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Abstract. In this work, we use a stabilized finite element method to solve Spalart-
Allmaras turbulent model for compressible flows. This method is the Streamline-Upwind
Petrov-Galerkin one, which enables to put numerical viscosity only along the streamlines.
The aim is to build a high order scheme in order not to pollute turbulent eddy viscosity
with the diffusivity of the numerical scheme.
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1 Introduction

One of the most important challenge in Computational Fluid Dynamics (CFD) is
the simulation of turbulent flows. When high Reynolds turbulent flows are combined
with complex and large size geometry, computers are no longer enough powerful to deal
with Direct Numerical Simulation (DNS), that is to say with the resolution of all the
scales of turbulence motion [1]. Thus, at a fixed scale such as computations can be
performed, one have to model the unresolved scales of the turbulence. Although there is an
important variety of such models, all of them include intrinsically the turbulent viscosity
as a parameter or a variable. Numerical schemes always induce an artificial dissipation
that it is crucial to control, such as to be always lower to the viscosity obtained by subscale
modeling of the turbulence. High order numerical approximations provide a framework
where the constraint on the numerical dissipation can be achieved. Finite elements are
suitable for the design of high order scheme with compact stencil that is efficient for
parallel computing strategies by domain decomposition and messages passing.

The main weakness of the classical finite element method (Galerkin) is its lack of
stability for advection dominated flows. We consider in this work a compressible Navier-
Stokes equations combined with the one equation Spalart Allmaras turbulence model.
Therefore, the numerical stability is achieved thanks to the Streamline Upwind Petrov-
Galerkin (SUPG) formulation [2]. Within the framework of SUPG method, artificial
viscosity is anisotropic and the principal component is aligned with streamlines. The aim
is to put sufficient viscosity to get rid of instability and unphysical oscillations without
damaging the accuracy of the method. The amount of artificial viscosity is controlled by
a stabilization tensor τ . Since optimal way to choose τ is still unknown, several ways of
computing τ are tested in this paper. Besides SUPG method is also used in combination
with a shock-parameter term which supplied additional stability near shock fronts [3].

The remaining of this paper is organized as follows : in Section 2 a description of
the Spalart-Allmaras model coupled with the Navier-Stokes equations is given. Section
3 deals with the SUPG formulation for compressible flow. And Section 4 is devoted to
the following numerical experiments : first the solution of the flow passing a flat plate
at Reynolds number 6.4 106 and Mach number 0.24 is compared to the theoretical law
of the wall, then the SUPG and the finite volume discretization of the same code are
compared on a backward-facing step at Reynolds number 37 000, and finally the solution
of a subsonic flow over a S809 airfoil is compared to another published numerical solution.

2 SpalartAllmaras turbulence model for compressible flows

2.1 Navier-Stokes equations

Let Ω ⊂ Rnsd be the spatial domain with boundary Γ. The Navier-Stokes equations of
compressible flows in the so-called conservative form on Ω can be written as
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∂U

∂t
+

∂Fi

∂xi
− ∂Gi

∂xi
= 0 (1)

where the symbols ρ, u, p and e will represent the density, velocity, pressure, and total
energy, respectively, U = (ρ, ρu1, ρu2, ρu3, ρe) is the vector of conservative variables, and
Fi and Gi are, respectively, the Euler and viscous flux vectors.

Fi =


ρui

ρuiu1 + δi1p
ρuiu2 + δi2p
ρuiu3 + δi3p
(ρe+ p)ui

 Gi =


0
Ti1
Ti2
Ti3

−qi + Tikuk


Here δij are the components of the identity tensor I, qi are the components of the heat
flux vector :

q = −Cpµ
Pr
∇T (2)

and Tij are the components of the Newtonian viscous stress tensor :

T = λ(∇.u)Id + µ
(
∇u +∇ut

)
(3)

where λ and µ are the viscosity coefficients. It is assumed that λ = −2µ/3. The equation
of state used here corresponds to the ideal gas assumption. In the case of turbulent regime

q = −
(
µ+ µt

)Cp
Pr
∇T (4)

