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Abstract. A system of fluid dynamic equations is derived by using Mott-Smith 
distribution function to study the structure of shock wave in a neutral, monatomic gas of 
Maxwell molecules. The predicted shock solutions using the newly proposed formalism 
are presented and compared with the experimental data, direct-simulation Monte Carlo 
(DSMC) solution and the solutions predicted by other existing theories for Mach 
numbers M<10. The density, temperature, heat flux profiles and shock thickness 
calculated at different Mach numbers have been shown to have good agreement with 
the experimental and DSMC solutions. In addition, the predicted shock thickness is in 
good agreement with the DSMC simulation result at low Mach numbers.
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1 INTRODUCTION

Normal shock wave is an example of highly non-equilibrium flow. An important
parameter describing the non-equilibrium properties of the gas is Knudsen number, 
which can be defined in a shock wave as a relation between the mean free path and 
shock thickness. In the shock wave macroscopic properties of the gas change very rapid
within a short distance, which is about several mean free paths and the Knudsen number 
becomes large.

The shock wave structure can not be described well by fluid dynamic equations in 
the sense that Navier-Stokes equations [1] give good agreement with the experimental 
data [2] only at Mach numbers M<1.3. Burnett, super Burnett and their modification [3]
improved the results, but their theories can be only applied to the cases with Mach 
numbers 3M  . When applying the Burnett and super Burnett equations some non-
physical oscillations were found to appear in the solution even at M=2. In Grad method 
and extended irreversible thermodynamics [4] a large number of equations must be 
solved to get a reasonable accuracy. Grad’s 13-moment method was succeeded to 
simulate shock profile below the critical value CM =1.65. In [5] it was mentioned that 

one needs up to 680 moments (64 one-dimensional equations) to calculate a smooth 
shock structure for M=1.8 that fits well to the experimental data. In case of strong 
shocks the Knudsen number becomes large. With the increasing number of moments in 
extended thermodynamics [4] the solution converges rather slowly. Therefore, a large 
number of moments is required to describe the processes at large Knudsen numbers.

Good agreement with the experimental measurements was obtained on the basis of 
bimodal distribution function [6]. Mott-Smith pointed out that the distribution function 
in a strong shock wave is bimodal and can be expressed by 0 1( ) (1 ( ))f a x f a x f   , 

where 0f and 1f are the local-equilibrium distribution functions for describing the 
supersonic and subsonic flows and a(x) is the unknown quantity. Because of its 
simplicity and correct prediction of shock thickness at large Mach numbers it was 
applied to several shock formation problems, including the shock structure in dense 
gases and gas mixtures, relativistic shocks, plasma problem [6-9]. However, there exist 
several nontrivial deficiencies in this theory [9]. The first drawback is that there is no 
unique way that is currently available to determine the unknown quantity a(x), which 
needs to be determined from a moment equation given by the Boltzmann equation. The 
choice of velocity moment, while it can be arbitrary, can greatly affect the predicted 
result in the sense that the computed shock thickness can be different by an amount of 
25% [6]. Bashkirov and Orlov [10] used nonanalitical moments in velocity space and 
their results can have a difference about 80-100%. As a result, a better procedure should 
be adopted. The second deficiency is attributed to the incorrect prediction of shock 
thickness at low Mach numbers.

The Mott-Smith method gives a reasonable agreement with the experimental data 
and the Monte-Carlo simulation result for strong shocks [11]. As a result, we use the 
Mott-Smith distribution function in this paper to derive six fluid dynamic equations in 
one-dimensional domain. By virtue of the system of fluid dynamic equations, the 
problem of choosing an appropriate velocity moment will be automatically resolved.
Use of a system of six equations instead of four equations in Mott-Smith method allows 
us to get rid of the incorrect shock structure prediction at low Mach numbers and gives 
us some additional information about the behaviors of temperature, heat flux, pressure
in the whole range of Mach numbers. We will use the collision integral for Maxwell 
molecules [12]. For the case of real particle interaction potential, we will take the 
temperature dependent viscosity into account.
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2 FLUID DYNAMICS EQUATIONS

The kinetic equation in one-dimensional case takes the following form

B
X

f f
V J

t x

 
 

 
(1)

where f is the distribution function of a gas, t the time, and BJ the integral of 
collisions. In this study we will consider the case of Maxwell molecules. The following 
subset of basic functions is used:
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In the above, V U  
  

represents the peculiar velocity and ( ,0,0)U U


is the stream 
velocity.

