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Abstract. An alternate formulation of the pressure Poisson equation expressed using the
velocity and vorticity variables is employed to obtain a variationally consistent regulariza-
tion of the incompressible Navier–Stokes equations. A discrete version of the regularized
system leads to a stabilized finite element formulation which may be discretized conve-
niently using equal-order interpolation elements. In this paper, the usefulness of the finite
element formulation is demonstrated experimentally in connection with the rotational form
of the Navier–Stokes system, where the ability to resolve the associated pressure variable
more accurately than possible by using standard mixed-interpolation elements may be par-
ticularly beneficial. The experimental results obtained by using test problems that have
known exact solutions show that the optimal orders of convergence are reached for a large
range of stabilization parameter values. The robustness with respect to variations of other
problem or discretization parameters, such as the Reynolds number and the time step, is
also illustrated. In addition, benchmark computations in the case of flow over a cylinder
show that enabling equal-order interpolation via the stabilization is a practical alternative
to alleviate the deficiency of certain mixed-interpolation elements to produce qualitatively
correct flow features, such as vortex shedding, on coarse meshes.
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1 INTRODUCTION

Consider finding the velocity v′(x′, t′) and pressure p′(x′, t′) governed by the incom-
pressible Navier-Stokes equations

S
∂v′

∂t′
+ (v′ · ∇′)v′ − 1

Re
∆′v′ + E∇′p′ = f ′ in Ω′ × (0, T ′),

∇′ · v′ = 0 in Ω′ × (0, T ′),
(1)

which have been made dimensionless by introducing the scaled variables

x′ =
x

L
, t′ =

t

T
, v′ =

v

V
, p′ =

p

p0

. (2)

Here L and T define the length and time scales, V and p0 are typical values of the velocity
and pressure, ideally chosen such that v′ ∼ p′ = O(1), while the Strouhal number S, the
Reynolds number Re and the Euler number E are expressed in terms of the characteristic
values as

S = L/(TV ), Re = ρV L/µ, E = p0/(ρV 2), (3)

with µ and ρ the fluid viscosity and density.
An alternate formulation of the Navier–Stokes system is obtained by expressing the

convection term in the rotational form.1 The field equations corresponding to this formu-
lation may be written as

S
∂v′

∂t′
+ ω′ × v′ − 1

Re
∆′v′ +∇′P ′ = f ′,

ω′ −∇′ × v′ = 0,

∇′ · v′ = 0,

(4)

where

P ′ = Ep′ +
1

2
v′ · v′ (5)

is the dimensionless total pressure. In the following, we assume that mixed boundary
conditions are imposed so that the velocity and the dimensionless surface traction s′ are
given on complementary parts as

v′ = v̂ on Γ′
D (6)

and

s′ = (−P ′ +
1

2
v′ · v′)n +

2

Re
D′(v′)n = 0 on Γ′

N = ∂Ω′\Γ′
D. (7)

Here D′(v′) is the symmetric part of the velocity gradient, and n is the outward unit
normal vector to the boundary ∂Ω′ of the d-dimensional body Ω′.
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It is well known that the requirement of inf-sup stability2 prevents the approximation of
the standard weak formulation of the Navier–Stokes system (1) by using equal-order finite
element expansions of both unknowns. However, equal-order interpolation elements that
are very appealing from the viewpoint of computer implementation are enabled by using
stabilized methods which employ regularization of the weak formulation. While there is
now an extensive literature on stabilized methods for the incompressible Navier–Stokes
equations in the standard convection form,3 the subject of finite element approximation
of the rotational form has gained less attention and remains to be exhausted.

Obviously, the requirement of inf-sup stability arises also when the rotational form
is employed. Despite having formal similarity, inf-sup stable discretizations of the rota-
tional form have been observed to display a less accurate error behavior than those of
the standard convection form. As noted recently, this behavior may be explained, at
least partially, by the fact that the total pressure solution is often more detailed than the
standard pressure and hence inf-sup stable discretizations — which typically use a higher
dimensional approximation for the velocity compared to that of the pressure variable —
may leave the discrete total pressure inaccurate.4 We note that such a disparity does not
arise when the same approximation space is used for the discretization of both the velocity
and total pressure, so utilizing stabilized methods seems to be especially well-suited for
approximating the rotational form.

We note that in practice the computational solution of the rotational form as given by
(4) does not necessitate taking the vorticity ω′ to be an additional unknown. However,
nonstandard ways to approximate the system emerge when the vorticity is treated as an
auxiliary variable. In particular, if the vorticity and divergence-free velocity are available
and the solution generally has sufficient regularity, the pressure field associated with the
incompressible flow equations can be generated using the weak formulation of a consistent
pressure equation. In this study, we shall explore ways to utilize such a principle in the
formulation of consistently stabilized methods. The regularization strategy we consider is
described in Section 2. Then, in Section 3, computational convergence tests are performed
in the case of both the stationary and evolutionary versions of the Navier–Stokes equations
by utilizing manufactured solutions. The optimal orders of convergence which are demon-
strated experimentally for large ranges of regularization parameter and other problem or
discretization parameter values illustrate the potential of the method we propose.

Standard notation will be used. For brevity the L2 inner product is denoted by (·, ·),
with the domain of integration indicated using a subscript if different from Ω′. Similarly,
the corresponding norm is denoted by || · ||.