T = (µ+ µt)
[ (
∇u +∇ut

)
− 2

3
(∇.u)Id

]
(5)

Appropriate sets of boundary and initial conditions are set for Eq. (1)

2.2 Turbulence closure model

The turbulent kinematic viscosity νt = µt/ρ is computed using Spalart-Allmaras (S-
A) one-equation model. This model is an emperical equation that models production,
transport, diffusion and destruction of the turbulent viscosity. In [1], the method is
described for incompressible flows. Although there are different approaches to adapt the
model for compressible flows, the following one is chosen :

∂ρν̃

∂t
+ ∇.(ρν̃u) = M(ν̃)ν̃ + P (ν̃)ν̃ −D(ν̃)ν̃ (6)

where M(ν̃)ν̃ represents the diffusion term, P (ν̃)ν̃ the production source term and D(ν̃)ν̃
the wall destruction source term. The eddy viscosity is obtained from ν̃ via
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νt = ν̃fv1 , fv1 =
χ3

χ3 + c3
v1

, χ =
ν̃

ν
(7)

where ν is the molecular viscosity. The production source term is given by

P (ν̃)ν̃ = cb1S̃ρν̃ (8)

S̃ = S +
ν̃

κ2d2
fv2 , fv2 = 1− χ

1 + χfv1

(9)

where S is the magnitude of vorticity
(
S =

√
ΩijΩij, Ωij = (∂xj

ui − ∂xi
uj)
)

and d is

the distance to the closest wall. The diffusion term can be written as

M(ν̃)ν̃ =
1

σ

[
∇.
( √

ρ(ν + ν̃)∇(
√
ρν̃)

)
+ cb2

(
∇(
√
ρν̃).∇(

√
ρν̃)

) ]
(10)

And the wall destruction source term is

D(ν̃)ν̃ = cw1fwρ

[
ν̃

d

]2

(11)

where the wall destruction function fw is

fw = g

(
1 + c6

w3

g6 + c6
w3

)1/6

, g = r + cw2( r6 − r ) , r =
ρν̃

S̃κ2d2
(12)

The closure coefficients of the model are cb1 = 0.1355, cb2 = 0.622, σ = 2/3, κ = 0.41,
cv1 = 7.1, cw1 = cb1/κ

2 + (1 + cb2)/σ, cw2 = 0.3, cw3 = 2.

The wall bounday condition is ν̃ = 0.

2.3 Coupling of Navier-Stokes and Spalart-Allmaras equations

Navier-Stokes equations and Spalart-Allmaras equation are coupled in such a way that,
the eddy viscosity is considered as an additional unknown of the system of equations (1).
The vector of conservative variables U becomes Ũ = ( ρ, ρu1, ρu2, ρu3, ρe, ρν̃ ). Flux
vectors F and G completed with an extra coefficient for eddy viscosity advection term
and diffusion term, respectively, give the new flux vectors F̃ and G̃. Finally, the eddy
viscosity production and destruction term hold in the vector S.

4



C. Wervaecke, H. Beaugendre and B. Nkonga

∂Ũ

∂t
+

∂F̃i

∂xi
− ∂G̃i

∂xi
= S (13)

3 SUPG formulation

The streamline upwind Petrov-Galerkin (SUPG) formulation is one of the most es-
tablished stabilized formulations and is widely used in finite element flow computations.
SUPG method introduces a certain amount of artificial viscosity in the streamline di-
rection only. The aim is to prevent numerical instabilities without introducing excessive
numerical dissipation.

3.1 Set of variables

The SUPG method was first introduced using conservative variables [4]. When dealing
with a problem of conservative laws such as the Euler equations, the use of conservative
variables seems to be a proper choice. Few years later, T.J.R. Hughes et al. [5] introduced
a SUPG formulation using entropy variables. The main advantage is that it leads to a
symmmetric system, and good properties such as entropy conservation can be proved.
However, this set of variables leads to more complicated calculations and Le Beau [6]
showed in his works that entropy and conservative variables yield same numerical results.
Primitive variables were also proposed by G. Hauke and T.J.R Tezduyar [7] as an accept-
able set of variables for the SUPG formulation. They compared entropy and conservative
variables with density primitive variables and pressure primitive variables. The numerical
solutions showed no significant differences in the case of compressible flow computations.

