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Abstract. The present study adresses the turbulent flow over a wavy surface by di-
rect numerical simulation (DNS). Compared to classical channel flow the wavy surface
structure adds a degree of complexity to the flow by inducing streamline curvature, flow
separation and flow reattachment, thus leading to flow situations which are often present
in relevant technical and geophysical applications. The governing equations are discretized
with a second order finite volume method on Cartesian, structured, staggered grids, and
are integrated in time using the semi-implicit projection method. The wavy surface is
represented with a variant of the immersed boundary method (IBM). The solution of the
discretized system of linear equations is accelerated with an algebraic multigrid procedure.
The simulations were performed on the Cray XT5 computer and scale well up to 128 pro-
cessors. The flow over the wavy surface is particularly challenging for the IBM since the
cells are cut at different angles in the regions where the most interesting phenomena like
separation and reattachment takes place. In the present work, particular attention was
payed on the size of the computational domain, ensuring it does not hinder the natural
development of coherent structures in the considered flow. The results of the simulations
compare favorably with particle image velocimetry (PIV) measurements, showing the IBM
is an interesting candidate for simulating flows over wavy surfaces.
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1 INTRODUCTION

Technical and geophysical relevant flows are characterized by high Reynolds numbers
and complex boundaries. The turbulent flow over these rough or structured surfaces is
associated with increased transport of species (heat or mass) and momentum. Differently
shaped wavy walls as boundaries of the flow resemble the wall complexity in a well–defined
manner and therefore serve as test cases for the study of wall influence on turbulence.
We investigate the turbulent flow between a flat top and a wavy bottom wall with a
direct numerical simulation (DNS). The surface geometry is represented with an immersed
boundary method (IBM) and we address the applicability of this technique to flows over
complex surfaces.

The flow over a train of solid waves is connected to a developing shear layer, formed
by the separation of the flow shortly after the wave crest, which extends over the whole
wavelength1. For smooth walls flow-oriented vortical eddies have been associated with
large Reynolds stresses and with the production of turbulence in the viscous region close
to the wall2. Earlier experimental studies3–6 investigated the structure and dynamics of
turbulent motions in the outer part of the wall shear layer in a developed turbulent flow
over waves and identified flow–oriented large–scale structures.

The forced convective flow over a wavy wall in fully devolved turbulent flow regimes has
been extensively studied in literature. In a DNS by Cherukat et al.1 the characteristics
of the developing shear layer above the recirculation zone formed after the wave crest of
a wavy wall with an amplitude–to–wavelength ratio of α = 0.05 at a Reynolds number of
3460 (defined with the bulk velocity and the half channel height) was addressed. Large
eddy simulations (LES) of forced convective wavy boundary flow were performed by Henn
and Sykes7, and Tseng and Ferziger8. In their extensive study Henn and Sykes focused
on the effects of different wave slopes ranging from 0 to 0.628 on turbulence at 5720 ≤
Re ≤ 20060, where the wave slope is defined as ak, with the wavenumber k = 2π/Λw.
They identified a scaling between the slope of small–amplitude waves and the velocity
fluctuations, which is linear for the streamwise and vertical velocity components, but
squared for the lateral. This is caused by the presence of coherent structures located
at the upstream side of the wave. Tseng and Ferziger concentrated on these coherent
structures for a wavy wall of α = 0.1 at Re = 2400, and illustrated the vortex formation
and transport of Grtler vortices induced by the local wall curvature.

In the present study we perform a DNS of the turbulent flow over a wavy wall of
α = 0.1 at a Reynolds number of Re = 11200. We compare the results of the simulations
with particle image velocimetry (PIV) measurements to address the applicability of the
implemented IBM. Furthermore we focus on the influence of the spanwise extend of the
computational domain on the resulting flow structures.
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Figure 1: Coordinate system and schematic of (I) the separation region, and the regions (II) of maximum
positive and (III) maximum negative Reynolds shear stress for a flow situation with separation.

