterns produced by a moving sphere and vertical strip in stratified medium
were computed and compared.

Two numerical methods for simulation of 2D and 3D stratified flows have been devel-
oped and compared. Since the solution can depend on the numerical scheme, mesh etc,
a comparison of solutions obtained using different methods eliminates this dependence.
These results are in good mutual agreement. Quantitative and qualitative agreement
both methods and also with experiment and independent computation were demostrated.
Small differences that emerged between schemes require deeper investigation.
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