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Abstract. This works aims at studying the fluid flow motion in non-inertial reference 
frames. That is comparable to the study of flows inside Lab-on-a-CD microfluidic 
devices. The numerical analysis is performed through the use of the lattice Boltzmann 
method. Since non-inertial effects can be accounted for by including a body force term 
in the dynamical evolution equations, the first part of this works aims at finding a 
correct expression for such body force model so that the macroscopic equations are 
correctly reproduced in the asymptotic limit. This was performed by using the 
Chapman-Enskog analysis. The theoretical results obtained showed that: First, the 
body force model typically accepted as the correct one in the lattice Boltzmann method 
is in fact inaccurate when steady-state hydrodynamic problems are solved, and; Second, 
there is no body force model that correctly models steady and unsteady-state flow 
phenomena. The body force model in the lattice Boltzmann equations must always 
consider the time-dependency of the hydrodynamic equations to be solved. Based on 
this result the lattice Boltzmann equations are written in a non-inertial reference frame 
and solved for two constructed flow examples: a steady fully developed centrifugal flow 
and a steady periodic Coriolis flow. In both cases the results obtained were physically 
meaningful, revealing the applicability of using the lattice Boltzmann method to 
simulate non-inertial hydrodynamic problems. Furthermore, it was verified that, even 
for low Reynolds number, the use of a rotational microfluidic platform can be 
advantageous as the Coriolis acceleration term  induces transverse convection streams 
that allow for the increase of the, typically, slow flow mixing rates 
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1 INTRODUCTION 
There is currently a great interest in combining into small, integrated units the 

functional components that are necessary for performing complex chemical and 
biochemical analyses. These integrated units have been described as microscale total 
analysis systems (µTAS) or laboratories-on-a-chip [1,2]. According to [2] these systems 
have the potential to be of great importance in genomics, drug screening and clinical 
applications. Microfluidics, i.e. the control of flow of small volumes (from fL to mL) of 
liquids in microscopic (1-1000 µm) channels is the central technology in this field. 
Microfluidic systems require the design, fabrication and implementation of the 
appropriate pumps, valves and mixing elements needed to carry out generic 
manipulations of fluids. There are various technologies for moving small quantities of 
fluids or suspended particles from reservoirs to mixing and reaction sites, to detectors 
and eventually to waste or to the next instrument. Methods to accomplish this include 
syringe and peristaltic pumps, electrochemical bubble generation, acoustics, magnetics, 
DC and AC electrokinetics, centrifuge, etc. All carry advantages and disadvantages that 
place them, presently, at an approximately equal footing in terms of their research and 
development. Nevertheless, the use of a centrifuge approach to create and control the 
microfluidic flow movement has been advocated as one of the most promising 
technologies among the others (see [1,2] and the references therein for a thorough 
discussion on this subject). Platforms that take advantage of a centrifuge pumping 
mechanism to perform the common microfluidic functions are generally named as a 
Lab-on-a-CD or a BioCD [1,2]. One of the distinct differences between a Lab-on-a-CD 
and conventional Lab-on-a-Chips is the non-inertial frame of the spinning disk that 
causes non-inertial forces such as Coriolis and centrifugal (centripetal) forces. Thus, in 
order to correctly design the fluidic components in these spinning platforms one needs 
to have a thorough understanding of the fluid dynamics taking place there.  

The continuity and Navier-Stokes equations in a non-inertial reference of frame read 
as follows:  
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where in eq. (1b)  represents the Levi-Civita symbol, κγβe κΩ represents the angular 
velocity [s-1],  represents the position of the control volume at  relatively to 

the origin  [m]. 
η0xηx − ηx

η0x
The effect of the non-inertial reference frame in the hydrodynamic equations can be 

viewed as that of a body force, , added to the momentum balance equations. In 
particular this non-inertial effect is represented by two distinctive body force terms (per 
unit mass): a centrifugal term, 

βa

( ) ( )ηηδδηγκκγβ 0xxeea
ωβ −ΩΩ−= , and a Coriolis term, 

( ) γκκγββ uea
c

Ω−= 2 .  
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In this work the hydrodynamic equations in a non-inertial reference frame, i.e. eqs. 
(1) and (2), will be solved through lattice Boltzmann (LB) method. The main question 
that has to be answered before going any further is: How to represent the inclusion of 
the, previously discussed, body force term in the LB equations? 