Let us define a scalar product in velocity space as follows:

,  I I If dV f      


The moments of distribution function are related to the thermodynamic variables as 
follows:
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Here m denotes the mass of a molecule, k the Boltzmann constant,  the mass density, 

T the temperature, XXP the diagonal component of pressure tensor, Xq the vertical 

component of heat flow, and Xq the new parameter having a dimension as the heat 

flow.
One can project the kinetic equation (1) on the velocity moments (2) to get the 

following system of fluid dynamic equations:
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where p denotes the pressure and  is the viscosity. The above system of equations 

contains 1J and 2J , which are given by
2 2

1 xJ dV f  


, 4 4
2 x xJ dV f   


(5)

To close the above system of equations in Eq. (4), we have to prescribe the 
distribution function. In Refs. [13] and [14] the problem of wave disturbance 
propagation was studied in a rarefied gas within the context of the above system. To 
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close the system of differential equations in Eq. (4), a piecewise continuous distribution 
function was used. The agreement with experimental data was good for the phase 
velocity at all Knudsen numbers. In this study we will choose the bimodal distribution 
function [6], one describing the subsonic and the other accounting for the supersonic 
flow:

0 1f f f  (6)

where
3/ 2 2

0
0 0

0 0

( )
( ) exp

2 2

m V Um
f n x

kT kT
   

   
   

 

(7)

and similarly for 1f with the subscript 0 being replaced by the subscript 1 throughout. 

The parameters 0 1 1 1 0 0, , ( ,0,0),  ( ,0,0)T T U U U U 
 

are assumed to be independent of x

and t. We’ll introduce them in the next section through the Rankine-Hugoniot relations.
According to the definitions of density and velocity in (3), we can get the following two 
expressions through the employed distribution function
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The expressions of the integrals 1,2J shown in Eq. (5) are given below
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where 2 2 /TV kT m .

3 SHOCK STRUCTURE

The shock wave, which is stationary in the steady frame of reference under current 
investigation, connects the equilibrium states of density 0 , velocity 0U and

temperature 0T ahead of the shock at x  and the equilibrium quantities 1 1 1, ,U T
behind the shock at x  . It is convenient to use the dimensionless equations for 
system (4), where the upstream values are used to define the following dimensionless 
quantities:

0 0 00

3/ 2
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/ ( / )
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U T x
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q
q
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     

  
(9)

where /xxp kT m   and 0 is the mean free path. The mean free path given in 
Refs. [2,3,12] will be adopted in this study
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The first three equations, cast in their dimensionless forms, in the differential system (4) 
are as follows:
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Far ahead of and behind the shock the gas is in equilibrium with 0 1 0   and 

0 1 0q q  . The dimensionless quantities before the shock at x  are given by:

0 1T  , 0 1  , 0 0

5

3
U M (12)

Integration of all equations in Eq. (11) between the two equilibrium states gives:
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It is worth noting that use of the above equations, which are well known as the Rankine-
Hugoniot relations, enables us to prescribe the boundary conditions.

The number of equations can be reduced further by integrating equations in Eq. (11) 
from the upstream state to an arbitrary location x in the shock. By taking into account
Eq. (12), we get:
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The following relations can be obtained by solving the above three equations in (14):
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Then we substitute the relations in Eq. (15) into the differential system (4) to get the 
following system of three coupled ordinary differential equations for governing the 
transport of velocity U, temperature T and q below:
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where A is the 3*3 matrix with the nonlinear components. The boundary conditions for 
the investigated system are specified as

0 1,T  0 0 0

5
, 0

3
U M q  at x  (17)

At x  , we impose
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The system of equations was derived on the basis of Gross-Jackson model of Boltzmann 
equation that corresponds to the special case of Maxwell molecules. The corresponding 
viscosity is proportional to the temperature following the expression given below with 
s=1:

0
0

s
T

T
 

 
  

 
(19)

It is well known that the viscosity also takes this form for other interaction potentials 
just with an adjustment of the exponent s [2,11,12]. In particular, s =1/2 is chosen for 
hard sphere and s ≈ 0.72 for argon [2,15]. Other authors [15] advised to use the value s 
≈ 0.68. We will, as a result, use these two values to see which of them agrees better with 
experiment. According to Eqs. (10) and (19), one gets

1
0

0
0.783/

ST

kT m
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 (20)

4 COMPARISON STUDY AND DISCUSSION OF RESULTS 

To predict the temperature and velocity in shock profiles from the proposed system of 
ordinary differential equations in Eq. (16), subjected to boundary conditions (17) and 
(18), the computational domain is descretized into N+2 positions ix with 

0,1,2..., 1i N  and step size x . The following approximation is used at the node i :

1 1

2
i i

i

T TdT

dx x
 




Calculation of the solutions at positions 1x and Nx requires to know the field values at 

0x and 1Nx  , which are given by (17), (18). So we can derive 3N coupled algebraic 

equations for the N unknown values for U, T and q . The resulting nonlinear system 
was solved with the appropriate tanh( )x curve being considered as an initial guess for 
the velocity and temperature (similar to [3]). The predicted temperature and density are 
presented in a normalized form:

0 0

1 0 1 0

,
T T n n

T T n n

 
 

One of the main parameters which can well describe the shape of shock profile is the 
shock thickness. The shock thickness is defined as
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The inverse thickness can be derived from Eq. (21) as 
4

 

 according the Mott-Smith 

theory. Another quantity is the temperature-density separation T , which is defined as 

the distance between the middle point of temperature and density.
In Fig. 1 we compare the results of this work with the results of other authors for the 

inverse density thickness. For weak shocks the agreement between our results and 
Monte-Carlo simulation [16] is excellent. Mott-Smith theory [6] predicts a relatively
larger thickness at low Mach numbers.

