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Abstract. Problems of combustion are usually mathematically described by a variable-
density formulation of the Navier-Stokes equations at low Mach number. Finite vol-
ume and finite difference methods have been proposed for large-eddy simulation (LES)
of variable-density turbulent flows at low Mach number. Finite element methods, which
are often better suited for problems in complex geometries, have so far only been applied
to laminar flows of this kind, to the best of our knowledge. We recently proposed an Alge-
braic Variational Multiscale-Multigrid Method (AVM3) within a finite element framework
for LES of turbulent variable-density flow at low Mach number.

The G-function approach to turbulent premixed combustion problems is based on the
flamelet concept. Within this concept, the flame front is modeled as a sharp embedded in-
terface represented by the iso-surface of a level-set function. Because properties of burnt
and unburnt gases vary significantly across the interface, the flow field renders discon-
tinuous. To account for jumps in the velocity and the pressure field, an eXtended Finite
Element Method (XFEM) is applied. Following this idea, we were able to achieve very
promising results for laminar premixed combustions problems. Our efforts towards devel-
oping extended variational multiscale methods for turbulent premixed combustion will be
presented in this talk.
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1 INTRODUCTION

Large-eddy simulation (LES) has successfully been applied to both incompressible (see,
e.g., [1]) and compressible (see, e.g., [2]) turbulent flow. More rarely, applications of LES
to turbulent variable-density flow at low Mach number are encountered in literature.
This is despite the importance of the problems mathematically described by this set of
equations. In particular, problems of combustion are usually mathematically described
by a variable-density formulation of the Navier-Stokes equations for low-speed flows; see,
e.g., [3, 4]. Methods for LES of reactive and/or non-reactive turbulent low-Mach-number
flow are proposed, for instance, based on finite-volume approaches in [5, 6, 7] and based
on a finite-difference approach in [8]. Finite element methods (FEMs) for non-reactive
low-Mach-number flow are described, e.g., in [9, 10, 11] and for reactive flow, e.g., in
[12, 13, 14]. However, all aforementioned publications merely addressed laminar low-
Mach-number flow situations. In particular, to the best of our knowledge, there have
not yet been published any studies on FEMs for (non-reactive) variable-density turbulent
flows at low Mach number.

The framework of an algebraic variational multiscale-multigrid method (AVM3) was
originally proposed in [15] and applied to convection-dominated convection-diffusion prob-
lems. It was further developed and extended for application to turbulent incompressible
flow in the form of LES in [16]. The AVM3 is theoretically based on the concept of the
variational multiscale approach to LES (VMLES) as originally proposed in [17] and later
addressed in [18]; see, e.g., [19] for a review and several references therein. The scale
separation underlying the AVM3 is based on level-transfer operators arising in plain ag-
gregation algebraic multigrid (PA-AMG); see, e.g., [20]. In [21], the AVM3 was proposed
for LES of turbulent variable-density flow at low Mach number. Here, a brief presentation
of the AVM3 for LES of such flow problems will be provided. For elaboration, the reader
is referred to [21].

The G-equation approach to turbulent premixed combustion is based on the flamelet
concept. Often, chemical length scales can be considered small compared to turbulent
length scales. Therefore, a turbulent flame can be modeled as an ensemble of stretched
laminar flamelets which are thin reactive-diffusive layers embedded in a non-reacting flow
field, see, e.g., [22, 4]. Since the reaction zone can be considered thin in the aforementioned
regimes, the flame can be collapsed to a two-dimensional flame front embedded in a three-
dimensional discontinuous flow field. The interface is represented by the G-function, which
is essentially a level-set function for the scalar G describing the propagation of the flame
front. Level-set methods for propagating fronts were first presented in [23]. The position
of the flame front is represented by an iso-surface of the level-set function. The G-equation
takes into account both the convection velocity of the flow field and the burning velocity
at the interface for describing the propagating flame front. Its physical meaning, however,
is confined to the flame front itself. An early G-function approach to LES was proposed,
e.g., in [24].
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EXtended Finite Element Methods (XFEM) are able to represent discontinuities by
enriching the finite element function spaces with discontinuous shape functions. This
method was originally developed in the context of crack propagation in solid mechanics
(see, e.g., [25]) and later extended to a variety of different applications, including two-
phase flow problems [26], for example. Large gradients of velocity, pressure, temperature,
species mass fraction and material properties are found within the thin reaction zone of
a flame. Using the XFEM, the flow field is assumed discontinuous at the flame front,
and jumps in velocity and pressure are taken into account via discontinuous enrichment
functions. We already achieved very promising results applying an XFEM to the G-
equation approach in [27], and the reader is referred to that study for elaboration.