The LB method is presently a well established numerical technique for fluid 
mechanics problems [3-12]. In opposition to traditional computational fluid dynamics 
(CFD) approaches, based on the numerical solution of continuum macroscopic 
equations, the LB method aims at describing the fluid flow physics from a mesoscopic 
point of view. This new approach exhibits several advantages making the physical and 
numerical formulations of the flow modelling a much more straightforward task [3-5]. 
One of the most referred advantages is the method’s ability to simulate quite diverse 
phenomena by simply including appropriate body force modelling terms into the LB 
equation. Hence several authors have proposed distinctive general expressions to 
represent the body force in order to asymptotically recover the hydrodynamic equations 
[12-29]. A major breakthrough on the study of body force models in LB, with the BGK 
collision operator, was obtained in the seminal work of Guo et al. [21]. These authors 
demonstrated that there is only one body force model that unequivocally recovers the 
macroscopic isothermal and incompressible continuity and Navier-Stokes equations as 
the asymptotic solution of the lattice Boltzmann BGK equation with a forcing term. 
Although their analysis is correct, the body force expression derived in their work is 
limited to time dependent solutions. In fact, to the authors’ knowledge, all literature 
studies have never considered the time-dependency of the hydrodynamic solution as a 
relevant parameter when expressing the body force term in LB. To clarify this problem 
the present work aims at showing how the LB body force model should be expressed at 
both time regimes, allowing thus for the non-inertial effects in eq. (1b) to be correctly 
reproduced.  

This manuscript starts with a brief description of the LB equation with emphasis on 
D2Q9 model, section 2. Section 3 focuses on the use of the incompressible BGK 
collision operator and section 4 discusses the main difficulties associated with the 
inclusion of a body force term in the LB equations. Moreover, the methodology used to 
express the body force model in this work is also introduced in section 4. In section 5 
the different forms the LB body force model must have, depending on the steady or 
unsteady dependency of the hydrodynamic problem, are derived, through Chapman-
Enskog analysis. Based on that result section 6 solves two simplified benchmark flow 
problems aiming at examining the isolated effect of the centrifugal and the Coriolis 
acceleration terms in the fluid motion. Finally, in section 7 the conclusions of the 
present work are withdrawn. 

1 THE LATTICE BOLTZMANN EQUATION  
Historically, the lattice Boltzmann model was developed from earlier work on 

lattice-gas (LG) models [3-5]. More recently it was demonstrated that the LB equation 
can also be formulated from a discrete representation of the continuous Boltzmann 
equation, [19,20,26]. Using the BGK collision operator [40], the lattice Boltzmann 
equation with a forcing term can be written as: 

( ) ( ) ( ) ( ) ( )( ) ( txFttxftxftxftttexf i
eq

iiiii ,,,1,, αααααα τ
Δ+−−=−Δ+Δ+ ) . (2) 

It must be stressed that such equation is a particular, but not unique, form of 
discretising the continuous Boltzmann BGK equation, [30]. The term  in eq. (2) is eq

if
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the equilibrium single particle distribution function and is obtained from constant 
temperature and small velocity (up to second order) approximation of the Maxwell-
Boltzmann equilibrium distribution function, which is expressed by the following 
equation: 
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In the above equation  is a weighting factor with values depending on the chosen 
lattice geometry so that specific symmetry conditions are respected [3-7] and  is the 
lattice sound speed. For the D2Q9 model employed in this study 

iw

sc
940 =w , 91=iw  for 

i = 1, 2, 3, 4 and 361=iw  for i = 5, 6, 7, 8. The lattice sound speed is ( )cs 31=c  and 
the particle velocities are defined as ( )0,00 =αe , [ ] ( )( ) [ ]( ) ciiei 21sin,21cos −= π − πα  

for i=1, 2, 3, 4 and ( )[ ] [ ( ) ]( ) cii 229sin,229cos2 −−= ππα ie  i=5, 6, 7, 8, where 
txc ΔΔ= . The fluid density, ρ , and velocity, , can be found from the single 

particle distribution moments as: 
αu

∑=
i

ifρ ,          (4a) 