Since the other set of variables do not lead to better numerical results and conservative
variables are much simplier to compute, the followed SUPG formulation is developed using
conservative variables.

3.2 Weak formulation

Consider a discretization of Ω into element subdomains Ωe, e = 1, 2, ..., nel, where nel
is the number of elements. Each Ωe is taken to be an open set. Given some suitable finite
dimensional trial solution and test funtion spaces Sh and Vh, the SUPG formulation of
Eq. (13) can be written as follows : find Uh ∈ Sh such that ∀Wh ∈ Vh

∫
Ω

Wh.

(
∂Ũh

∂t
+
∂F̃i

∂xi
− ∂G̃i

∂xi
− S

)
dΩ +

nel∑
e

∫
Ωe

τ

(
∂Wh

∂xi

)
. Ai R(Ũh) dΩ = 0 (14)

where R(Uh) is the residual of the differential equation (13) :

R(Uh) =
∂Uh

∂t
+

∂Fi

∂xi
− ∂Gi

∂xi
− S (15)
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The variational formulation (14) is built as a combination of the standard Galerkin integral
form and a perturbation-like integral form depending on the residual. τ is the stabilization
matrix, various options to compute this parameter were introduced in the literature. This
will be discussed in the next section.

3.3 The stabilization parameter

Stabilization parameter has been a subject of an extensive research over the last three
decades. Nevertheless, the definitions of τ mostly rely on heuristic arguments and a
general optimal way to choose τ is still unknown. Therefore, in this paper, several ways
of computing τ are tested.

For the one-dimensional, advection-diffusion, steady case, the following definition of τ
yields a nodally exact solution

τ =
he

2||a||

(
cothPe− 1

Pe

)
, P e =

||a||he
2κ

(16)

Where he is a measure of the local length scale, also known as “element length”, a is the
flow velocity, κ is the diffusivity and Pe the Peclet number. In the framework of turbulent
flows, problems are convection-dominated : Pe � 1 and coth(Pe) − 1/Pe ≈ 1 . By
analogy with formula (16), the parameter τ1 is then defined by

τ1 =
he

||u||+ c
Id (17)

Where the acoustic speed is defined as c. The second stabilization parameter proposed
reads :

τ2 = |Ωe|
( nen∑

k=1

∣∣ A1n
i
x + A2n

i
y + A3n

i
z|
)−1

(18)

Ai =
∂Fi
∂U

in Ωe (19)

Indeed matrices Ai can be considered as a generalization of the scalar advection coefficient
for the system of equation (13) . Thus, these matrices can be employed in order to define
the stabilization parameter. That is done following an expression coming from a Residual
Distribution schemes, the N-scheme8.

The third option has been proposed by T.E. Tezduyar and M. Senga3.
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τ3 =

( nen∑
k=1

c|j.∇φk|+ |u.∇φk|
)−1

Id (20)

where j is a united vector define as ∇ρ
||∇ρ|| , c is again the acoustic speed and φk are the

tests fuctions.

4 Numerical results

4.1 Flat plate boundary layer

The first problem considered is a compressible high Reynolds number flow over a flat
plate; see Fig. 1 for the problem description and a view of the discretization used. Values
of the CTTM are adopted, namely Cf = 0.00262 at Reθ = 104 and a Mach number of
0.24 (which corresponds to a Reynolds number of 6.4106 for a one meter long flat plate),
see Spalart and Allmaras1 for more informations on the test case.