2 GOVERNING EQUATIONS

2.1 Variable-density formulation at low Mach number

Conservation equations for mass, momentum and energy in the domain Ω are given as

∂ρ

∂t
+∇ · (ρu) = 0, (1)

ρ
∂u

∂t
+ ρu · ∇u +∇phyd −∇ · (2µε′ (u)) = ρg, (2)

ρ
∂T

∂t
+ ρu · ∇T −∇ ·

(
λ

cp
∇T
)

=
1

cp

[
dpthe

dt
+Q

]
, (3)

where ρ denotes the density, u the velocity, phyd the hydrodynamic pressure, µ the viscos-
ity, ε′ (u) = ε (u)−1

3
(∇ · u) I, with the rate-of-deformation tensor ε (u) = 1

2

(
∇u +

(
∇uT

))
,

I the identity tensor, g the gravity force vector, T the temperature, cp the specific heat
capacity at constant pressure (assumed constant), λ the thermal conductivity, pthe the
thermodynamic pressure and Q a potential heat source. Properties µ and λ are assumed
to vary with T according to Sutherland’s law:

µ =

(
T

Tref

) 3
2
(
Tref + S

T + S

)
µref , λ =

cp
Pr
µ, (4)

using a reference temperature Tref , a reference viscosity µref , the Sutherland temperature
S, and the Prandtl number Pr = cpµ

λ
. Note that energy conservation (3) is expressed in

terms of temperature. Additionally, the equation of state for an ideal gas,

ρ =
pthe

RT
, (5)

is assumed based on the gas constant R. Using (5), the mass-conservation equation (1)
may be reformulated as

∇ · u =
1

T

(
∂T

∂t
+ u · ∇T

)
− 1

pthe

dpthe

dt
. (6)
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Appropriate initial and boundary conditions need to be defined for the presented system
of equations. The configuration of the backward-facing step, which is used as a numerical
example below, represents an open system due to the Neumann outflow boundary, which
determines the (constant) thermodynamic pressure in this case. In the following, it will
already be accounted for the fact that the thermodynamic pressure is constant and that
Q = 0.

2.2 G-equation approach to premixed combustion

The domain of a premixed combustion problem Ω ⊂ R3 consists of the subdomains Ωu

and Ωb, denoting the unburnt and the burnt portions of the domain, respectively. They
are separated by the interface Γ = ∂Ωu ∩ ∂Ωb, that is, the flame front. By definition, the
normal n at the interface points towards the unburnt domain.

The total flame speed vf acts on the G-function as a convective velocity for the level-set
equation

∂G

∂t
+ vf · ∇G = 0. (7)

It depends on the convection velocity of the unburnt flow phase uu at the flame front and
the burning velocity sL of the flame, which acts in the normal direction to the flame front:

vf = uu + sL · n. (8)

For a planar laminar flame, the burning velocity s0
L characterizes a specific chemical

reaction. Compared to s0
L, sL takes the effects of curvature (κ = ∇ · n) and strain into

account. The G-equation

∂G

∂t
+ uu · ∇G = sL|∇G| (9)

with the normal vector

n = − ∇G
|∇G|

(10)

defines the shape and position of the flame front Γ implicitly. It is represented by the
iso-surface G0 = 0 according to

G (x, t)


> 0 ∀x ∈ Ωb

= 0 ∀x ∈ Γ

< 0 ∀x ∈ Ωu.

(11)

The G-function is continuous at the interface and initialized as a signed distance function
(|∇G(x, t = 0)|=1). Problems concerning mass conservation of level set methods are
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well known in literature. Reinitialization of the G-function is neccessary, since it looses
its signed-distance property during the simulation. The reader is referred to [28] and
references therein for a detailed description of various reinitialization techniques. Here,
G(x, t) is reinitialized directly by calculating the distance from each grid point to the
discrete representation of interface Γ.

