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Abstract. A systematic analysis of the effect of modeling uncertainties in the simulation
of wet steam flows is performed through the coupling of a wet steam flow solver with an
uncertainty quantification method. A Probabilistic Collocation Method (PCM) is selected
due to its non-intrusive nature and exponential convergence. Uncertainties affecting cali-
bration coefficients in the droplet nucleation and growth models are propagated through the
wet steam flow solver using the PCM approach The separated and coupled effect of such
uncertainties is studied for condensing flows through both high-pressure and low-pressure
quasi-1D supersonic nozzles.
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1 INTRODUCTION

Wet steam flows are typically modeled as multiphase gas droplet mixtures in which
both vapor and liquid droplets coexist. In these flows, spontaneous nucleation leads to the
formation of liquid droplets from vapor. A key point in the computation of this type of
multiphase flow is the determination of the shape of the droplet spectrum. In a previous
work, two of the present authors developed an inviscid numerical solver for wet steam
flows based on the moment method.1 The droplet size distribution is partly modeled
through the resolution of transport equations for the lowest order moments of the droplet
spectrum. This allows evaluation of the wetness fraction and the mean radius of the
droplets. Past validations for wet steam flows through convergent-divergent nozzles show
that the results are in good agreement with the available experimental data for pressure
distributions. However, differences of up to 40% are observed for droplet properties such as
the mean droplet diameter, which are directly influenced by nucleation and growth model
parameters. These models require the specification of several thermo-physical properties
of the liquid phase, along with calibration constants. For some of these parameters, the
values encountered in the literature may vary significantly within very large intervals. For
instance, in the case of the the condensation coefficient qc for water, values between 10−3

and 1 have been reported. The condensation coefficient appears in the pre-exponential
factor in the nucleation rate equation. Early experiments by Alty and MacKay2 indicated
values around 0.02-0.03, but it is now thought that these measurements were subject to
large systematic errors and the general consensus is that qc takes values close to 1.3,4

Although the values of qc are typically assumed as qc ≈ 1, all experimental evidence has
been obtained with drop surfaces which are large on a molecular scale. For very small
clusters, the value of qc is almost certainly much less than 1.5 Similarly, in the droplet
growth rate model, an empirical parameter β appears which can take values between
0 and 5. This parameter was introduced by Young6 to provide more flexibility in the
model calibration phase for low-pressure nozzles. The classical value β = 0 is preferred
for Wilson point pressures above 0.5 bar. Conversely, according to Young, comparisons
with experimental data indicate better agreement between computed and experimental
data for β = 5 if the Wilson point pressure is around 0.1 bar. The Wilson point is defined
as the point of maximal subcooling along a streamline as well as the point where dry and
condensing static pressure curves first separate. When experimental data are not available
for calibration and for intermediate Wilson-point pressures, the adjustable parameter β
is a strong contributor of uncertainty. In this case, uncertainty quantification is critical
in evaluating the accuracy and precision of the CFD simulations.

The objective of the present work is to carry out a systematic analysis of the impact of
model parameter uncertainties on the numerical solution of wet-steam solvers. The sta-
tistical output information is subsequently compared with experimental data. In recent
years, research efforts have led to the development of several uncertainty quantification
methods, which may be classified as non-intrusive or statistical (e.g., the Monte Carlo
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method and the surface response method) or intrusive/non-statistical (e.g. polynomial
chaos (PC) methods). Among these methodologies, considerable interest has been re-
ceived by Generalized Polynomial Chaos (GPC) methods because of their high accuracy
and computational efficiency compared to other methods. However, a principal disadvan-
tage of the GPC is the intrusive nature of the approach, where the CFD code requires
direct modification. Nevertheless, it is possible to develop non-intrusive formulations
based on PC theory, such as probabilistic collocation and chaos collocation methods.7–9

These non-intrusive methods may be coupled with a deterministic flow solver which can
be considered as an external black box, and no modification of the CFD code is required.
As a consequence, non-intrusive methods are more versatile than the intrusive approaches,
since they may be applied to different problems just by changing the deterministic flow
solver.