∑ Δ+=
i

ii taFefu αααρ .        (4b) 

The first order moment of the single particle distribution function, eq. (4b), also 
accounts for the body force presence as first proposed in the works of Ginzburg and 
Alder [14] and Ladd [15]. This modification over the traditional definition of the first 
order moment of the single particle distribution function will later be demonstrated to be 
an important requisite so that the correct hydrodynamic equations with a body force are 
reproduced. The weighting parameter  is a constant to be determined [21,22]. a

2 LATTICE BOLTZMANN BGK INCOMPRESSIBLE MODEL 
The standard LB model is a pseudo-compressible method used for simulating 

isothermal incompressible flows, [6,7]. A drawback of this approach is that the 
recovered macroscopic hydrodynamic equations are not exactly the isothermal and 
incompressible continuity and Navier-Stokes equations as additional terms referring to 
density spatial derivatives are also present. It can be demonstrated that these terms scale 
with the third power of the Mach number, i.e. ( )3MO , and thus can be made negligibly 
small by simply decreasing the simulation Mach number. However, for a fixed 
Reynolds number, decreasing the Mach number goes together with the increase in the 
number of simulation nodes, , since xNΔ xNM Δ∝ Reτ . As a result the computational 
effort of the numerical simulation has to be enlarged in order to reduce the influence of 
erroneous compressibility terms. To overcome this disadvantage, Zou et al. [31], and 
later He and Luo [32], proposed the use of a lattice BGK scheme with slightly changes, 
which allowed for the recovering of the steady-state hydrodynamic equations with no 
compressibility errors. In this study the incompressible lattice BGK model of He and 
Luo [32] will be used, which, in practice, comprises the following two changes in the 
standard lattice BGK model:  
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It must be stressed that due to the small velocity approximation in  the 
incompressible lattice BGK model is still limited to small Mach numbers. Moreover, for 
the unsteady-state case it can be demonstrated that the incompressible lattice BGK 
model does not remove all compressibility errors. In fact, errors of the same order of 
those present in the standard model are preserved when the macroscopic fields to be 
solved are time dependent, [33,34]. 

( )eq
if

3 INTRODUCTION OF A BODY FORCE TERM IN THE LATTICE 
BOLTZMANN EQUATION 

Comparing eq. (2) with the continuous BGK Boltzmann equation, i.e. 
( ) ( ) ( ) ( )( )tpxftpxftpxfpFxet eq ,,,,1,, αααααααααα τ −−=∂∂+∂∂+∂∂ , and 
considering the fact that the LB formulation takes into account only a small set of 
constant velocities it is immediate to conclude that the term representing the rate of 
change of the single particle distribution function along momentum space, i.e. αpf ∂∂ , 
cannot be discretised using a formal procedure. Thus, the introduction of the body force 
term, , in the LB model, eq. (2), requires a different approach. Since the long 
wavelength limit of the LB equation is sought as solution of the isothermal and 
incompressible continuity and Navier-Stokes equations, the inclusion of a body force 
term in the LB equation must comply with this requisite. Moreover, the order of 
accuracy of the body force term must be consistent with that of the overall numerical 
scheme. To fulfil these two requirements Ladd and Verberg [11] suggested obtaining 
the structure of the forcing term by expressing it as a power series expansion in velocity 
space:  
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Taking into account the lattice symmetry structure it is straightforward to 
demonstrate that the first three moments of  yield eqs. (7), e.g. [11,21]. The 
coefficients ,  and  appearing in those equations are functions of the 
macroscopic body force term  and their values are chosen so that the inclusion of eq. 
(6) into eq. (2) yields correct macroscopic hydrodynamic equations in the asymptotic 
limit, e.g. [11,21].  

iF
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4 RECOVERY OF THE HYDRODYNAMIC EQUATIONS WITH A 
FORCING TERM THROUGH CHAPMAN-ENSKOG EXPANSION 
APPLIED TO THE LBGK INCOMPRESSIBLE MODEL 
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There are several numerical perturbation techniques that can recover the continuity 
and Navier-Stokes equations as the asymptotic solution of the Boltzmann equation [3-
5]. In this work the Chapman-Enskog expansion procedure is adopted, as previously 
done by others in works related to the present one, e.g. [11,21,22].  