2 FLOW DESCRIPTION AND EXPERIMENTS

We consider the flow over a solid wavy bottom wall characterized by the Reynolds
number

Reh =
UB ·h

ν
, (1)

where ν denotes the kinematic viscosity, and h is the half-height of the channel. The bulk
velocity UB is defined as

UB =
1

(2h− yw)

∫ 2h

yw

U(xξ, y)dy, (2)

calculated at an arbitrary x-location, xξ. The wall profile, characterized by the amplitude
2a and the wavelength Λ, is described by

yw(x) = a · cos(2πx/Λ). (3)

Figure 1 shows the coordinate system and schematically illustrates characteristic regions of
the flow field in the vicinity of the wavy surface. The coordinate x is directed parallel to the
mean flow, y is perpendicular to the top wall, and z is the spanwise coordinate direction.
The corresponding velocity components are denoted as u, v, and w. Characteristic regions
of a flow over waves with separation, reported by Cherukat et al.1, and Henn and Sykes7,
are the separation region (I), and the regions of maximum positive (II) and maximum
negative (III) Reynolds shear stress −%u′v′. The geometry of the wavy wall is determined
by the ratio of the amplitude, 2a, to the wavelength, Λ,

α =
2a

Λ
. (4)
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If the amplitude–to–wavelength ratio α is large enough, flow separation can be observed9.
Measurements were carried out in a water channel facility designed for turbulence

measurements with light sheet techniques at Reynolds numbers up to 21000, defined with
the bulk velocity UB and the half channel height h. The full height of the channel, H, is
30 mm, and its aspect ratio (width B to height H) is 12:1. The incorporated wavy wall
has a wavelength of 30 mm and an amplitude of 3 mm, which results in α = 0.1. Optical
access is provided at four streamwise positions through viewing ports, positioned at both
sidewalls and at the flat top wall. Measurements are performed for a hydrodynamically
developed turbulent flow after the 50th wave crest. Digital particle image velocimetry
(PIV) is performed to examine the spatial variation of the streamwise, spanwise and wall–
normal velocity components10,11. Measurements are performed at a Reynolds number of
11200, and we consider an ensemble of 1000 consecutive images pairs acquired at a frame
rate of 4 Hz. A flashlamp–pumped dual Nd:YAG-laser provides the pulse light source, a
10-bit CCD camera with a pixel-resolution of 1280× 1024 pixels2 is used for the velocity
measurements. The uncertainty of the PIV measurements resulting from the experimental
setup, image acquisition and image processing is estimated to be in the order of 1%12.

3 NUMERICAL DETAILS

In the presented work we solve the equations describing incompressible flows with con-
stant fluid properties. For time discretization the governing equations are integrated in
time using a semi-implicit projection method13. Viscous terms in momentum equations
are discretized with a Crank-Nicolson scheme for stability, wheres the advective terms are
discretized with the Adams-Bashforth scheme for simplicity. For spatial discretization the
governing equations are discretized on a three-dimensional Cartesian grid by balancing
fluxes of transported variables over the cell faces with inertial and forcing terms. Mo-
mentum equations are discretized on a staggered grid for numerical robustness. Figure 2
depicts the logical coordinates and the cell face dimensions in the structured Cartesian
grid. Logical indices represent cell face values if they contain the term δ, or cell-centered
values if they contain the term 2δ. The final form of the discretized equation for a general
variable φ reads:

ai,j,k
C φi,j,k + ai,j,k

W φi−2δ,j,k + ai,j,k
E φi+2δ,j,k (5)

+ai,j,k
S φi,j−2δ,k + ai,j,k

N φi,j+2δ,k

+ai,j,k
B φi,j,k−2δ + ai,j,k

T φi,j,k+2δ = bi,j,k,

where ai,j,k
C is the diagonal and coefficients ai,j,k

W to ai,j,k
T the off-diagonal entries in the

system matrix for the variable φi,j,k. The source term is represented by bi,j,k.
The immersed body is represented in our approach by its triangulated surface. For

the sake of compatibility with computer aided design (CAD) programs, we import the
immersed body from a file in stereo-lithographic (STL) format. STL files define trian-
gulated surfaces by the coordinates of the triangle’s vertices and normal surface vectors.
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with analogous expressions for the y and z directions. Logical indices in
Eqs. (??) and (??) represent cell face values if they contain the term δ, or
cell-centered values if they contain the term 2δ. This is illustrated further in
Fig. ??. The advective term for the general variable φ is:

z

x

y

i,j,k
i+δ,j,k

i−2δ,j,k

i,j−2δ,k

i,j,k−2δ

i+2δ,j,k

i,j+2δ,k

i,j,k+2δ

Si+δ,j,k

d i+δ,j,k

Figure 2: Logical coordinates (a) and cell face dimensions (b) in the structured Cartesian
grid. Cell-centered values are denoted with indices containing 2δ, while the cell face
values contain δ. For example, the cell face between cells i, j, k and i + 2δ, j, k is denoted
by i + δ, j, k.