In this work, the Probabilistic Collocation Method (PCM) by Loeven et al.7,8 is se-
lected due to its non-intrusive nature and exponential convergence. Uncertainties affect-
ing calibration coefficients in the droplet nucleation and growth models are propagated
through the wet steam flow solver using the PCM approach. The separated and coupled
effect of such uncertainties is studied for condensing flows through both high-pressure and
low-pressure quasi-1D supersonic nozzles.

2 GOVERNING EQUATIONS

2.1 The Moment Method

In the present work, wet steam is modeled by means of the moment method. This
approach10–13 is based on the assumption that the full droplet spectrum in not required
in most cases. In such cases, the correct coupling between vapor and liquid droplets is
achieved by computing only the first few moments of the size distribution.

2.1.1 Mixture Conservation Equations

We solve the conservation equations for a two-phase mixture of vapor and fine droplets.
These equations take the same form of their single phase counterparts. For inviscid,
adiabatic wet-steam flows with zero inter-phase slip, the mass continuity, momentum and
energy equations for the two-phase mixture in conservation variables are:

∂ ρm

∂t
+ ∇ · (ρmu) = 0 , (1)

∂

∂t
(ρmu) + ∇ · (ρmuu) + ∇p = 0 , (2)

∂

∂t
(ρmE) + ∇ · (ρmE u) + ∇ · (pu) = 0 , (3)
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where u represents the common velocity field, ρm is the mixture density and E is the
mixture total energy per unit mass. Their definitions are:

1

ρm

=
1 − y

ρv

+
y

ρl

≃ 1 − y

ρv

, (4)

E = e +
1

2
u2 , with e = (1 − y) ev + y el , (5)

with y the wetness fraction, i.e. the mass of liquid per unit mass of the mixture, and e
equal to the internal energy per unit mass of the mixture. The subscripts m, v and l refer
to mixture, vapor and liquid, respectively. The relation between mixture total energy E
and total enthalphy H (both per unit mass) is given by:

H = E +
p

ρm
, (6)

since
H = (1 − y) Hv + y Hl = (1 − y) (Ev + p/ρv) + y (El + p/ρl) =

= (1 − y) Ev + y El + p ((1 − y)/ρv + y/ρl) = E + p/ρm .
(7)

2.1.2 Moment Equations

A relevant benefit coming from the use of the moments of the droplet size distribution
is that vapor-liquid heat and mass transfer can be accurately modeled by solving a few
moment equations, rather than a larger number related to numerous droplet groups.
The jth moment of the droplet size distribution is defined as:

µj =

∫ ∞

0

rjf dr , (8)

where f is the droplet number density function and r the droplet radius. Low order
moments have a physical significance. In particular, µ0 is equal to the total number of
droplets per unit mass of mixture and µ3 is proportional to the wetness fraction:

µ0 = nT , µ3 =
3

4πρl

y . (9)

For the droplet diameter, the Sauter mean diameter d32 = 2 µ3

µ2

is used. In order to deter-
mine y, an equation describing the evolution of µj is needed. The generic conservation
equation for the jth moment is given by:

∂

∂t
(ρmµj) + ∇ · (ρmµju) = jρm

∫ ∞

0

rj−1Gf dr + ρmJ∗r
j
∗ . (10)
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where G is the droplet growth rate. The definitions of the critical radius r∗ and of the
critical nucleation rate J∗ come from the assumption that droplets form only at a critical
radius r∗, so that the nucleation rate J can be written as Dirac-delta function:

J = J∗δ(r − r∗) . (11)

Following the definition from Kelvin-Helmholtz, the critical radius r∗ is given by:

r∗ =
2σ

ρl RTv ln S
≈ 2σ Ts(p)

ρl hvl∆T
, (12)

with σ the surface tension, Ts(p) the saturation temperature at pressure p, hvl = hv−hl the
specific enthalpy of evaporation and ∆T = Ts(p) − Tv the vapour subcooling. S = p

ps(Tv)

is the supersaturation ratio, with ps(Tv) the saturation pressure at temperature Tv.
The rate of nucleation is calculated from classical theory, modified to include non-

isothermal effects:13,14

J∗ =
qc

1 + θ

ρv

ρl

√

2σ

πm3
exp

(

−4πr2
∗σ

3kTv

)

