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Abstract. Based on a validated two-dimensional XFEM code for two-phase flows, this
work deals with the extension of this code to three spatial dimensions using structured
hexahedral meshes. Surface tension effects are considered, resulting in a discontinuous
pressure field. The treatment of hexahedral elements which are cut by the interface is
shown. In contrast to linear tetrahedral elements, the discontinuity inside trilinear hexa-
hedral elements is in general not linear but curved. As the XFEM introduces discontin-
uous functions in the approximation space the hexahedral elements need to be subdivided
for integration purposes. Moreover, it is shown how integration points can be placed on
the discontinuity itself, which is important for the evaluation of the surface-tension term.
Numerical results show the correct prediction of the surface tension and the resulting jump
in the pressure field is captured accurately.
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1 INTRODUCTION

Multi-phase flow problems are a challenging field of computational mechanics, as one
has to account for the moving interface between the phases. Furthermore, if surface
tension effects have to be considered, a discontinuous pressure field exists. Interface-
tracking methods generally lack the ability to allow for topology changes and interface-
capturing methods often show accuracy problems at least if no mesh refinement is applied
near the interface. The XFEM is employed in order to circumvent the disadvantages of
standard interface-capturing methods. By applying so called enrichments it is possible to
include known solution characteristics, e.g. across the interface, into the approximation
space1, 2, 3. Thus, the XFEM allows the approximation of discontinuities inside elements
with optimal accuracy.

In 4 the XFEM has been successfully applied to two-phase flow problems in 2D. How-
ever, three-dimensional numerical simulations are often indispensable for problems of
practical relevance. This work deals with the extension of the validated two-dimensional
XFEM code to three spatial dimensions using structured hexahedral meshes. The focus is
on the special quadrature techniques used, both, in the hexahedra and on the fluid-fluid
interface.

The outline is as follows: Section 2 starts with the governing equations of 3D instation-
ary, incompressible, isothermal two-phase flow and the concept of the implicit interface
description. In Section 3, the XFEM is introduced. Section 4 gives the resulting weak
formulation and in Section 5, the special quadrature procedure in enriched elements is
described. Section 6 presents numerical results and a final conclusion is drawn in Section
7.

2 GOVERNING EQUATIONS

We consider a three-dimensional computational domain Ω ⊂ R3 with boundary
Γ = ∂Ω. The boundary can be decomposed into a Dirichlet and Neumann bound-
ary, Γu and Γh respectively, forming a complementary subset of the boundary Γ, i.e.
Γu ∪ Γh = Γ and Γu ∩ Γh = ∅. The normal vector on Γ is denoted by n. The domain
Ω encloses two immiscible Newtonian fluids in Ω1(t) and Ω2(t). These two phases are
separated by a moving interface Γd(t), where n̂ is the normal vector on Γd as shown in
Figure 1 for a two-dimensional example.

The fluid velocity u(x, t) and pressure p(x, t) for each phase j = 1, 2 are then governed
by the instationary, incompressible Navier-Stokes equations in velocity-pressure formula-
tion:

ρj

(
∂u

∂t
+ u · ∇u− f

)
−∇ · σ = 0 in Ωj(t)× [0, T ]

∇ · u = 0 in Ωj(t)× [0, T ]

(1)
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Figure 1: 2D representation of the computational domain.

with ρj being the density of the respective fluid. The stress tensor σ is defined by

σ(u, p) = −pI + 2ηjε(u) with ε(u) =
1

2

(
∇u+ (∇u)T

)
, (2)

µj the corresponding dynamic viscosity and I the identity tensor. The Dirichlet and
Neumann boundary conditions Γ are given by

u = û on Γu × [0, T ], (3)

n · σ = ĥ on Γh × [0, T ] (4)

where û and ĥ are prescribed velocity and stress values. At the interface, typically the
following conditions are prescribed

[u]Γd
= 0 on Γd(t)× [0, T ], (5)

[n̂ · σ]Γd
= γκn̂ on Γd(t)× [0, T ]. (6)

