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Abstract.  The global optimal design of the shape of a flying configuration (FC) in order to 
have minimum drag at cruise, leads to an extended variational problem with free boundaries. In 
some previous papers the author has developed an optimum-optimorum theory, which enables 
to determine, simultaneously, the camber, twist and thickness distributions and also the simi-
larity parameters of the planform of global optimized FC, belonging to a class of admissible 
FCs defined by their common chosen properties. This theory was used to perform the inviscid 
global optimization of the FC's shape.  
A refined evolutionary iterative optimum-optimorum theory is proposed here, which uses the 
inviscid global optimized shape of the FC, as the first step of iteration. A computational 
checking of this shape is made, by using the own, new developed, hybrid, meshless solutions for 
the three-dimensional compressible Navier-Stokes layer (NSL), in improved form. These NSL's 
solutions  use analytical  potential solutions of the flow on the same FC twice, namely: at the 
NSL's edge (instead of parallel flow used by Prandtl in his boundary layer theory) and in the 
structure of the velocity's components, which are expressed inside the NSL, as products between 
the corresponding  potential velocity's components with polynomes with arbitrary coefficients, 
versus a spectral variable. These coefficients are used to satisfy the NSL's partial-differential 
equations, in an arbitrary chosen number of points. The use of analytical elliptical potential 
leads to subsonic and of hyperbolical potential leads to supersonic NSL’s solutions. The propo-
sed reinforced numerical NSL's solutions are split, have important analytical properties, are ac-
curate and rapid convergent. 
The friction drag coefficient is computed and the FC's shape is checked for the structure point 
of view. The magnitude of thickness of FC is controlled in the critical zones like its central 
section and in its rear part. The limitation of the magnitude of twist of the FC at its rear part 
can also be requested. A weak interaction aerodynamics/structure is proposed, via new and/or 
modified constraints, requested for structure point of view. Up the second step of the iterative 
optimization, the total drag is the new functional, which is minimized and all the constraints are 
taken into consideration in the multidisciplinary aerodynamical global optimal design of the 
external FC's shape.  Additionally, the aerodynamical pressure, together with the structure's 
load, produce the deformation of the structure. For the flattened FCs the modeling of the defor-
mation  can be obtained by using the solution of Sophie Germain partial-differential equation. 
The deformation must be substracted from the aerodynamical global optimized FC's shape, in 
order to have the wished final form, after the deformation. 



 A. Nastase 

 2 

 
1 INTRODUCTION 

The usual aerodynamical optimal design (OD) of the shape of a flying configuration 
(FC) with given planform (i.e. the optimization of its camber, twist and its thickness 
distributions) with the aim to reach a minimum drag, used also by the author in her early 
papers, leads to a classical variational problem with given boundaries.  The author has 
solved this problem in one shoot, by using the variational method with free Lagran-
gians. This classical optimization strategy was two times enlarged by the author in order 
to be able to perform the aerodynamical, global optimal design (GOD) and to include 
the friction effect in the computation of the total drag functional and in the GOD and, 
additionally, to be multidisciplinary.  
     The first enlargement consists in the inviscid GOD of the shape of FC (namely, the 
optimization of its camber, twist, thickness and also of its similarity parameters of the 
planform), which leads to an enlarged variational problem with free boundaries. An own 
optimum-optimorum (OO) theory was developed in order to solve this enlarged varia-
tional problem. The GOD of FC's shape is chosen inside of a class of admissible FCs, 
which is defined by the following common chosen properties:  
- their surfaces are piecewise described in form of superposition of homogeneous poly-
nomes of the same maximal degree and with free coefficients; 
- their planforms are polygones, which can be related with affine transformations and                                                                                                                                                                                                                   
- they fulfill all the constraints of the variational problem.   
      A  lower-limit hypersurface of the inviscid drag functional  )(i

dC   as function of the 

similarity parameters iν  of the planform  is defined, namely, 

                                                   opt
i

dC )( )( = ),...,,( 21 nf ννν       .                                                     (1) 