, (13)

where qc is the condensation coefficient, m the mass of a single molecule and k is the
Boltzmann constant. The condensation coefficient is typically equal to 1, even if values
between 0.02 and 1.5 have been reported in the literature, as discussed in the Introduction.
A review of the different values reported in the literature for the water condensation
coefficient is provided in4 The nonisothermal correction factor θ is equal to:

θ =
2(γ − 1)

1 + γ

hvl

RTv

(

hvl

RTv
− 0.5

)

. (14)

Following a modified form of Gyamarthy’s formula, the growth rate is given by:6,15

G =
kv∆T (1 − r∗/r)

ρl hvl (r + 1.89(1 − ν)λv/Prv)
, (15)

with Prv the Prandtl number of the vapour, kv the vapour thermal conductivity and λv

the mean free path of a vapour molecule, defined as

λv =
1.5µv

√
RTv

p
, (16)

where µv is the vapour dynamic viscosity. The parameter ν is a correction given by White
and Young16 for low-pressure nozzles:

ν =
RTs(p)

hvl

[

β − 0.5 − 2 − qc

2qc

γ + 1

2(γ − 1)

RTs(p)

hvl

]

, (17)
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where β is an empirical parameter, which is typically taken between 0 and 5. Although
this correction may be justified on physical grounds (if the condensation and evaporation
coefficients were to differ under non-equilibrium conditions), effectively it introduces a
modifiable constant, which is often simply adjusted to give agreement with experiments.13

Once µ3 is determined, and therefore y, it is possible to proceed to the computation of
the mixture conservation equations and no further moment equations need to be solved.

2.1.3 Closure of Moment Equations

The closure of the moment equations strictly depends on the representation of the
droplet growth rate G. If a linear relation is adopted, as:

G = a0 + a1r , (18)

the integral in equation (10) is replaced by a linear combination of µj and µj−1. Here,
the droplet growth is approximated by a constant growth rate:

G = a0 with a0 = G(r20) , (19)

where r20 is the local surface-averaged radius given by:

r20 = (µ2/µ0)
1/2 . (20)

This choice is motivated by a superior numerical robustness, even if the accuracy in the
transient is reduced. Note that for µ0, independent of the choice of G the integral of the
RHS of equation (10) vanishes since j = 0.

2.2 Thermodynamic models

The thermodynamic behavior of the vapor phase is represented by the Z-factor equation
of state proposed by Young:6

Pv = RT (1 + Z) , (21)

where the Z is a compressibility parameter designed to account for deviations from perfect
gas behavior. In low pressure steam (below 10 bar), an accurate expression for Z is

Z = −1.439 · 106 T−5.2 P 1.08 . (22)

For the liquid phase, two models are considered: a simple constant-density approximation,
and a more realistic temperature-dependent density. Specifically, in the second-case, the
following relation is used, taken from Gerber and Kermani:17

ρl =

3
∑

i=0

ai τ
i , (23)
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where

τ =
T

647.286

and
a0 = 928.08 , a1 = 464.63 , a2 = −568.46 , a3 = −255.17 .

2.2.1 Quasi-1D Flow

The nozzle flows considered in this paper are described by a quasi-1D model. With
this approximation, the velocity field u reduces to the scalar field u. Due to the area
variation, typical of quasi-1D flow, a source term must be introduced on the right-hand
side of the Euler equations (1-3):

SA =





SA1

SA2

SA3



 =







−ρm u
A(x)

dA
dx

−ρm u2

A(x)
dA
dx

−ρm u E+p u
A(x)

dA
dx






, (24)

where A(x) is the area, dA/dx its variation. Similarly, a source term must also be intro-
duced on the right-hand side of the transport equations (10):

STA =









STA1

STA2

STA3

STA4









=











−ρm u µo

A(x)
dA
dx

−ρm u µ1

A(x)
dA
dx

−ρm u µ2

A(x)
dA
dx

−ρm u µ3

A(x)
dA
dx











. (25)

3 NUMERICAL METHOD

In this section the approximation scheme used to discretize the governing equations
is presented and details of the treatment for the source terms in the moment transport
equations are provided.