γ is the surface tension coefficient, κ the curvature of Γd and [f ]Γd
defines the jump of f

across the interface Γd. The initial solution is defined by a divergence-free velocity field:

u(x, 0) = û0(x) in Ω(t = 0). (7)

2.1 Description of the interface

In the framework of the XFEM, the level-set method is used to describe the inner-
element interface Γd. The zero-level of the introduced scalar level-set function φ represents
the interface. In this work, φ has the signed-distance property:

φ(x) = ± min
x∗∈Γd

‖x− x∗‖ , ∀x ∈ Ω. (8)
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If the interface Γd is moving throughout the simulation, φ(x, t) needs to be updated in
each step. Therefore, the level-set transport equation

∂φ

∂t
+ u(x, t) · ∇φ = 0 in Ω× [0, T ] (9)

is solved, where u(x, t) is the fluid velocity and

φ(x, 0) = φ̂0(x) in Ω(t0 = 0) (10)

are the initial level-set values. Eq. (1) and (9) are evaluated in a strongly coupled sense.

3 EXTENDED FINITE ELEMENT METHOD (XFEM)

Due to the density and viscosity differences between the phases in a two-phase flow
problem with surface tension a kink in the velocity field and a jump in the pressure field
along the interface is encountered. In order to consider these non-polynomial behavior,
the approximation space is enriched with these known solution characteristics1, 2. The
basic concept of the XFEM also holds for three spatial dimensions. In this work only the
pressure degrees of freedom are enriched, resulting in the following XFEM approximation:

ph(x) =
∑
i∈I

Ni(x)pi︸ ︷︷ ︸
strd. FE approx.

+
∑
i∈I∗

Mi(x, t)ai︸ ︷︷ ︸
enrichment

. (11)

Ni(x) is the standard FE shape function for node i, I is the set of all nodes in the domain,
Mi(x, t) are the local enrichment functions, ai are the additional XFEM unknowns and
I∗ is the set of enriched nodes. These are the nodes of elements cut by the interface. We
are using the shifted definition of the local enrichment function5:

Mi(x, t) = Ni(x) · [ψ(x, t)− ψ(xi, t)] ∀i ∈ I∗ (12)

with ψ(x, t) being the global enrichment function. For the discontinuous pressure field,
the sign-enrichment is chosen here:

ψsign(x, t) = sign (φ(x, t)) =


−1 : φ(x, t) < 0,

0 : φ(x, t) = 0,

1 : φ(x, t) > 0.

(13)

The velocity and level-set values are interpolated using the standard FE shape func-
tions:

uh(x) =
∑
i∈I

Ni(x)ui, φh(x) =
∑
i∈I

Ni(x)φi. (14)
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4 WEAK FORMULATION

The following SUPG/PSPG-stabilized weak formulation results: Find uh ∈ Shu and
ph ∈ Shp such that ∀wh ∈ Vhu , ∀qh ∈ Vhp :∫

Ω

wh ·
[
ρj

(
∂uh

∂t
+ uh · ∇uh − f

)
+∇ph + µj∇

(
∇uh +

(
∇uh

)T)]
dΩ

+

∫
Ω

qh∇ · uh dΩ +

nel∑
e=1

∫
Ωe

el

τs

(
uh · ∇wh +

1

ρj
∇qh

)
(15)

·
[
ρj

(
∂uh

∂t
+ uh · ∇uh − f

)
+∇ph + µj∇

(
∇uh +

(
∇uh

)T)]
dΩ

=

∫
Γh

wh · ĥ dΓ +

∫
Γd

γκwh · n̂ dΓ

with nel the number of elements. The pressure and the continuity equation are treated
fully implicitly and the force term is assumed to be stationary and constant. The following
test and trial function spaces are chosen:

Shu =
{
uh |uh ∈ (H1h)3,uh = ûh on Γd

}
, (16)

Vhu =
{
wh |wh ∈ (H1h)3,wh = 0 on Γd

}
, (17)

Shp = Vhp =
{
qh | qh ∈ L2

0

}
, (18)

with H1h ⊆ H1 a finite dimensional Sobolev space. The stabilization parameter τs is
chosen according to 6:

τs =

((
2

∆t

)2

+

(
2|uh|2
he

)2

+

(
4ν

h2
e

)2
)− 1

2

(19)

with ν = µ/ρ the kinematic viscosity and he the element length. In elements cut by the
interface, the parameters µ and ρ are averaged.