Since the fundamental objective of this work is to show how the LB body force 
model expression can be sensitive to the fact that a time-dependent or time-independent 
hydrodynamic equations are sought it is convenient to first clearly define the meaning 
of a time-independent hydrodynamic solution in the LB framework. An hydrodynamic 
problem is said to be steady when the macroscopic variables of interest have the 
following form: , ( )xpp = ( )xαα uu = . Given that in the LB method these two 
quantities are determined by the zeroth and the first order moments of the single particle 
distribution function, eqs. (4), that is a function that evolves both in space and time, i.e. 

, the method, during its pathway towards the steady-state solution, will 
provide us solutions of the form 

( tff ii ,x= )
( )t,xpp =  and ( )tuu ,xαα = . However, since the 

problem is time independent these intermediate results are not physically significant. In 
fact, when using the LB method to solve time independent problems the parameter t 
should be comprehended simply as a measure of the number of iterations of the 
numerical algorithm, which implies that when the following conditions are achieved 

 and ( ) ∑= f ixρ ( t,x ) ( ) ( ) ( ) ( )∑=Δt− αα aF xx αiet,xρ x ifu  our solution is 
converged. Nevertheless, apart from this theoretical aspect, when recovering the steady-
state hydrodynamic equations, the Chapman-Enskog analysis follows the same 
philosophy as that traditionally employed in the time-dependent case.  

The Chapman-Enskog expansion starts by Taylor expanding the first term on the 
left-hand side of eq. (2) in terms of the increment tΔ , so that it can be expressed at 
location . ( )tx ,α
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Retaining terms up to ( )2tO Δ  in eq. (8) and introducing them into eq. (2), this 
equation can be rewritten as: 
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Introducing the parameterε , which is proportional to the ratio of the lattice spacing 
to a characteristic macroscopic length scale, i.e. ε  can be considered as a lattice 
Knudsen number, and using it as an expansion parameter, the formal expansion of  

about  yields: 
if

( )0
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In a similar fashion, this procedure can be applied to . As it was mathematically 
demonstrated by Buick and Greated [22], in order to recover correct hydrodynamics the 
zeroth order term of the  expansion, 

iF

iF ( )0
iF , must be nil. Hence the expansion up to iF

( )2εO  yields: 
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( )2)1( εε OFF ii += .         (11) 

Due to eq. (11) the coefficients of the body force model, eqs. (6) and (7), are 
expressed as: 

( ) ( )21 εε OAA += , ( )2)1( εε αα OBB +=  and ( )2)1( εε αβαβ OCC += .   (12) 

Introducing eqs. (10) and (11) into eq. (9) one obtains: 
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In order to remove discrete lattice artifacts from the macroscopic equations, a 
macroscopic space scale αα ε xx =1  is defined, together with two macroscopic time 
scales tt ε=1

1t

 and t . Physically, the introduction of two time scales is justified 
by the fact that macroscopically the two fundamental momentum transfer mechanisms 
occur at two distinctive time scales: vorticity diffusion that takes place at time scale  
is much slower than the propagation of sound waves that occurs at the convective time 
scale . Neglecting the influence of higher order terms, which have no influence on the 
isothermal incompressible hydrodynamic equations, the chain rule applied to spatial and 
temporal derivative operators yield: 
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Introducing these new scales into eq. (13) and grouping this last equation in terms of 
powers of ε  one obtains: 
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Taking the zeroth, , and first, ( )∑ ⋅
i

( ) βi
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e∑ ⋅
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, order moments of eq. (15b) one 

recovers the following macroscopic equations at  time scale: 
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It should be noted that in eq. (16b) the following identities are defined: 
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the following constraints in eqs. (16) have to be satisfied:  
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As it is verified, provided that the external forcing term fulfils the requisites 
expressed by eqs. (18), the time-independent hydrodynamic regime, at the inviscid time 
scale, can be regarded as the asymptotic limit of the time-dependent solution when 
( ) 0→∂⋅∂ t . In other words, when the hydrodynamic variables take the form: ( )xρρ =  

and  eqs. (18a-b) will still correctly describe the inviscid hydrodynamic 
behaviour of a flow field at steady-state without non-hydrodynamic terms arising from 
the fact that 