∮

S

uφ dS ≈

1/2
∑

δ=−1/2

(

H i+δ,j,k + H i,j+δ,k + H i,j,k+δ
)

, (9)

where:
H i+δ,j,k = (uφS)i+δ,j,k , (10)

with equivalent expressions for the y and z directions. The final from of the
discretized equation for the general variable φ is:

ai,j,k
C φi,j,k + ai,j,k

W φi−1,j,k + ai,j,k
E φi+1,j,k (11)

+ai,j,k
S φi,j−1,k + ai,j,k

N φi,j+1,k

+ai,j,k
B φi,j,k−1 + ai,j,k

T φi,j,k+1 = bi,j,k,

where ai,j,k
C is the diagonal and coefficients ai,j,k

W to ai,j,k
T the off-diagonal

entries in the system matrix for variable φi,j,k. The source term is represented

6

Figure 2: Logical coordinates (a) and cell face dimensions (b) in the structured Cartesian grid. Cell-
centered values are denoted with indices containing 2δ, while the cell face values contain δ. For example,
the cell face between cells i, j, k and i + 2δ, j, k is denoted by i + δ, j, k.

These triangulated surfaces are used to cut the individual grid cells. Since we are using
a staggered grid approach, we have four finite volume grids: one for the scalar variables
and one each for the three velocity components. To cope with immersed boundaries, we
cut all three grids separately as illustrated in Fig. 3.

Once the cells in all four grids are cut, they are classified into three sets:

• Cut cells, belonging to set C, are the cells which are intersected by the immersed
boundary.

• Fluid cells, belonging to set F, are the cells whose center remains in the fluid part
of the domain, no matter if they are cut or not.

• Solid cells, belonging to set S are all those which are not in set F, i.e. the cells who’s
center lies in the solid part of the domain.

According to this classification, a cell can belong to two sets simultaneously. As there are
four cells in the staggered approach adopted, here there are also four sets of classifications
into C, F and S. A sample domain, plotted in 2D for the sake of clarity, with sets C, F
and S is shown in Fig. 4. Figure 4(a) shows a computational grid, with each cell center
denoted with a black dot. The immersed body is represented by a shaded area. The cells
whose cell center lies in fluid belong to set F, while the rest of the cells belongs to set S
as illustrated in Fig. 4(b). The cells which are cut with the immersed body, also belong
to set C.

Cuts performed on the computational cells change their geometrical properties, and
closely associated with that the discretized system of equations (5). Geometrical quan-
tities featured in Eq. (5) are the cell volumes, entering the system matrix through the
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The smallest scales of turbulence we aim to resolve in the near wall (hence:
near the immersed body) should certainly be smaller than any geometrical
errors associated with the cutting plane algorithm. If that is not the case,
we are in realms of wall function approach which is a strategy based on the
assumption that the near-wall region is not fully resolved, so geometrical
details play a secondary role.

Since we are using a staggered grid approach, we have four finite volume
grids: one for the scalar variables and one each for the three velocity compo-
nents. To cope with immersed boundaries, we cut all three grids separately,
using the procedure outlined above, as illustrated in Fig. ??.

z

x

y
(a) (b)

(c) (d)

Figure 5: Each grid is cut separately: (a) scalar cell, (b), (c) and (d) momentum cells in
x, y and z directions respectively.

2.3.2. Cell classification

Once the cells in all four grids are cut, they are classified into three sets:

• Cut cells, belonging to set C, are the cells which are intersected by the
immersed boundary.

9

Figure 3: Each grid is cut separately: (a) scalar cell, (b), (c) and (d) momentum cells in x, y and z
directions respectively.

• Fluid cells, belonging to set F, are the cells whose center remains in the
fluid part of the domain, no matter if they are cut or not.

• Solid cells, belonging to set S are all those which are not in set F, i.e.
the cells who’s center lies in the solid part of the domain.