 
     Each point of this hypersurface is obtained by solving of a classical variational 
problem with given boundaries (i.e. a given set of similarity parameters). The minimum 
of the hypersurface, it is, 
                                        

optopt

i
dC )( )( = opt

i
dC )(min )(                                                                  (2) 

 
and the position of this minimum are numerically determined and  give us the best set of 
the similarity parameters. The FC's optimal shape, which corresponds to this set, is in 
the same time the global optimized FC's shape of the class. 
    The author has used this optimum-optimorum theory for the design of three inviscid 
GOD of the shapes of three models, namely of Adela, a delta wing alone and, more 
recently, of two FCs Fadet I and Fadet II, respectively optimized at cruising Mach 
numbers =∞M  0.3,2.2,0.2 .  The  GOD shape of the fully-integrated  model Fadet I is 

presented here, as an exemplification of the use of optimum-optimorum theory.   
 

2 THE INVISCID  GLOBAL  OPTIMAL  DESIGN  OF THE SHA PE OF 
MODEL  FADET I  

The model Fadet I is a delta wing with a central integrated fuselage zone. This FC is 
treated like a discontinuous integrated delta wing (IDW) fitted with two artificial ridges 
along the junction lines between the wing and the fuselage.  The downwash won the 
thin surface of the  IDW is supposed to be continuous  and expressed in the form of sup-
position of homogeneous polynomes in two variables, as in [1], namely: 
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    The downwashes ∗w  and ∗'w  on the wing and on the fuselage zone are expressed in 
form of two different superpositions of homogeneous polynomes : 
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     The coefficients  kkmw ,1

~
−− , ∗

−− kkmw ,1
~ and kkmw ,1−−

∗ , together with the similarity parame-

terν  of the planform of the IDW, are the free parameters of optimization and 1l  and 
1h  

are the half span and the depth of IDW . The quotient between the similarity parameters 
of the planforms of the wing and of the fuselage of the IDW depends on the purpose of 
FC and is here considered constant. 
    The constraints of the inviscid GOD are the following: 
- the given lift, pitching moment and the Kutta condition on the subsonic leading edges 
of the thin IDW component (in order to cancel the induced drag at cruise and to sup-
press the transversal conturnement of the flow around the leading edges) and   
- the given relative volumes of the wing  and of the fuselage zone  and the new introdu-
ced integration conditions along the junction lines between the wing and fuselage zone 
of the thick-symmetrical IDW component (in order to avoid the detachment of the flow 
along these lines). 
 
 

 
 
      

Figure 1:  The View of the Global Optimized and Fully-Integrated Model Fadet I 
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    A hybrid analytical-numerical solution according to the optimum-optimorum theory 
is used. Each point of the lower limes line of the inviscid minimum drag functional,  for 
a given value of the similarity parameter ν ,  is analytical determined, by solving of a 
corresponding linear algebraic system and the minimum of the lower limes line is nu-
merical obtained, as in 1 .  
    The pressure coefficients on the upper sides and the aerodynamical characteristics of  
these three models were measured  in the trisonic wind tunnel of the DLR-Cologne, in 
the frame of some research contracts of the author, sponsored by the DFG.  The 
determination of inviscid GOD of the shape of model Fadet I, presented in the (Fig. 1) 
and the good agreement of theoretical and experimental determined pressure, lift and 
pitching moment coefficients are presented below. 

 
3    COMPARISON OF THEORETICAL PREDICTED AERODYNAMI CAL 
CHARACTERISTICS WITH EXPERIMENTAL RESULTS 
 

The lift, pitching moment and the pressure coefficients 
l

C , mC  and pC  of the model 

Fadet I were measured in the trisonic wind tunnel of the DLR-Cologne, in the frame of  
research projects of the author, sponsored by the DFG. The very good agreements 
between the theoretical and experimental results for the lift and pitching moment 
coefficients  

l
C  and  mC   are shown in the (Fig. 2a,b), for all the ranges of Mach num-

bers =∞M  4.24.1 ÷  and  angles of attack °° ÷−= 1212α . For these ranges, the model 

Fadet I  has subsonic leading edges.  
 