The weak formulation of the level-set transport equation follows to: Find φh ∈ Shφ such

that ∀wh ∈ Vhφ : ∫
Ω

wh ·
(
∂φh

∂t
+ uh · ∇φh

)
dΩ

+

nel∑
e=1

∫
Ωe

el

τs

(
uh · ∇wh

)
·
(
∂φh

∂t
+ uh · ∇φh

)
dΩ = 0.

(20)

The temporal discretization is evaluated by means of the Crank-Nicolson method. It
is noted that special care is needed for the XFEM in combination with time-stepping, see
7.
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Figure 2: Linearization of the curved interface in a reference element by decomposition of the hexahedron
into linear tetrahedral elements.

(a) 5 tetrahedra. (b) 6 tetrahedra. (c) 6 tetrahedra.

Figure 3: Possible decompositions of a hexahedron into tetrahedra.

5 NUMERICAL INTEGRATION IN 3D

In the context of the XFEM in 3D, the same difficulties regarding the quadrature of
the weak form appear as in 2D. Due to the inclusion of the discontinuous enrichment
functions in the approximation space (cf. eq. (13)), the resulting shape functions in cut
elements also comprise jumps across the interface. Standard Gauss quadrature requires
smoothness of the integrands. Hence, in enriched elements the application of the Gauss
quadrature is not reasonable as the accuracy decreases significantly. Therefore, elements
including discontinuous shape functions require special treatment of the quadrature of the
weak form.

5.1 Element decomposition

It is common in the XFEM to partition cut elements into sub-elements which align
with the interface for integration purposes, see e.g. 1, 2, 3. One has to note that (according
to quadrilateral elements in 2D) the interface inside trilinear hexahedral elements is in
general not linear but curved, in contrast to linear tetrahedra. This fact complicates the
exact partitioning into sub-elements that align with the discontinuity. In order to elimi-
nate the problem of the curved interface, the hexahedra are decomposed into tetrahedra
where linear interpolation functions are employed. The resulting “linearized” zero-level
of the level-set function is piecewise planar (cf. Fig. 2). The decomposition of a hexa-
hedron into tetrahedra is not unique, see Fig. 3 for different alternatives where 5 or 6
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Figure 4: Cutting planes of tetrahedra.

Figure 5: Integration points and normal vectors on the interface in a reference element.

tetrahedra result. In this work, we will use a decomposition into 6 tetrahedra, such that
opposite element faces coincide in the orientation of their diagonals resulting from the
decomposition (cf. Fig. 3(c)). Thereby, it is ensured that the linearized interfaces in
neighbouring, cut elements match at their common element face. After this decomposi-
tion each tetrahedron—with a planar interface—can be further subdivided into elements
aligned with the interface. The interface in a cut tetrahedral element can either be of tri-
angular or quadrilateral shape in 3D, which leads to a subdivision with (i) a tetrahedron
and a pentahedron or (ii) two pentahedra, see Fig. 4. Standard Gauss rules can finally
be applied in these tetrahedral and pentahedral elements. The resulting coordinates and
weights of the integration points are projected into the real geometry and can be used for
the quadrature of the weak formulation. One has to note that the “linearized” interface
in the hexahedra is only linear in the reference elements. After the projection into the
real element the interface is again curved in general.