( )xαα uu =

( ) 0=∂⋅∂ t  . The same, however, does not happen at the viscous time scale 
as it will be shown next. 
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In the last equation the non-equilibrium momentum flux tensor is defined as  
. This parameter can be computed taking into account eq. (15b), the 

form of the equilibrium distribution function, using the incompressible LBGK model, 
eq. (7a), and the fact that , eq. (18a), yielding: 
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Introducing eq. (20) into eq. (19b), and taking into account the condition expressed 
by eq. (18b) one obtains the following momentum balance equation at the viscous time 
scale: 
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∂
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∂
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. (21) 

In order to obtain correct hydrodynamics the parameters  and  have to be 
defined carefully so that the right-hand side of both eqs. (19a) and (21) become nil.  

a ( )1
αβC

It is easy to verify that the value of the a  parameter must be that given by eq. (22) in 
order to nullify the non-hydrodynamic terms where it appears in eqs. (19a) and (21).  

2
1

=a .           (22) 

This value of  implies that the first order moment of the single particle distribution 
function, eq. (5b), has to be expressed as: 

a

ααα ρ Ftuef
i

ii 20
Δ

−=∑ .        (23) 

The conclusion that the mass flux computation is not exclusively determined by the 
first order moment of the single particle distribution function, but it is also affected by 
half the body force magnitude, is not new. In fact one can find similar deductions in the 
early works of Ginzburg and Alder [14] and Ladd [15]. However, apart from a few 
exceptions, e.g. Guo et al. [21] and Buick and Greated [22], more recent studies have 
ignored this result, e.g. [3,4,5,12,17,18,19,20,25,26,27,28]. 

Concerning the  parameter, which comes from the second order moment of the 
LB body force model, eq. (7), its definition is way more problematical. From eq. (21) 
one verifies that in order to obtain the correct hydrodynamic equations the spatial 
derivative term containing  must exactly balance the other term containing a 
space/time cross derivate. However, in opposition to the space/time cross derivate term, 
the  term is not affected by time-dependencies. Hence one cannot find a unique 

value of  that simultaneously satisfies the correct momentum balance between the 
body force and the viscous stress terms at both steady and unsteady-state regimes. 

( )1
αβC

( )1
αβC

( )1
αβC

( )1
αβC

If a time-independent solution is sought, i.e. a solution of the form ( )xρρ =  and 
,  then because the space/time cross derivative containing these terms is nil 

the parameter  has to be constant in all the solution domain: 
( )xαα uu =

( )1
αβC
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ℜ∈= CCC ,αβ ,         (24) 

which implies that the correct body force model must have the following form: 

C
c

Few
F

s

ii
i +⎟

⎠
⎞

⎜
⎝
⎛ −= 22

11 αα

τ
.         (25) 

As a result, using eqs. (22) and (24) the steady hydrodynamic equation at the viscous 
time scale takes the following form1: 

( 0
2
1

11

2
0 =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

∂
∂

∂
∂

Δ⎟
⎠
⎞

⎜
⎝
⎛ − βγααγβαβγ

γα

δδδτρ uuu
xx

tcs ) .    (26) 

Combining the time-independent mass and momentum conservation equations 
obtained at the inviscid and the viscous time scales, eqs. (17a-b) and (26), one finds the 
correct steady-state incompressible continuity and Navier-Stokes equations: 

( ) ( 20 εα
α

Ou
x

+=
∂
∂ ),        (27a) 

( ) ( ) ( ) ( ) ( 2

1110

1 εν
ρ β

α
α

βα
β

β
βα

α

Ou
x

u
xx

gp
x

uu
x

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

∂
∂

++
∂
∂

−=
∂
∂ ). (27b) 

The first term on the right-hand side of eq. (26b) represents the normalized pressure, 
considering the equation of state , the second term represents the diffusion of 
momentum with the kinematic viscosity defined as 