According to this classification, a cell can belong to two sets simultaneously.
As there are four cells in the staggered approach adopted, here there are also
four sets of classifications into C, F and S. A sample domain, plotted in 2D
for the sake of clarity, with sets C, F and S is shown in Fig. ??. Figure ??(a)
shows a computational grid, with each cell center denoted with a black dot.
Immersed body is represented by a shaded area. The cells whose cell center
lies in fluid belong to set F, while the rest of the cells belongs to set S as
illustrated in Fig. ??(b). The cells which are cut with the immersed body,
also belong to set C.

F F F F F FFF

F F

FF

F F

FF

F F F F,C S S S S

F F,C S S S S

F F S,C S S S

F F F,C S,C S S

F F F F,C F,C S,C

(a) (b)

Figure 6: A sample computational domain with classified cells: (a) cell centers, (b) sets.
Shaded area represents immersed body.

2.3.3. Modification of the system matrix

Cuts performed on the computational cells change their geometrical prop-
erties, and closely associated with that the discretized system of equations (??).
Geometrical quantities featured in Eq. (??) are the cell volumes, entering
the system matrix through the inertial terms (??), the distances between
cell centers featured in Eq. (??), and the cell face areas present in Eqs. (??)
and (??).

10

Figure 4: A sample computational domain with classified cells: (a) cell centers, (b) sets. The shaded
area represents the immersed body.
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body can be evaluated as:

∮

S

uφ dS ≈

1/2
∑

δ=−1/2

(

Ĥ i+δ,j,k + Ĥ i,j+δ,k + Ĥ i,j,k+δ
)

, (15)

where Ĥ represents those advective terms modified for the presence of the
immersed boundary, computed from:

∀ (i, j, k) ∈ F : Ĥ i+δ,j,k = H i+δ,j,kf i+δ,j,k
S if (i + 2δ, j, k) ∈ C, (16)

with analogous expressions for the y and z directions.
The diffusion terms for the case of an immersed body can be written as:

∮

S

∇φ dS ≈

1/2
∑

δ=−1/2

(

D̂i+δ,j,k + D̂i,j+δ,k + D̂i,j,k+δ
)

. (17)

For the evaluation of the diffusion terms modified for the presence of the im-
mersed body (D̂) two different cases have to be considered. The first occurs
if both cells surrounding the face for which the diffusive flux is estimated
belong to fluid set (F). Such a situation, for the cell face i + δ, j, k is illus-
trated in Fig. ??. In such a case, the distance between the cells remains

z
y

x

i,j,k i+2δ,j,k

Ŝi+δ,j,k

di+δ,j,k

Figure 8: Both cells surrounding connection i + δ, j, k are cut, but their centers are in the
fluid. The effective diffusive flux through the connection diminishes in proportion to the
reduced face area.

unchanged, but the cell face area between them changes, affecting the diffu-
sive flux through the cell face, and is accounted for with the factor introduced
in Eq. (??).

12

Figure 5: Both cells surrounding connection i + δ, j, k are cut, but their centers are in the fluid. The
effective diffusive flux through the connection diminishes in proportion to the reduced face area.

z
y

x

i,j,ki,j,k i+2δ,j,ki+2δ,j,k

S
i,j,k

S
i+2δ,j,k

S
i+2δ,j,k

di+δ,j,k di+δ,j,k

Figure 9: Cell face at i + δ, j, k is between the fluid cell i, j, k and the solid cell i + 2δ, j, k.

A different approach has to be taken if one cell, say i + 2δ, j, k is in the
solid. Two such situations are illustrated in Fig. ??. In such a case, the cell
in the solid becomes effectively a boundary cell, and distance between the
cells decreases. That is accounted for by defining the ratio between the new
and the old distances between the cells:

f i+δ,j,k
d =

(

d̂

d

)i+δ,j,k

. (18)

The area is not corrected in this case. We assume that the gradient of the
advected variable in x direction is constant at the face center i + δ, j, k, so
the area which plays a role in the diffusive flux in Eq. (??) is the projection
of the slanted surface (Si+2δ,j,k in Fig. ??(a), or S

i,j,k +S
i+2δ,j,k in Fig. ??(b)),

on the plane normal to x, which is just Si+δ,j,k on the original grid.
To summarize, corrections which need to be made for the diffusive fluxes

are:

∀ (i, j, k) ∈ F :

{

D̂i+δ,j,k = Di+δ,j,kf i+δ,j,k
S if (i + 2δ, j, k) ∈ F

D̂i+δ,j,k = Di+δ,j,k/f i+δ,j,k
d if (i + 2δ, j, k) ∈ S

(19)
The corrections for the presence of the immersed body, defined for the

inertial term by Eq. (??), the advection term by Eq. (??), and the diffusive
term by Eq. (??), are performed before compiling the final discretized system
of the form given by Eq. (??). Once this is done, additional care has to be
taken for cells belonging to the solid. They have to be modified in a way
which ensures that values taken by the variables in solid cells remain equal
to zero, but do not hinder the convergence of the linear solver. In the present

13

Figure 6: Cell face at i + δ, j, k is between the fluid cell i, j, k and the solid cell i + 2δ, j, k.

inertial terms, the distances between cell centers, and the cell face areas. For the evalua-
tion of the diffusion terms modified for the presence of the immersed body two different
cases have to be considered. The first occurs if both cells surrounding the face for which
the diffusive flux is estimated belong to fluid set (F). Such a situation, for the cell face
i+δ, j, k is illustrated in Fig. 5. In such a case, the distance between the cells remains un-
changed, but the cell face area between them changes, affecting the diffusive flux through
the cell face, which needs to be accounted for in the equations solved. A different approach
has to be taken if one cell, say i+2δ, j, k is in the solid. Two such situations are illustrated
in Fig. 6. In such a case, the cell in the solid becomes effectively a boundary cell, and the
distance between the cells decreases. That is accounted for by defining the ratio between
the new and the old distances between the cells. The area is not corrected in this case.
We assume that the gradient of the advected variable in x direction is constant at the
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face center i + δ, j, k, so the area which plays a role in the diffusive flux is the projection
of the slanted surface (Si+2δ,j,k in Fig. 6(a), or Si,j,k + Si+2δ,j,k in Fig. 6(b)), on the plane
normal to x, which is just Si+δ,j,k on the original grid.

4 RESULTS

In this section we compare the DNS results with PIV measurements. This is followed
by a discussion of the influence of the spanwise domain width on the developing flow
structures.

The simulations were performed for a wavy wall with α = 0.1 (Λ = 30 mm) at a
Reynolds number of Reh = 11200. To investigate the influence of the spanwise domain
width three different geometries were used, where the spanwise width was (i) 1.0H, (ii)
1.5H, and (iii) 2.0H respectively. The cell size of the numerical mesh was ∆x = H/128,
∆y = H/256, and ∆z = H/128 for all cases. This gives a total number of cells of
(i) 4194304, (ii) 6291456 and (iii) 8388608, simulated on (i) 128, (ii) 192 and (iii) 256
processors respectivelly, thus keeping the number of cells per processor constant. Scaling
was pretty good in this range and each simulation required 4 days (96 hours) of wall-clock
time. For each simulation we performed 240000 time steps corresponding to 300 flow-
through times. Statistics reported below was gather over the final 150 flow-throuh times.

4.1 Comparison to experimental data

To validate the numerical results vertical velocity profiles at different streamwise loca-
tions x/H along the wavy surface are plotted, where x/H = 0.00 and x/H = 1.00 denote
the wave crest, x/H = 0.50 the wave trough, and x/H = 0.25 and x/H = 0.75 the in-
flection point of the wall profile. Figure 7 depicts the comparison of the mean streamwise
and vertical velocity profiles for Reh = 11200. A good agreement between experiments
and simulations is obtained for the mean streamwise velocity component at all locations
(Fig. 7(a)). The influence of the wavy surface is expressed by the asymmetric shape of the
flow profile. The maximum value of the mean streamwise velocity component is found for
a wall-normal distance of y/H = 0.7. Negative values of the velocity at the streamwise
positions x/H = 0.25 and x/H = 0.50 indicate flow separation and a recirculation zone
at the downstream side of the wave. The vertical velocity component profiles show a
similar good agreement with an exception at the positions x/H = 0.50 and x/H = 0.75,
where the DNS profiles show higher values in comparison with the PIV data (Fig. 7(b)).
This region of the flow is primarily affected by the recirculative motion caused by the
separation after the wave crest and therefore the v–component of the velocity is most
susceptible to measurement uncertainties.