          
 

Figures 2a,b:  The lift and pitching moment coefficients of the global optimized and   fully-integrated           
model Fadet I 
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Figures 3a-c: Variation of pressure coefficientspC  in longitudinal central section 
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The good agreement between the measured and theoretical predicted pressure coeffi-

cients is presented in the (Fig. 3a-c) for the longitudinal central section and for the va-
lues of angles of attack °°°−= 8;0;8α . 

 
4.   THE HYBRID SOLUTIONS FOR THE NAVIER-STOKES LAY ER 
 
    The starting point for the developing of the own hybrid solutions for the computation 
of the flow over flattened FCs, are the partial-differential equations (PDEs) of the three-
dimensional stationary compressible NSL, without any simplifications. A new coordi-
nate η   is defined:  
 
                                                           ),(/)),(( 21213 xxxxZx δη −=      .                                     (5) 
 

Hereby  ),( 21 xxZ  is the equation of  the surface of the flattened FC and ),( 21 xxδ  is the  
NSL’s thickness distribution. The spectral forms of the axial, lateral and vertical velo-
city's components δδ vu , and δw , the density function ρln=R  and the absolute tempe-
rature T are here given as follows:  
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Hereby wR  and wT  are the given values of R and T  at the wall and eu  , ev  , ew , eR  

and eT  are the values of u , v , w , R  and T  at the NSL's edge, obtained from an 

inviscid reinforced potential solver, used here also as outer flow of the same FC (instead 
of the parallel undisturbed flow used by Prandtl in his boundary layer theory) and iu , 

iv , iw , ir  and it  are their free spectral coefficients, which are used to fulfill the NSL's 

PDEs. These hybrid solutions use the potential flow, over the same FC, twice: as outer 
flow until the NSL's edge and to reinforce the numerical solutions, which are obtained 
as product between numerical and analytical solutions. 
    These hybrid numerical solutions have also analytical properties, namely: a correct 
asymptotical behavior along the singular lines like leading edges, junction lines wing/ 
fuselage, leading and hinge lines of the leading edge flaps, according to the minimum 
singularities principle of van Dyke, a correct last behavior (at infinity) and are stable. 
     For the supersonic flow, the additional boundary condition on the characteristical 
surface is also correct fulfilled, due to the outer hyperbolical potential flow, as in 41− .  
    The spectral forms (6a-e) automatically satisfy the boundary conditions at wall 

)0( =η . The boundary conditions at the NSL’s edge are written in explicit forms and 
are eliminated by fixing seven spectral coefficients of the velocity’s components, name-
ly 2−Nu ,  1−Nu , Nu , 2−Nv , 1−Nv , Nv  and Nw . 

    Further the physical equation of ideal gas for the pressure p and an exponential law 
of the viscosityµ  versus T  are used:  
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Here are: gR  and ∞T  the universal gas constant and the absolute temperature of the 

undisturbed flow and 1n   is the viscosity exponent. 

By using of a logarithmic density function ρln=R  in the continuity and temperature 
PDEs it was  possible to express all the physical entities only as functions of the spectral 
coefficients of the velocity's components. This splitting of NSL's PDEs contributes to 
speed up the computation, as in 41− . 
    The impulse partial differential equations are used for the computation of the velo-
city's components inside the NSL.  For this purpose, the spectral forms given in (6a-c) 
are introduced in the  NSL’s PDEs of impulse and the collocations method is used. The 
spectral coefficients of the velocity’s components iu  , iv  and iw  are obtained by the 

iterative solving  of a linear algebraic system with variable coefficients,  it is:  
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( 3,..,2,1 −= Nk  and 1,..,2,11 −= Nk ) 

 

    The values of its variable coefficients are taken for the precedent step of iteration. The 

iteration is going to an end, when the maximal difference  between the velocity's com-

ponents in two consecutive iteration steps is smaller than a chosen small value. 
   The inviscid global optimized shape of FC, obtained by using the hyperbolical poten-
tial solutions as start solutions for the optimization  and of the  OO theory as strategy for 
the optimization represents now the first optimization step of a more refined iterative 
global optimization strategy, which uses the own reinforced hybrid NSL solutions, pre-
sented here, up the first computational checking and up the second step of optimiza-
tion, as presented below.  
 