The conservation equations for mass and momentum are given by equations (1) and
(2) (with ∇·u = 0, if incompressible flow is assumed), respectively. Each of them hold in
the burnt and unburnt domains, with corresponding densities ρ and viscosities µ given as

ρ (x, t) =

{
ρb ∀x ∈ Ωb

ρu ∀x ∈ Ωu,
µ (x, t) =

{
µb ∀x ∈ Ωb

µu ∀x ∈ Ωu.
(12)

The discontinuous flow field interacts with the G-equation in form of a coupled two-field
problem.

3 ALGEBRAIC VARIATIONAL MULTISCALE-MULTIGRID METHOD

The key ingredient of the AVM3 is a small-scale subgrid-viscosity term. For introducing
this term, the resolved part of the velocity, uh, is further decomposed into a large resolved
and a small resolved part, besides the unresolved part û:

u = u3h + δuh︸ ︷︷ ︸
uh

+û. (13)

The space of large resolved velocity scales is identified by a grid of characteristic element
length 3h, whereas the full resolution limit is h. The actual implementation used here
performs this separation in a purely algebraic way without need for generating additional
grid levels besides the basic one, though. In fact, plain aggregation algebraic multigrid
(PA-AMG) is used for generating prolongation and restriction (i.e., level-transfer) opera-
tor matrices based on algebraic principles. The respective procedure is not described in
detail here. The reader is referred to our earlier publications such as [15] for elaboration.

The small-scale subgrid-viscosity term is based on the physical reasoning that energy
transport in turbulent flow mainly occurs between scales of similar size. The present
model should particularly account for the effect of unresolved scales on the small resolved
scales. The small-scale subgrid viscosity, µδhT , is also assumed to only depend on the small
resolved scales. It is defined by a modified (constant-coefficient) Smagorinsky model as

µδhT = ρh (CSh)2
∣∣ε(δuh)∣∣ , (14)

with CS denoting the Smagorinsky constant and
∣∣ε(δuh)∣∣ =

√
2ε(δuh) : ε(δuh) the norm

of the rate-of-deformation tensor based on the small-scale velocity. The Smagorinsky
constant CS is chosen to be 0.1, and no parameter tuning is performed to keep the modeling
as simple as possible.
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The small-scale subgrid-viscosity term is introduced into a residual-based variational
multiscale FE formulation:(

qh,∇ · uh
)

+
(
∇qh, τMRh

M

)
=

(
qh,

1

T h

(
∂T h

∂t
+ uh · ∇T h

))
∀ qh ∈ Vhp , (15)(

vh, ρh
∂uh

∂t

)
+
(
vh, ρhuh · ∇uh

)
−
(
∇ · vh, phhyd

)
+
(
ε
(
vh
)
, 2µhε′

(
uh
))

+
(
∇ · vh, τCRh

C

)
+
(
ε
(
δvh
)
, 2µδhT ε

′ (δuh))
+
(
ρhuh · ∇vh, τMRh

M

)
−
(
vh, ρhτMRh

M · ∇uh
)
−
(
ρhτMRh

M · ∇vh, τMRh
M

)
=
(
vh, ρhg

)
∀vh ∈ Vhu, (16)(

wh, ρh
∂T h

∂t

)
+
(
wh, ρhuh · ∇T h

)
+

(
∇wh, λ

h

cp
∇T h

)
+
(
ρhuh · ∇wh, τERh

E

)
= 0 ∀wh ∈ VhT , (17)

where the discrete residuals of mass, momentum and energy conservation are given as

Rh
C = ∇ · uh − 1

T h

(
∂T h

∂t
+ uh · ∇T h

)
, (18)

Rh
M = ρh

∂uh

∂t
+ ρhuh · ∇uh +∇phhyd −∇ ·

(
2µhε′

(
uh
))
− ρhg, (19)

Rh
E = ρh

∂T h

∂t
+ ρhuh · ∇T h −∇ ·

(
λh

cp
∇T h

)
. (20)

A Pressure-Stabilizing Petrov-Galerkin (PSPG) term appears in (15), and a grad-div
term in (16) (last term on the left-hand side of (15) and second term in the second line
of (16), respectively). The last term in the second line of (16) represents the small-
scale subgrid-viscosity term. The terms in the third line of (16) are, in this order, a
Streamline Upwind Petrov-Galerkin (SUPG), a cross-stress and a Reynolds-stress term, all
of them being in convective form. An SUPG term is also added to the energy-conservation
equation (4). The full formulation taking into all terms in the momentum equation is
denoted by ALLSUP in the numerical example below. Taking into account the small-scale
subgrid-viscosity term as well as the SUPG term is named AVSSUP. SCRSUP denotes
the inclusion of SUPG, cross- and Reynolds-stress terms, and SUPSUP indicates that
only the SUPG term is considered.