3.1 Deterministic wet-steam solver

The governing equations are discretized using a cell-centred finite volume scheme of
third-order accuracy, extended to the computation of flows with an arbitrary equation
of state.18 The scheme is constructed by correcting the dispersive error term of second-
order-accurate Jameson’s scheme.19 The use of a scalar dissipation term simplifies the
scheme implementation with complex equations of state and reduces computational costs.
In order to speed up convergence to the steady state and increase robustness, a different
approach has been used here for time integration, respect the previous work1 where an
explicit four-stage Runge–Kutta scheme was implemented. The governing equations are
integrated in time using an implicit Euler scheme using a defect correction technique. The
implicit phase relies on a robust upwind treatment of the convective terms and leads to a
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totally discrete scheme which is unconditionnally linearly stable. This allows the use of
a CFL number of at least 2 orders of magnitude greater than with the explicit scheme.
Local time-stepping is also used to efficiently drive the solution to the steady state.

The main set of the Euler equations for the two-phase mixture (1-3) and the auxiliary
set of transport equations (represented by the jth equation (10), with j = 0, . . . , 3) for the
droplet distribution spectra are solved by means of an uncoupled procedure: at each time
step the properties of the mixture are first computed by solving the main equations with
the droplet properties held constant; then the auxiliary equation are solved by using the
constant mixture properties. Due to mechanical equilibrium, the pressure field is assumed
to be the same for both phases (surface tension is neglected).

3.1.1 Source Terms for the Transport Equations

The source terms in the transport equations contribute a substantial stiffness to the
system. This is due to the fact that each moment is much bigger than the moments of
lower grades. The large source terms such as nucleation and growth rate also contribute
to the stiffness. While the nucleation rate J is always positive, the contribution coming
from the growth rate G can be either negative or positive in the transient. The solution
to the stiffness issue is found by implicitly treating the source terms. To achieve this a
semi-implicit approach is adopted, which means that the growth rate is treated implicitly
only when it is negative and stability problems arise. Referring to a generic diffential
equation in the variable φ:

dφ

dt
= S(φ) φ , (26)

where S(φ) represents the non-linear source term, it is discretized as follows:

∆φ

∆t
= S(φn) φn + S−(φn) ∆φn , (27)

with S−(φ) = S(φ)−|S(φ)|
2

equal to zero if S is positive and equal to S if S is negative. With
this splitting approach, an implicit scheme is applied when the source term is negative,
an explicit scheme is applied otherwise.

4 UNCERTAINTY QUANTIFICATION METHOD

Recent research by Loeven et al.,7,8 has developed an efficient non-intrusive variation
on the standard Generalized Polynomial Chaos (GPC) method. Based on the idea of a
standard chaos transformation, the Probabilistic Collocation Method (PCM) approach
consists of two important modifications to the classic method. The first modification is
that a chaos version of Lagrange interpolation is used to approximate the chaos poly-
nomial, even with a minimum of two collocation points. The second modification is to
use Gaussian quadrature to compute the Galerkin projection and the integration of the
distribution function approximation. In terms of calculation cost, both PC methods show
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significant improvements over the MC analysis and Moment Methods, and both PC meth-
ods demonstrate exponential convergence with respect to the order of the polynomial. It
is noted that for increasing values of the polynomial order, the PCM requires more de-
terministic calculations than in the GPC case. Nevertheless, the non-intrusive nature of
the PCM provides a substantial increase in flexibility. The PCM is therefore particularly
suited to the study of complex CFD simulations, without requiring modification to the
CFD code framework. The PCM is therefore the stochastic method used in the present
study.

In practical terms, the Probabilistic Collocation method consists of calculating the de-
terministic solution at selected points (nodes) in the input distribution, then multiplying
the solutions by a weighting function in order to compute output statistical information.
As in the GPC method, each input distribution is associated with a corresponding orthog-
onal polynomial according to the Askey scheme (summarized in Xiu & Karniadakis20).
For example, in the case of a normal or Gaussian input distribution, the corresponding
quadrature polynomial is the Hermite polynomial. Here the PCM is presented considering
the case of a continuous uniform random input distribution with a probability distribution
defined as: U(a, b) = 1

b−a
where a, b ∈ R correspond to the left and right limits of the

input uniform distribution. The corresponding quadrature polynomial is the Legendre
polynomial, and Gauss-Legendre chaos quadrature is employed to compute the Galerkin
projection. For the case of a velocity field u subjected to random input variable fluc-
tuations ξ(θ) (where θ represents the random vector), the solution is decomposed into
deterministic: ui(x, t), and stochastic: hi(ξ(θ)) parts:

u (x, t, ξ(θ)) =

PPCM
∑

i=1

ui(x, t) hi(ξ(θ)) where hi(ξ(θ)) =

Np
∏

k=1

k 6=i

ξ(θ) − ξ(θk)