Figure 8 depicts the comparison of the streamwise and vertical normal stress profiles for
Reh = 11200. Also this comparison reveals a good agreement between the experiment and
the simulation for the turbulent statistics. Therefore we conclude that the DNS approach
with the IBM method performs well in the prediction of turbulent flow over a wavy wall.
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(a) Mean streamwise velocity
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Figure 7: Comparison of the mean velocity profiles between particle image velocimetry data and direct
numerical simulation of turbulent flow over a wavy wall, Reh = 11200.
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Figure 8: Comparison of the normal stress profiles between particle image velocimetry data and direct
numerical simulation of turbulent flow over a wavy wall, Reh = 11200.
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(a) Width 1.0H (b) Width 1.5H (c) Width 2.0H

Figure 9: Contours of the streamwise velocity in the plane y/H = 0.2 for Reh = 11200. The white area
corresponds to u < UB , the black area to u > UB . Flow is from left to right.

4.2 Influence of domain width

Experimental studies showed the existence of longitudinal flow structures in the turbu-
lent flow over solid waves6. For the wavy wall with α = 0.1 (Λ = 30 mm) these coherent
structures have a spanwise spacing of 1.5H. This spacing of the longitudinal structures
can be identified by plotting contours of the streamwise velocity in a plane parallel to
the mean flow at y/H = 0.20. Figure 9 shows that these flow structures can be identi-
fied as fluid streaks traveling faster (black area) or slower (white area) compared to the
adjusted bulk velocity UB. Their spanwise spacing is given by the distance between two
fluid streaks traveling with faster or lower velocity compared to the bulk velocity. To
identify this spacing we plot the profiles of the streamwise averaged velocity component
u/UB in Fig. 10. The influence of the size of the computational domain on the spanwise
distance of the flow structures is evident. For a spanwise domain width of 1.0H and 1.5H
the spacing of the flow structures is also found to be 1.0H and 1.5H respectively. For
a domain width of 2.0H the observed spanwise distance is 1.9H. This result suggests
that for the domain width of 2.0H the spacing of the coherent structures is no longer or
only weakly linked to the size of the computational domain and the natural development
of coherent structures is not hindered. However, this spanwise distance of 1.9H differs
from the available experimental results which suggest a spacing of 1.5H. This issue needs
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(a) Width 1.0H (b) Width 1.5H (c) Width 2.0H

Figure 10: Profiles of the streamwise averaged velocity component u/UB in the plane y/H = 0.2 for
Reh = 11200.

further clarification by applying analytical tools like the proper orthogonal decomposition
(POD) to the DNS data.

5 CONCLUSIONS

This paper presents the application of DNS with an implementation of the Immersed
Boundary Method (IBM) to the turbulent flow over solid waves. The governing equations
are first discretized using the Cartesian, staggered, finite volume method. The resulting
systems of linear equations are then corrected for the presence of the immersed body by
recomputing individual entries where needed. The simple structure of the Cartesian grid
facilitated usage of an efficient algebraic multigrid solver, but special care had to be taken
with the modifications performed on the discretized system of equations not to hinder its
convergence properties.

The method has been verified by computing the flow over solid waves with α = 0.1
(Λ = 30 mm at a Reynolds number of Reh = 11200. The flow over the wavy surface is
particularly challenging for the IBM since the cells are cut at different angles in the regions
where the most interesting phenomena like separation and reattachment take place. The
comparison with PIV data from an identical experimental setup reveals a good agreement
for the mean velocity components and the normal stresses. Thus the DNS approach with
the IBM method performs well in the prediction of turbulent flow over a wavy wall.

The influence of the width of the computational domain on the spanwise spacing of
longitudinal flow structures developing over the train of waves was addressed by plotting
contours of the streamwise velocity in a plane parallel to the mean flow at y/H = 0.20.
The longitudinal flow structures were identified as fluid streaks traveling faster or slower
than the adjusted bulk velocity UB. For a spanwise domain width of 1.0H and 1.5H
the spacing of the flow structures is also found to be 1.0H and 1.5H respectively. For a
domain width of 2.0H their spanwise spacing seems to be independent of the domain size.
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The observed value of 1.9H is larger than the experimental result of 1.5H. Therefore
further validation in this regard is needed.
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