5   THE ITERATIVE OPTIMUM-OPTIMORUM THEORY AND THE 
STRUCTURE'S DEFORMATION 

 
     The second enlargement of the variational method consists in the development of an 
iterative OO theory, in order to introduce also the influence of friction in the drag func-
tional and in the aerodynamical GOD of the FC’s shape.  The previous inviscid global 
optimized shape of the FC represents now the first step in the iterative viscous shape op-
timization process, as described in the (Fig. 4) .  
    An intermediate computational checking of the inviscid GOD of the FC's shape is 
made with own zonal spectral viscous solvers, for the three-dimensional NSL.  The fric-
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tion drag coefficient )( f
dC  of the FC is determined. This aerodynamical inviscid global 

optimized shape of FC is also checked for the structural point of view. A weak 
interaction aerodynamics/structure via  additional or modified constraints, introduced in 
order to control the camber, twist and thickness distributions of the aerodynamical, 
global optimized FC’s shape, for structure reasons, is here proposed.  Up the second 
step of optimization, the predicted inviscid optimized shape of the FC is corrected, by 
including all the constraints in the variational problem and of the friction drag coef-
ficient in the drag functional. The iterative optimization process is repeated, until the 
maximal local modification of the shape, in two consecutive optimization steps, 
presents no significant change. The final aerodynamical global optimized FC's shape is 
good for the aerodynamical point of view and can satisfy also the stiffness require-
ments of the structure.  
 
 

 
 
Figure 4: The iterative optimum-optimorum theory 
 

   A new enlargement of the aerodynamical global optimization of the FC's shape, con-

sists in  including the effect of the deformation of the structure. 
    For the flattened FCs the modeling of the deformation dZ  can be obtained by using 

the solution of Sophie Germain PDE, namely: 
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Hereby are: wp  the unit weight, ap  the aerodynamical pressure and tp is the total unit 

load, h is the thickness of the structure, E  is the module of elasticity of Young and µ  
is the Poisson coefficient. Due to the coupling aerodynamics/structure, the structure is 
more deformed due to aerodynamical pressure and the total deformation must be 
substracted from the aerodynamical global optimized FC's shape, in order to have the 
wished final form, after the deformation. 
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6   CONCLUSIONS 
 
    The evolutionary iterative optimum-optimorum theory, proposed here:  
- allows the multidisciplinary aerodynamical GOD with weak interactions, via modi-     

fied and additional constraints, requested for the structure purposes; 
- allows the multipoint design by morphing, by using movable leading edge flaps; 
- is flexible (it can use different start solutions, drag functionals and constraints, which                  

can be changed in the different beginning steps of iterations);  
- is a deterministic theory which has almost all attributes of genetic algorithms (like 

migrations in the drag functional and in the constraints, mutations in the start 
solutions and in the constraints, crossover by construction of hybrid analytical-nume-
rical start solutions, multiple selection inside of a class of FCs and among different 
classes of FCs etc.); 

- its hybrid numerical start solutions are more accurate than the fully-numerical so-
lutions (are meshless, the partial derivatives can be exactly computed, have analytical 
properties);  

- is economic and competitive (due to the splitting of NSL's PDEs and of analytical 
hybridization, a speed up of computing time occurs).   
 
REFERENCES 
 

[1] A. Nastase, Computation of supersonic flow over flying configurations,  Elsevier, 
Oxford, UK  (2007) . 
 
[2] A. Nastase, The enlarged variational method as strategy for the aerodynamical 
optimal shape's design, Multidisciplinary Analysis and Optimization, MAO 2004, 
Albany, New York State , USA, Technical Paper AIAA-2004-4634 (2004). 
 
[3] A. Nastase, Aerodynamical optimal shape's design, coupled with structure cons-
traints, Coupled Problems, Vol. II ,  CIMNE, Barcelona, Spain, p. 706-709 (2007). 
 
[4] A. Nastase, Improved hybrid solutions for Navier-Stokes layer, Proceedings of 33. 
ARA Congress 2009, Sibiu, Romania, Polytechnic International Press, Montreal, 
Quebec,  Canada, Vol. II ,  p. 39-42  (2009). 
 

 
 
 
 
 
 

 