ξ(θi) − ξ(θk)
(28)

where ui(x, t) is the is the deterministic solution at the collocation point θi. In the PCM,
p is the order of the quadrature polynomial and the number of collocation points is given
by PPCM = pn, where n represents the number of random input variables. The term hi is
the Lagrange interpolating polynomial chaos of order Np = p− 1 that passes through the
PPCM collocation points, with hi (ξ(θk)) = δik. The collocation points θi are chosen such
that they correspond to the Gaussian quadrature points, which are simply the roots of
the quadrature polynomial. Additionally, in the case of Gauss-Hermite quadrature, the
following transformation is required: ξ(θ) =

(

θ+1
2

)

(b − a) + a.
In the case of multiple uncertain input parameters, the output statistics must be an-

alytically determined with the multivariable PC expansion (c.f. Equation (9), Xiu &
Karniadakis20) and the standard definitions of the statistical moments. This procedure is
relatively time consuming and complex, especially with several uncertain input variables
(i.e. high values of s). A more practical approach to determine the solution statistics
is to reconstruct the problem using a simple MC method on the Lagrange interpolation
equation, denoted the Reconstructed Monte Carlo method (RMC). Once the determin-
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istic solution at each collocation point, ui(x, t), has been determined, a MC analysis is
used to generate a large number, M , of values for ξs(θ), thereby constructing M possible
variations of hi(ξ(θ)). Since Equation (28) is linear in the terms ui(x, t), the RMC can
be carried out inexpensively for large values of M . The result is a complete set of output
solutions, from which the statistical moments can be easily calculated.

5 NUMERICAL RESULTS

The stochastic solver described in the preceding Section is applied to the computation
of condensing steam flows through supersonic nozzles. The computational domain corre-
sponds to the divergent part of the nozzle, with sonic conditions imposed at the throat.
Specifically, two nozzle configurations are considered, for which experimental data are
available in the literature. The first configuration, referred to as Nozzle 1 (taken from
Moore et al.21) is characterized by an inlet total pressure p0 = 0.25 bar, inlet total tem-
perature T0 = 358 K; Nozzle 2 (corresponding to Nozzle L of Bakhtar and Zidi22), has an
inlet total pressure p0 = 32 bar and inlet total temperature T0 = 544 K. Nozzle geometries
are given in the Appendices. In both cases, the wet steam flow solver is executed on a
computational mesh composed by 400 uniformly spaced cells. For both configurations,
several stochastic simulations are performed, assuming random variations of the conden-
sation coefficient qc in the range [0.3−1] and/or of the empirical coefficient β in the range
[0-5]. For both parameters, the uniform density probability function is adopted. The
stochastic simulations are carried out by means of a third-order chaos polynomial expan-
sion, which provides a satisfactory convergence of the output statistics.23 The stochastic
code is efficiently parallelized to enable simultaneous calculation of all of the deterministic
simulations at the collocation points.

5.1 Nozzle 1

Preliminary computations are performed to investigate the effect of different models
for the liquid density. The results, shown in Fig. 1, show that for this low-pressure nozzle
the solution is essentially independent of the liquid density model. On the contrary, the
results display a significant sensitivity to the empirical parameter β: for higher values
of β the pressure distribution is closer to the experimental data, and the mean droplet
diameter is about 25% higher. Nevertheless, a complete agreement with the experimental
drop size is never achieved. To better understand the role of uncertain parameters on the
mean solution output, three stochastic computations are carried out. Since the solutions
are essentially independent of the thermodynamic model for the liquid density, only results
for the variable density model are shown in this Section.