Figure 1: Flow over a flat plate

As it has been the subject of a great deal of researches, the velocity profile of a turbulent
boundary layer is well known. The profiles are typically plotted in the so called logarithmic
wall coordinates where

u+ =
u

uτ
, y+ =

uτy

ν
, uτ =

√
τw
ρ

(21)

where ν = µvisc/ρ is the kinematic viscosity, τw is the shear stress at the wall. In these
coordinates the boundary layer can be divided into four distinct regions. Leaving the
wall, the first region is known as the viscous sublayer (y+ < 5) and the variation of u+ is
such that
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u+ = y+ (22)

Then, from 5 < y+ < 50, the buffer layer provides a smooth transition to the log law
50 < y+ < 1000 where

u+ =
1

κ
lny+ + C (23)

in which κ = 0.41 and the C ≈ 5.1. The last region is known as the wake region.

(a) Velocity profile for y+ = 0.5 (b) Velocity profiles for various y+

Figure 2: Flow over a flat plate. Boundary layer velocity profile

The law of the wall and the log law are plotted with the computed solution (Fig. 2a).
Theoretical and numerical results are in good agreement. The mesh employed is viewed
as fine. The first layer of nodes next to the wall is at y+ = 0.5. To study the effect of
mesh spacing, the closest point to the wall was allowed to vary. Figure 2b illustrates the
effect of near wall refinement on the velocity profiles. For the sake of clarity, curves are
shifted to the top on figure 2b while in fact, they overlay. There is very little variation
in the results. Furthermore, no significant difference in the results has been observed for
the three definitions of the stabilization parameter.

4.2 Backward-facing step

The geometry is a 1.33 m long and 0.10 m tall rectangular inlet duct followed by a
0.0127 m rearward-facing step. The test was performed at a freestream velocity of 44.2
m.s−1 and atmospheric total pressure and temperature. These conditions correspond to a
freestream Mach number of 0.128, a boundary thickness of 1.5H, and a Reynolds number
(based on momentum thikness) of 5000 at a location 4 step heights upstream of the step.
The Reynolds number based on step height is 37 000. Figure (3a) gives an overview of
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the flow field obtained, in wich a recirculation is formed downstream of the step, a zoom
of the mesh used in this region is represented in figure (3b).

(a) Streamlines of velocity (b) Detail of the domain discretization

Figure 3: Backward-facing step

(a) x = -4H (b) x = H

(c) x = 2H (d) x = 4H

Figure 4: Velocity profiles for finite element and finite volume computations

Several computations for this flow have been done. First, the SUPG method is used
combined with the stabilization parameters τ1, τ2 and τ3 . Solutions obtained with these
different parameters are very similar. Then, a finite volume version of the same code is
used to compare the finite volume solution to the SUPG one. Figure 4 represents the
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velocity profile at several locations in the domain. The fact underlined is that the SUPG
method brings less numerical diffusion than a finite volume method. However, the finite
volume method can be improved by enlarging the stencil to obtain more accurate results11

4.3 Subsonic flow over a S809 airfoil

The problem considered here is a flow over a S809 airfoil. This kind of profil is typi-
cally encountered in wind turbine design. The S809 aerodynamic characteristics are well
documented in Sommers work9. Fully turbulent flow was assumed, Reynolds number is
2 × 106, Mach number is 0.083. The discretization used to calculate this flow employed
unstructured elements (see Figure 5).

(a) Complete domain discretiza-
tion

(b) Refinement near the airfoil

Figure 5: Subsonic flow over a S809 airfoil. Discretization : 54 836 nodes, 10 8750
triangles.

(a) Coefficient of pressure distribution on
the airfoil

(b) Skin friction distribution on the airfoil

Figure 6: Subsonic flow over a S809 airfoil.

Figure 6 shows results for the coefficient of pressure Cp and the coefficient of friction Cf ,
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that are in good agreement with results published in 10 and obtained with a commercial
code on the same mesh.

5 Conclusion

A stabilized finite element formulation applied to Navier-stokes equation combined
with the Spalart-Allmaras model is proposed in this study. Numerical results show that,
not only this method is able to reproduce good turbulent profiles in the case of a 2D flat
plate, but also that it brings less numerical diffusion than a finite volume method. Even
in the case of a almost incompressible flow, the numerical code is robust and gives good
results. The choice of the stabilization parameter is yet a problem unsolved, but it seems
that the second definition τ2 performed better with the test cases presented here.
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