The stabilization parameters τM and τC are defined for the present variable-density
equation system as follows:

τM =
1√(

2ρh

∆t

)2

+ (ρu)h ·G (ρu)h + CI (µh)2 G : G

, (21)

τC =
1

τMg · g
, (22)
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where

Gij =
3∑

k=1

∂ξk
∂xi

∂ξk
∂xj

, gi =
3∑
j=1

∂ξj
∂xi

(23)

utilize the coordinate system ξ of the element parent domain. The time-step length of the
temporal discretization of the problem formulation is denoted by ∆t, and CI is a positive
constant independent of the characteristic element length h. Adopting (21) for the energy
conservation equation yields

τE =
1√(

2ρh

∆t

)2

+ (ρu)h ·G (ρu)h + CI

(
λh

cp

)2

G : G

. (24)

4 EXTENDED FORMULATION FOR PREMIXED COMBUSTION

EXtended Finite Element Methods (XFEMs) are able to represent discontinuous fields
by enriching the function spaces with appropriate discontinuous functions. In the present
context of premixed combustion, a Heaviside function is used to represent jumps in ve-
locity and pressure arising from thermal expansion across the interface:

H(x, t) =

{
−1 if G(x, t) ≤ 0

1 if G(x, t) > 0.
(25)

All nodes i of elements intersected by the flame front are enriched by additional degrees
of freedom ai and bi besides the standard degrees of freedom ui and pi, respectively:

uh (x, t) =
∑
i

Ni (x) [ui(t) + ai(t) (H (G (x, t))−H (G (xi, t)))] (26)

ph (x, t) =
∑
i

Ni (x) [pi(t) + bi(t) (H (G (x, t))−H (G (xi, t)))] . (27)

The jump conditions at the interface Γ are derived from mass and momentum con-
servation across the interface in the context of the hydrodynamic theory (see, e.g., [29]),
known as the Rankine-Hugoniot relations. They may be written as follows:

JuK · n = −MJρ−1K on Γ, (28)

JuK · t1 = 0 on Γ, (29)

JuK · t2 = 0 on Γ, (30)

JpK = M2Jρ−1K on Γ. (31)

The bracket operator JxK = xb−xu defines the jump in a quantity across the interface, t1

and t2 represent the tangential vectors at the interface, and M the mass flux across the
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flame front: M = ρb
(
uf − ub

)
· n = ρu(uf − uu) · n. Various strategies exist for enforcing

the jumps across the interface weakly.
Following the procedure described in section 3, the residual-based extended variational

multiscale finite element formulation for the incompressible Navier-Stokes equations is
obtained analogously to equations (15) and (16) using the corresponding density ρ and
viscosity µ in the volume integrals over the subdomains Ωb and Ωu (see equation (12)).
Of course, the rightmost terms in equations (15) and (18) and the last term in the second
line in equation (16) do not exist in the present case. Depending on the strategy chosen
to enforce the presented interface constraints weakly, additional surface integrals arise in
the formulation. In [27], a Distributed Lagrange Multiplier (DLM) technique was used
successfully for two-dimensional premixed combustion problems such as a Bunsen burner
flame. Nitsche’s method is applied in the context of reactive-diffusive scalar problems in
[30] and for incompressible elasticity in [31] to account for Dirichlet and jump conditions
in a weak sense. A different, stress-based, approach was proposed in [32] and adopted
for the premixed combustion problem at hand. The resulting surface integrals are not
presented in detail here. Integration over intersected elements and along the interface
Γ is performed via integration cells obtained from a sub-tetrahedralization procedure as
described in [27].

The residual-based variational formulation for the G-equation is derived in a straight-
forward manner applying the same steps as before and reads(

wh, ∂G
h

∂t

)
+

(
wh,vhf · ∇Gh

)
+

(
vhf · ∇wh, τGRh

G

)
= 0, (32)

with only an SUPG term included as in the energy conservation equation and the discrete
residual of the G-equation given as

Rh
G =

∂Gh

∂t
+ vhf · ∇Gh. (33)

Adopting (21) for the G-equation yields

τG =
1√(

2
∆t

)2
+ uh ·Guh

. (34)

5 NUMERICAL EXAMPLES

In the following, a numerical example for turbulent variable-density flow at low Mach
number, turbulent flow over a backward-facing step with heating, will be presented. More
details on this example as well as further numerical examples for this problem type can be
found in [21]. Numerical examples for premixed combustion using the extended method
presented above are contained in [27].