Initially, the effect of a uniform variation of the condensation coefficient qc on the nu-
merical solution is investigated. The results are represented in Fig. 2. The pressure and
wetness fraction distributions along the nozzle exhibit a reduced sensitivity to modeling
uncertainties in the nucleation region, with a peak coefficient of variation (CV = σ/µ %)
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of the pressure of approximately 1.8%. Nevertheless, CV values of up to 11% are ob-
served for the wetness fraction. The solution is more sensitive in the nucleation region.
Downstream of this region, the variaton of the solution drops to negligible values. Un-
certainties on the condensation coefficient affect only slightly the final mean diameter of
the droplets (about a 2% variation), whereas the supersaturation ratio and the nucleation
rate display large variations. According to Bakhtar et al.,5 this insensitivity to qc is a
fortuitous effect produced by the introduction of the non-isothermal correction in the nu-
cleation rate model. A second series of simulations is carried out for a uniform variation
of the β coefficient between 0 and 5 and qc = 1. The results confirm the preliminary
deterministic computations about solution sensitivity to the β coefficient (Fig. 3): the
maximum CV for the pressure and wetness fraction is now approximately 2.3% for the
pressure and 8.8% for the droplet diameter. Large variations are also observed in the
nucleation rate and supersaturation ratio distributions. Conversely, the wetness fraction
displays similar trends as in the previous computation. Finally, joint variations of both
coefficients are taken into account: the results are shown in figure 4. Surprisingly, the
results display lower sensitivities when β and the condensation coefficient are varied si-
multaneously, when considering the wetness fraction distributions. The joint effect of the
two parameters is a global delay of nucleation to lower pressures, and a lower CV value of
the mean pressure distribution than in the single parameter variation cases. Combining
the uncertainties on qc and β for the low pressure nozzle produces an effect of negative
interference.
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Figure 1: Nozzle 1, deterministic results for different liquid density models. a) Pressure distribution, b)
mean droplet diameter.
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Figure 2: Nozzle 1, stochastic results (mean ±σ) for qc = U(0.3, 1) and β = 5. a) Pressure distribution,
b) wetness fraction, c) mean droplet diameter and d) other wet steam properties.

5.2 Nozzle 2

A high-pressure nozzle is considered with fixed upstream conditions of p0 = 32 bar
and T0 = 544 K. Fig. 5 shows preliminary deterministic results obtained for different
choices of the liquid density model. Contrary to the preceding configuration, the pressure
distribution is now quite sensitive to the density model, which strongly affects the Wilson
point location. On the other hand, the results display only low sensitivity to the β
parameter. It is important to note that this parameters is simply an ad hoc correction
for low-pressure models. At higher pressures, the mean free path of the molecules tends
toward zero, and the correction term Eqs (15),(17) becomes small. Here again, three
stochastic analyses are performed. Initially, β is fixed and a uniform distribution qc =
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Figure 3: Nozzle 1, stochastic results (mean ±σ) for qc = 1 and β = U(0, 5). a) Pressure distribution, b)
wetness fraction, c) mean droplet diameter and d) other wet steam properties.

U(0.3, 1) is imposed for the condensation coefficient. The numerical results, displayed in
Fig. 6, are almost insensitive to qc. Slightly higher variations are observed when qc is
fixed and equal to one, and the coefficient β is varied with β = U(0, 5). In particular,
if the pressure and wetness fraction distributions are only slightly affected, the droplet
diameter displays variations of more than CV = 8%. Finally, when both coefficients are
simultaneously varied (qc = U(0.3, 1) and β = U(0, 5)), the system response is amplified,
even if the sensitivity of the results to the adjustable coefficients remains quite low. For
all of the computed cases, the temperature-dependent density model leads to a somewhat
higher sensitivity of the solution to uncertainties in the model constants.
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Figure 4: Nozzle 1, stochastic results (mean ±σ) for qc = U(0.3, 1) and β = U(0, 5). a) Pressure
distribution, b) wetness fraction, c) mean droplet diameter and d) other wet steam properties.