5.2 Integration along the interface

The evaluation of the surface tension term in equation (15) requires the quadrature of
an integral along the interface. We therefore need to place Gauss points on the interface
itself. First of all, the surface tension term is reformulated by means of the Laplace-
Beltrami operator8. For the closed interfaces considered in this work this leads to:∫

Γd

γκwh · n̂ dΓ = −
∫

Γd

γ∇id · ∇wh dΓ, (21)
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where ∇f = ∇f − (∇f · n̂)n̂ and id is an identity mapping on the interface Γ. The
advantage of the reformulation (21) is that the curvature κ of the interface is not needed.
In order to evaluate the integral, Gauss points need to be placed on the discontinuity and
the normal vectors of the interface elements have to be determined. The intersections of
the interface with the element boundaries are calculated using linear interpolation and the
level-set values at the element nodes. Gauss points can then be placed on the resulting
2D interface elements and be projected in the according cut tetrahedral element. The
normal vectors of the interface elements are easily calculated in the reference domain as
the cross-product of two tangential vectors on the interface elements, perpendicular to
each other (cf. Fig. 5). Projection to the real element leads to the desired quantities for
the evaluation of eq. (21).

6 NUMERICAL RESULTS

6.1 Static bubble

We consider a cubic domain of size 4× 4× 4m with a sphere of radius r = 1m in the
center (cf. Fig. 6(a)). A uniform hexahedral mesh with 30 × 30 × 30 elements is used.
The surface tension coefficient is given by γ = 1.0. Density and viscosity are the same in
both phases, ρ1 = ρ2 = 1.0 kg/m3 and µ1 = µ2 = 1.0 kg/s/m and no gravitational forces
are considered. Hereby, index 2 is the bubble phase and index 1 denotes the surrounding
fluid. Then the exact solution of the velocity field is u(x) = 0 and the pressure is

p(x) =

{
0, ∀x ∈ Ω1

γ · κ, ∀x ∈ Ω2

. (22)

The curvature κ is given by the sum of two curvatures κ = κ1 + κ2 = 1/r1 + 1/r2, with
r1 and r2 the principal radii of curvature of the surface in 3D9. In case of the sphere,
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Figure 6: Static bubble test case.
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κ is constant and r1 = r2 = r. Fig. 6(b) shows the pressure solution on a x − y plane
through the center of the sphere. As can be seen, the XFEM is able to reproduce the
exact pressure difference ∆p = 2N/m2 and the discontinuity across the interface nicely.

6.2 Rising bubble

A rising bubble in a rectangular domain is considered. The dimensions and fluid
properties are chosen according to the 2D test case in 4. The initial diameter of the
spherical bubble is set to d = 0.1 m and the measurement of the computational domain
is 2d × 2d × 4d (x-, y- and z-direction). The fluid properties are ρ1 = 1000 kg/m3,

(a) t = 0 s (b) t = 1.5 s (c) t = 3.0 s

(d) t = 4.5 s (e) t = 6.0 s (f) t = 7.5 s

Figure 7: Rising bubble test case.
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ρ2 = 1 kg/m3, µ1 = 0.01 kg/s/m, µ2 = 0.0001 kg/s/m and the surface tension coefficient
γ = 0.001 kg/s2. Index 2 is the bubble phase and index 1 denotes the surrounding fluid.
The gravitational forces are set to fz = −g = −0.01m/s2. The Morton number is

Mo =
g · µ4

1 · (ρ1 − ρ2)

ρ2
1 · γ3

= 0.01 (23)

and the Eötvös number

Eo =
g · (ρ1 − ρ2) · d2

γ
= 100. (24)

Slip boundary conditions are assumed along all boundaries and the pressure p = 0N/m2

is set at the upper boundary. The time step is chosen to ∆t = 0.1 s and the spatial
resolution using a hexahedral mesh is 30 × 30 × 60 elements. Fig. 7 shows the bubble
shape at different time steps.

7 CONCLUSION

The validated 2D two-phase flow XFEM code was successfully extended to the 3D
case using hexahedral meshes. Applying the presented quadrature technique, the “exact
integration” property of the Gauss quadrature can be maintained also for elements with
discontinuous shape functions. Furthermore, it was shown how integration points can be
placed on the phase interface in order to evaluate the surface tension term. A stationary
bubble test case showed the correct evaluation of the surface tension and the exact repro-
duction of the discontinuity across the interface. The success of the method is shown by
means of a rising bubble simulation.
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