Figure 1: Comparison of the predicted inverse density thicknesses against the Mach number. 
The results of this paper are compared with those based on different theories: Navier-Stokes [1], 

Mott-Smith [6], DSMC[16].

The predicted values of the temperature-density separation T  shown for Maxwell 

molecules in Fig. 2 are compared well with the Monte-Carlo simulations [16], Mott-
Smith theory [6] and Navier-Stokes results [1]. Our results are in good agreement with 
the DSMC calculation in the range of Mach numbers 1<M<2.5. The predicted Navier-
Stokes solution is correct only at M<1.3 and the solution calculated by Mott-Smith 
theory gives a good agreement with the DSMC values simply at 2.2<M<2.5.

Figure 2: The plot of the predicted temperature-density separation against the Mach number.
Notation – see Fig. 1.
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In Figs. 3-4 we compare our results for the heat flux profiles with DSMC simulation
results [17] for Maxwell molecules, Navier-Stokes results and Mott-Smith results at 
Mach numbers M=1.7, 10. Heat flux is a higher moment of the distribution function and 
the difference between theories is clearly seen. The normalized density of our solutions 
is exactly 0.5 at the coordinate origin x=0 at any Mach number. Navier-Stokes solutions
fail to describe shock profiles at Mach numbers M>1.7. At M=1.7 the predicted heat 
flux of Mott-Smith theory is larger than the Nanbu DSMC simulation values. At M>3 
Mott-Smith prediction of heat flux lies below the DSMC simulation results. Our results 
agree well with the DSMC simulation for the heat flux profile. 

Figure 3: Comparison of the heat flux profiles plotted as a function of the distance.
Comparison of the currently simulated results with the DSMC simulation results [17], 

Navier-Stokes [1] and Mott-Smith [6] results at M=1.7.

Figure 4: Comparison of the heat flux profiles plotted as a function of the distance at M=10.

The temperature profile in Fig. 5 shows its maximum within the shock layer, which 
can’t be predicted by Mott-Smith theory and Navier-Stokes equations. The temperature 
profile becomes nonmonotonic at a Mach numbers M>3. It is well known that such a 
predicted temperature profile is not a mathematical artifact but is rather the result of 
atomistic dynamics. In this article we use six fluid dynamic equations, while Mott-
Smith used four equations. We can see that the increasing number of equations helps us 
to improve the prediction of shock profile.
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Figure 5.Comparison of the predicted temperature profiles at M=10. 
Notation – see Fig. 3. Note that temperature shows an overshot.

It is worth noting that the predicted temperature-density separation is smaller for the 
Mott-Smith theory than DSMC value. The temperature-density separation by Mott-
Smith theory 05.89T   at M=10, while in our theory 07.44T   which agrees 

with DSMC value [17]. For the Navier-Stokes equations we got the value 03.68T    .

In Fig. 6 the predicted values of temperature-density separation are compared with the 
Monte-Carlo simulation results [17]. Our results agree well with DSMC calculation in 
the range of Mach numbers 1<M<10. Mott-Smith theory gives good agreement with 
DSMC simulation only in the range of Mach numbers 2.2<M<2.7.

Figure 6. The plot of the predicted temperature-density separation against the Mach number. 
Diamonds – DSMC results of Pham-Van-Diep [16], circles-DSMC results of Nanbu [17].

In Fig. 7 the results computed from the derived system are compared with the 
measurements of the inverse shock thickness for argon [2]. The values s=0.72 and 
s=0.68 chosen for the viscosity exponent yield a good agreement with the experimental 
data. We estimate that s=0.70 would provide the best agreement with experimental data.
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Figure 7. Comparison of the predicted inverse density thicknesses with the experimental data – circles.

5 CONCLUSION

A system of fluid dynamic equations was derived on the basis of Mott-Smith 
distribution function for the Maxwell molecules. On the basis of the derived system, the 
structure of shock wave in a neutral monatomic gas was studied. The predicted shock 
thickness is seen to have a good agreement with the Monte-Carlo simulation at all Mach 
numbers. The predicted inverse density thickness for Argon is also in good agreement 
with experimental data. In contrast to the Mott-Smith theory, the derived system 
predicts correct shock thickness, temperature-density separation and correct shock 
profile at a low Mach number. The Mott-Smith solution is qualitatively correct for 
M=2~3. At other Mach numbers their predicted errors are large. Our predicted 
temperature and heat flux profiles agree well with the Monte-Carlo simulation in the 
investigated range of Mach numbers 1.7<M<10. In extended thermodynamics, many 
moments are required in order to get a predicted solution with good agreement with the 
experimental result. With the Mott-Smith closure, a fairly good agreement with the 
experimental and the Monte-Carlo simulation results can be obtained even from a 
differential system with much fewer equations. The proposed procedure can be applied 
for the further development of processes in polyatomic gases, gas mixtures, plasma and 
problem in astrophysics.
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