Turbulent flow over a backward-facing step with heating is considered as a challenging
numerical test case. The Reynolds number based on the step height, which is h = 0.041
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m, and the mean inflow centerline velocity u1c is 5580. The expansion ratio, that is, the
ratio of the channel height downstream and upstream of the step, is 1.5, and a wall heat
flux of qW = 2000 W/m2 is prescribed at the bottom wall behind the step. The geometry
of the problem domain is depicted in Fig. 1. The problem configuration is similar to the
one in [6], which is the only LES of variable-density flow at low Mach number in such a
configuration so far, to the best of the authors’ knowledge. Given the same expansion
ratio, the Reynolds number in [6] was 5540, and thus almost identical to the present one.
Further wall heat fluxes besides the one used here were investigated in [6]. LES data from
[6] are denoted by “LES AP02” when used below.

Figure 1: Geometry of problem domain for backward-facing step.

Snapshots of velocity and temperature distributions at the beginning of the statistical
period are provided in Fig. 2; the hot spots at the heated bottom wall in the vicinity of
the step wall are clearly observable. Velocity results at various locations behind the step
(for the lower region of the problem domain) are depicted in Fig. 3. Besides the LES
data from [6], (isothermal) experimental results from [33] are also included, which were
used in [6] as reference results as well. This already indicates that the velocity results are
to be expected close to respective isothermal results. The results in Fig. 3 confirm this
observation. Differences between the three methodical combinations are hardly visible,
and the reference results are sufficiently well matched. At the first five locations, the
present results are even somewhat closer to the experimental results than the LES AP02
data. Further downstream, the LES AP02 results are very close to the present ones.

Fig. 4 shows the temperature results at various locations after the step, scaled by
the reference temperature and only for the region close to the bottom wall. As can be
seen, the temperature values undergo substantial variations within small distances from
the bottom wall. At about 0.02 m above the bottom wall, the reference temperature is
almost reached again, but at the bottom wall, a maximum overheating of about up to
300% of the reference temperature is observed. The LES AP02 results at locations x1 = h
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Figure 2: Snapshots of velocity and temperature distributions at the beginning of the statistical period,
left: colored velocity magnitude distribution, right: colored temperature distribution (red color indicates
high velocity/temperature, blue color low velocity/temperature).

and x1 = 3h are notably lower than the present ones and at locations x1 = 5h, x1 = 7h
and x1 = 9h, they closely match. At the first location, x1 = h, there is also a notable
difference between the temperatures obtained with AVSSUP and the ones obtained with
SUPSUP, SCRSUP as well as ALLSUP. Since there are no other reference results in this
context, we would like to oppose our results against the LES AP02. In particular, our
suspicion is that the profile yielded by AVSSUP might be close to the actual temperature
distribution. A DNS would probably clarify the actual temperature distribution in this
region.

6 CONCLUSIONS

An algebraic variational multiscale-multigrid method has been proposed for large-eddy
simulation of turbulent variable-density flow at low Mach number as well as an extended
approach towards premixed combustion. Scale-separating operators generated by level-
transfer operators from plain aggregration algebraic multigrid methods enable the appli-
cation of modeling terms to selected scale groups in a purely algebraic way. In the present
context, this application of a modeling term is restricted to the smaller of the resolved
problem scales. Following this purely algebraic strategy for scale separation means that
no coarse discretization besides the basic one is required, in contrast to earlier approaches
based on geometric multigrid methods. For the numerical example of turbulent flow past
a backward-facing step with heating, a rather complex test problem, the results have been
compared to other experimental and numerical results in literature. Promising results for
two-dimensional premixed combustion problems using a Distributed Lagrange Multiplier
(DLM) technique for enforcing interface conditions were achieved in [27]. The latter re-
sults have not been presented in the context of this article, and the reader is referred to
the original publication for details.
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Figure 3: Velocity results for backward-facing step, solid lines: AVSSUP, dashed lines: SCRSUP, dotted-
dashed lines: ALLSUP, double-dotted-dashed lines: SUPSUP, squares: LES AP02, triangles: EXP
KM95.
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