2
scp ρ=

( ) tcs Δ−= 212 τν  and the third term 
is the acceleration resulting from the body force, i.e. 0ρββ Fg = .  The last term is 

each equation ( )2εO  indicates the discretisation error of second order. 
If, alternatively, a time-dependent solution is sought, i.e. a solution of the form 

( t,x )ρρ =  and ( tuu ,xαα )= ,  then the value of ( )1
αβC  must be set as: 

( ) ℜ∈++⎟
⎠
⎞

⎜
⎝
⎛ −= CCFuFuC ,

2
11 αββααβ τ

     (28) 

where again C  is an arbitrary constant, which implies a body force model of the form: 

( ) ( )
CFe

c
ue

c
ue

F i
s

i

s

i
i +⎥

⎦

⎤
⎢
⎣

⎡
+

−
⎟
⎠
⎞

⎜
⎝
⎛ −= αα

ββαα

τ 422
11 .     (29) 

Using eqs. (22) and (28) the unsteady hydrodynamic equations obtained at the 
viscous time scale are: 

( ) 0
2

=
∂
∂ ρ
t

,          (30a) 

( ) ( 0
2
1

11

2
00

2

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

∂
∂

∂
∂

Δ⎟
⎠
⎞

⎜
⎝
⎛ −−

∂
∂

βγααγβαβγ
γα

β δδδτρρ uuu
xx

tcu
t s )

                                                

.  (30b) 

Combining the unsteady mass and momentum equations obtained at the inviscid and 
the viscous time scales, eqs. (17a-b) and (30a-b), one finds the following time-

 
1 Note that the zeroth order moment equation, accounting for the mass balance, at the viscous time scale 
is not shown here as it yields the trivial solution 0=0. 
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dependent incompressible continuity and Navier-Stokes equations, expressed in an 
artificial compressibility form, [32,33]: 

( ) ( ) ( 2
2

0

01 ε
ρ α

α

Ou
x

p
tcs

+=
∂
∂

+
∂
∂ ) ,      (31a) 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )32
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xx
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uu
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εεδν

ρ

αβγ
γ

β
α

α
βα

β
β
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++⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

+
∂
∂

∂
∂

+

+
∂
∂

−=
∂
∂

+
∂
∂

.   (31b) 

As demonstrated by [33, 34] when using the incompressible BGK model the time-
dependent hydrodynamic equations recovered are still affected by compressibility errors 
as the ( )3MO ε  term indicates. 

Based on eq. (20) and on the fact that the shear stress tensor αβσ  and the non-

equilibrium momentum flux tensor are related through ( )1

2
1
τ

Π⎟
⎠
⎞1 αβαβσ ⎜

⎝
⎛ −−=  (the reader 

is referred to [22] for a thorough discussion on this subject), it is easy to verify that the 
dependency of  on  makes the correct shear stress expression also influenced 
by the time-dependency of the macroscopic solution.  

( )1
αβΠ αβC

Concerning the body force models derived in this work, at both steady and unsteady-
state regimes, i.e. eqs. (25) and (29) respectively, it must be stressed that their 
expressions have already been presented in the literature.  

In fact, taking into account that C  is an arbitrary constant and, without any loss of 
generality, if the constant takes the value zero then eq. (24) becomes similar to the body 
force model proposed by Buick and Greated [22]. Similarly, the body force model 
expressed by eq. (28), which was shown to be the correct one when time-dependent 
hydrodynamics are sought, was originally proposed by Guo et al. [21]. However, in 
both works the time-dependency of the hydrodynamic solution was never considered as 
a relevant constraint in the body model formulation. This fact is revealed by the 
numerical tests of the referred works where their body force models were benchmarked 
for both steady and unsteady flow regimes without any further concerns. 

5 LATTICE BOLTZMANN EQUATION IN A NON-INERTIAL REFERENCE 
FRAME: SOME NUMERICAL TESTS 

Several numerical tests were performed corroborating the previous theoretical 
analysis. Such results are presented in [35] and consist of a steady periodic vortex flow 
and an extended Poiseuille flow. They both showed that the body force model proposed 
by Guo et al. [21] and generally accepted as the correct one is in fact inaccurate at 
steady-state flow regimes whereas the body force model previously derived as the 
correct one for time-independent hydrodynamics is the one providing the most accurate 
solutions. 