6 CONCLUSIONS

An analysis of the sensitivity of a wet-steam flow solver to uncertainties in the droplet
growth and nucleation models was carried out using a stochastic approach. To this pur-
pose, a wet-steam flow solver was coupled to a Probabilistic Collocation Method. For
the low-pressure nozzle, the results display a modest sensitivity to the water condensa-
tion coefficient qc, for which very different values have been reported in the literature.
On the other hand, the solution displays a quite significant sensitivity to a modifiable
empirical constant parameter (noted β) added in the droplet growth model to improve
the agreement with experimental results. The results also show that the optimal value of
this parameter depends on the condensation coefficient, since simultaneous variation of
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both parameters leads to mean solutions in better agreement with experimental data than
when only β is adjusted. This suggests that if more accurate estimates of the qc coefficient
were available for low-pressure nozzle, the use of an empirical correction would probably
become unnecessary. For high-pressure nozzle, uncertainties on both parameters consid-
ered in the present analysis have a marginal effect on the computed solution. In this case,
the model is affected much more strongly by the thermodynamic models used to describe
the fluid mixture. In particular, the use of a more accurate model for the liquid density
improves the agreement of the computed solution with the experimental data, even if
the equation of state for the vapor also plays a crucial role (see e.g. Giordano et al.24).
For both the low-pressure and high-pressure nozzles the results are in quite satisfactory
agreement with experiments as far as global mixture properties (such as the pressure) are
concerned, the more accurate results being obtained at low pressures. On the contrary,
the liquid phase properties, and namely the mean droplet diameter, exhibit large errors
compared to experimental data. Nevertheless, the solver captures well the order of mag-
nitude of the generated droplets, which is sufficient to provide valuable information for
engineering problems.
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Figure 5: Nozzle 2, deterministic results for different liquid density models. a) Pressure distribution, b)
mean droplet diameter.
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Figure 6: Nozzle 2, stochastic results (mean ±σ) for qc = U(0.3, 1) and β = 5. a) Pressure distribution,
b) wetness fraction, c) mean droplet diameter and d) other wet steam properties.
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Figure 7: Nozzle 2, stochastic results (mean ±σ) for qc = 1 and β = U(0, 5). a) Pressure distribution, b)
wetness fraction, c) mean droplet diameter and d) other wet steam properties.
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Figure 8: Nozzle 2, stochastic results (mean ±σ) for qc = U(0.3, 1) and β = U(0, 5). a) Pressure
distribution, b) wetness fraction, c) mean droplet diameter and d) other wet steam properties.
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Appendix A: Nozzle 1 Geometry

The nozzle geometry of the baseline configuration for Nozzle 1 is given by the following
third degree polynomial:

A(x) =







a0 + b0x + c0x
2 + d0x

3 if 0 ≤ x ≤ 0.1046
a1 + b1x + c1x

2 + d1x
3 if 0.1046 ≤ x ≤ 0.2653

a2 + b2x + c2x
2 + d2x

3 if 0.2653 ≤ x ≤ 1
, (29)

where x is expressed in m and A(x) in m2, and the coefficients are equal to

i ai bi ci di

0 1.52 · 10−2 −2.08 · 10−4 1.078 · 10−1 −0.561

1 1.533 · 10−2 3.21 · 10−3 0.419 · 10−2 0.47 · 10−3

2 1.4926 · 10−2 0.59 · 10−2 0.871 · 10−5 −1.318 · 10−5

Appendix B: Nozzle 2 Geometry

The nozzle geometry of the baseline configuration for Nozzle 2 is given by the following
third degree polynomial:

A(x) =







a0 + b0x + c0x
2 + d0x

3 if 0 ≤ x ≤ 0.041837
a1 + b1x + c1x

2 + d1x
3 if 0.041837 ≤ x ≤ 0.10612

a2 + b2x + c2x
2 + d2x

3 if 0.10612 ≤ x ≤ 0.4
, (30)

where x is expressed in m and A(x) in m2, and the coefficients are equal to

i ai bi ci di

0 1.52 · 10−2 −5.1996 · 10−4 6.7416 · 10−1 −8.7727

1 1.533 · 10−2 8.0338 · 10−3 2.6189 · 10−2 7.3488 · 10−3

2 1.4926 · 10−2 1.4733 · 10−2 5.4451 · 10−5 −2.0589 · 10−4
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