In the following numerical tests the LB parameters and initialization routines used 
are identical to those discussed in the up mentioned reference [35].   

Furthermore, based on the previous analysis, which focused on the correct modelling 
of the LB body force term, it is straightforward to write the LB equations in a non-
inertial reference frame. This is done by simply introducing in eqs. (25) or (29), 
depending on the time regime, the term 
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( )( )ηηδδηγκκγαγκκγαα ρ 02 xxeeueF −ΩΩ+Ω−= . As a result, the hydrodynamic 
equations, eqs. (1), are recovered as the long-wavelength and high-frequency 
asymptotic limit of the LB equation. 

6.1. Steady fully developed centrifugal flow 
In this first test we will study the LB solution of a steady fully developed flow in a 

pure centrifugal field. Assuming an angular velocity of the form  the 
hydrodynamic equations in this case read as: 

( 0,,0 Ω=Ωκ )

( ) ( ) 0
2,, xx

dx
dpzyu

dz
d

dz
dzyu

dy
d

dy
d

xx −Ω−=⎟
⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ρμμ .   (32) 

This equation as the following analytical solution:  
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1,
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xx
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π
π

π
π

ρ
μ

   (33) 

where H  and W  are the cross-section channel height and weight, respectively. 
Defining the flow Reynolds as: νWux

)=Re  where xu)  is the centreline (maximum) 
velocity, it can be shown that the terms in right-hand side of eq. (32) may be expressed 
as: 

( )
( )⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛
−
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m HWm
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HH

xx
dx
dp

π
π

π

νρρ .   (34) 

For a two dimensional situation, i.e. assuming ∞=z ,  the steady fully developed 
centrifugal solution yields the well known parabolic velocity profile solution: 

( ) ( Wyyxx
dx
dpyux −

⎭
⎬
⎫

⎩
⎨
⎧

−Ω−⎟
⎠
⎞

⎜
⎝
⎛−= 0

2

2
1 ρ
μ

) ,     (35) 

with: 

3

2

0
2 Re8

W
xx

dx
dp νρρ −=−Ω−⎟

⎠
⎞

⎜
⎝
⎛ .       (36) 

Solving the two-dimensional case, eq. (35), with the D2Q9 model one important 
result, from the theoretical view point, is obtained. It is observed that if the body force 
previously derived, eq. (25), is used then the solution obtained belongs to the restrict 
family of LB analytical solutions. In other words, machine accurate results are always 
obtained, regardless the mesh size, when the centrifugal term is modelled with eq. (25). 
This result indicates that the only body force model that is simultaneously second order 
accurate and does not bring numerical artifacts into the hydrodynamic equations is the 
one derived herein, eq. (25). In this numerical test in particular one obtains (up to the 
truncation error) the exact classical parabolic velocity profile solution and also the exact 
streamwise parabolic pressure profile typical of fully developed centrifugal flows as 
depicted in fig. 1. 
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Figure 1: Analytical and numerical pressure profiles in lattice units obtained from the solution of the 
D2Q9 LB equations for Re=10 with a linear (centrifugal) acceleration. 

The solution of the three-dimensional problem, using the D3Q19 LB model, shows 
that results are no longer machine accurate. In effect the numerical data converges 
towards the analytical solution, eq. (33), with a second order rate, fig. 2. Nevertheless, 
the higher accuracy of the body force model derived herein in comparison to that 
proposed by Guo et al. [21] is clearly verified. This conclusion is depicted in fig. 2, 
where the common 

∞2L  error for the velocity field is displayed as function of the grid 
size. Concerning the pressure field, as it happened in the two-dimensional case, it 
presents a parabolic variation along the streamwise direction. 

  
Figure 2: Convergence plot of the 

∞2L  error for the velocity field as function of the grid size solution 
obtained from the D3Q19 LB equations for Re=10 with a linear (centrifugal) acceleration. The both body 
models studied were those expressed by eq. (25) – correct for steady-state hydrodynamics; and eq. (29) – 
correct for unsteady-state hydrodynamics. The convergence rate is 1.92 for body force eq. (25) and 1.83 

for body force eq. (29). 
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6.2. Steady periodic Coriolis flow 
In the second test we will focus on the LB solution of a steady periodic Coriolis flow. 

The main objective of this study is to observe the isolated effect of the Coriolis 
acceleration field on the fluid flow motion at low Reynolds number. For that reason we 
have constructed here a simplified flow model based on several assumptions. First, the 
flow is considered time-independent and the fluid incompressible. Moreover, we have 
also assumed that the flow is periodic in the flow streamwise direction, i.e. ∞=x , and 
that the flow streamwise velocity is much higher than the other two velocity 
components, i.e. . This last hypothesis allow us to neglect the Coriolis 
acceleration term in the momentum flow streamwise component, i.e. 

zyx uuu ,>>

0x22 xuz −Ω<<Ω , which makes the flow main component to be produced solely by a 
known constant body force value. Note that since the flow is periodic in the x  direction 
the centrifugal acceleration has a constant value. This allow us to estimate the error of 
the numerical model through the comparison of the flow streamwise velocity 
component against the analytical Poiseuille solution, given by eq. (33). Since the effects 
of using an incorrect body force model appear, in the recovered hydrodynamic 
equations, as body force gradients [Ref], in this case all body force models yield 
identical accuracies. The main differences occur in the other two velocity components. 
As fig 3 depicts these are no longer zero but have a vortex like behaviour. 

 

 
Figure 2: Velocity contour plots of steady periodic Coriolis flow obtained with the D3Q19 LB model 

for a grid size of 3×21×21 nodes, Ma=0.05 and Re=10. It should be noted that the results here depicted 
present similar behaviour for more refined grids; hence mesh convergence is considered to be verified. 
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In fact the transverse motion induced by the Coriolis force in this flow resembles that 
observed in the duct flow in bends. In that case, although no body force is present, it is 
the dynamic balance between the radial pressure gradient and the centrifugal force due 
to the wall curvature that produces the vortex structures known as Dean vortices. 

Since, in microfluidic applications flows are generally laminar the mixing rates are 
generally quite slow due to the fact that mixing is controlled by the molecular diffusion. 
Therefore, the use of a rotating platform allows on to use the Coriolis force to promote 
convection streams that will allow for the decrease of mixing time scales.  

6 CONCLUSIONS 
In this work it was demonstrated that when a body force term is included in LB 

equations the time-dependency of the hydrodynamic problem to be solved becomes a 
constraint of crucial importance in the formulation of the correct expression for the LB 
body force model. This means that one cannot employ the same body force model 
expression to recover correct hydrodynamic equations at both steady and unsteady-state 
flow regimes. This happens because it is not possible to find a single LB body force 
expression whose second order moment exactly balances the viscous stress tensor at the 
two time regimes, since this last term has two different forms depending on whether the 
hydrodynamic problem to be solved is steady or unsteady. The Chapman-Enskog 
analysis demonstrates that the body force model generally accepted as being the correct 
one for isothermal incompressible hydrodynamic problems, i.e. eq. (29), introduces 
non-hydrodynamic error terms when a time-independent solution is sought. For 
recovering correct steady-state macroscopic equations the LB body force model should 
have a constant second order moment value as indicated by eq. (25). 

Based on this result the LB equations were written in a non-inertial reference frame 
and two constructed benchmark flow tests were studied: (1) a steady centrifugal flow 
and (2) a steady Coriolis flow. With these two examples two important conclusions 
were observed. First, in the steady fully developed centrifugal flow it was verified that 
the LB body force model derived herein yields, as the theoretical analysis predicted, the 
most accurate results. Second, it was verified that, even for low Reynolds number, the 
use of a microfluidic device in a rotational reference frame can be advantageous as the 
Coriolis acceleration term will induce transverse convection streams that will allow for 
the promotion and increase of the, typically, slow flow mixing rates. 

Further studies on this subject are still required. For instance studies focusing on: (1) 
the implement of more general outflow boundary conditions, which account for the 
body force presence; (2) the influence of different rotational speeds in the fluid flow 
behaviour, in particular in the flow vortex structures; and also (3) the extension of this 
study into more complex geometries as those typically found in Lab-on-a-CD prototype 
devices; will surely bring a deeper insight into this field.  
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