2 A REGULARIZED FORMULATION

If the solution of the Navier–Stokes problem is so regular that

v′ ∈ L2(0, T ′; H2(Ω′)d) ∩H1(0, T ′; L2(Ω′)d),

∇′P ′ ∈ L2(0, T ′; L2(Ω′)d),
(8)

3



Mika Malinen

then, by noting that −∆′v′ = ∇′ ×∇′ × v′ −∇′(∇′ · v′) = ∇′ ×ω′, the solution is found
to satisfy

(∇′P ′ + ω′ × v′ − f ′,∇′φ′) +
1

Re
(∇′ × ω′,∇′φ′) + (S

∂v′

∂t′
,∇′φ′) = 0 (9)

for any φ′ ∈ H1(Ω′). Thus, in view of (9), we may regularize the variational formulation
of the problem by modifying the weak formulation of the incompressibility constraint as

−(∇′ · v′, φ′)− ε(∇′P ′ + ω′ × v′ − f ′,∇′φ′)− ε

Re
(∇′ × ω′,∇′φ′)

− ε(S
∂v′

∂t′
,∇′φ′) = 0,

(10)

where ε is a dimensionless parameter chosen to be so small that the incompressibility
constraint is essentially respected.

We are thus led to considering the following regularized problem: Find v′(·, t′) ∈ X,
ω′(·, t′) ∈ H1(Ω′) and P ′(·, t′) ∈ H1(Ω′) such that

(S
∂v′

∂t′
, z′) + ((∇′ × v′)× v′, z′) +

2

Re
(D′(v′),D′(z′))− (P ′,∇′ · z′)

+1/2(v′ · v′, z′ · n)Γ′
N

= (f ′, z′),

(ω′, η′)− (∇′ × v′, η′) = 0,

−(∇′ · v′, φ′)− ε(∇′P ′ + ω′ × v′ − f ′,∇′φ′)− ε

Re
(∇′ × ω′,∇′φ′)

−ε(S
∂v′

∂t′
,∇′φ′) = 0

(11)

for all (z′, η′, φ′) ∈ Z ×H1(Ω′) ×H1(Ω′) and t′ ∈ (0, T ′). Here the velocity solution and
test spaces X and Z are subsets of H1(Ω′)d consisting of functions which on the part Γ′

D

satisfy the constraints v′ = v̂ and z′ = 0, respectively. The variational consistency of the
formulation (11) is emphasized; strong solutions with the supposed regularity (8) exactly
satisfy the weak formulation (11).

Finite element approximations of the regularized problem can be obtained in a stan-
dard manner by replacing the infinite-dimensional spaces by chosen finite element spaces.
Fully discrete approximation finally follows by time discretization. Our experimental ob-
servation is that the regularized formulation may be discretized in a stable way by using
equal-order continuous approximations for all the unknowns. It also appears that the
time-accuracy may be retained in a natural manner. We note that when ε = 0, the ve-
locity and pressure approximations are unaffected by the vorticity approximation, so in
this case the same (possibly inf-sup deficient) approximations could also be obtained by
using the discrete version of the rotational formulation in the velocity and total pressure
variables.
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Before turning to experimental results, we close this section by noting that the accuracy
of the vorticity approximation is likely to be a critical factor so that the discrete version
of (9) is useful. In the lowest-order case the finite element approximation of ∇′ ×ω′ may
not be convergent and using a mesh-dependent regularization parameter may therefore be
necessary in order to ensure the asymptotic convergence of the stabilized finite element
solution.

3 EXPERIMENTAL RESULTS

In this section, convergence of the regularized scheme based on equal-order elements
is explored experimentally. First, the asymptotic order of convergence is studied in the
case of the steady version of the Navier–Stokes equations on a two-dimensional domain
Ω. The question of an optimal choice of the stabilization parameter ε is also considered
in this setting. The convergence of the evolutionary version is explored after this.

In the following, the order of piecewise polynomial approximation and the dimensionless
length of the longest edge in the mesh will be denoted by m and h, respectively. Our
intention here is to keep errors arising from the nonlinear iteration small by using a
stringent convergence tolerance. Therefore, the nonlinear iteration is terminated when
the ratio of the vector 2-norm of the nonlinear residual to the right-hand side 2-norm is
less than 10−10.

3.1 Convergence of the steady-state version: quadratic approximation

To begin with we consider the steady Navier–Stokes problem for which the solution is

v1 =
p0L

µ
sin(

x1

L
) sin(

x2

L
+ 1),

v2 =
p0L

µ
cos(

x1

L
) cos(

x2

L
+ 1),

p = 2p0 cos(
x1

L
) sin(

x2

L
+ 1)

(12)

on Ω = (0, L) × (0, L). This manufactured solution satisfies a zero traction condition on
the boundary x1 = 0. We now take L = 1, ρ = 1, p0 = 1, and V = p0L/µ. Then, given
the viscosity µ, we have Re = 1/µ2 and E = 1/Re. In addition, the components of the
body force vector are accordingly taken to be

f ′
1 = sin(x′

1) cos(x′
1),

f ′
2 = (2/Re + 2E) cos(x′

1) cos(x′
2 + 1)− cos(x′

2 + 1) sin(x′
2 + 1).

(13)

We focus here on the use of quadratic approximation, i.e. we take m = 2. Also, we start
by considering the convergence of the regularized scheme when Re = 1. In this case the
viscous, convective and pressure terms all have the same order of magnitude, so observing
an optimal asymptotic convergence as the mesh size h decreases is likely to indicate that
all terms in the discrete Navier–Stokes problem are resolved with optimal accuracy.
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In Figure 1 we display the L2 norms of the errors of velocity and total pressure approx-
imations on a sequence of nonstructured triangular meshes. In this experiment uniform
meshes are used, and the stabilization parameter is varied as ε = hk/100, with k = 0, 1, 2.
We see that especially the error of the pressure is sensitive with respect to the order of
the h-scaling of the stabilization parameter. For the choice ε = h/100 the velocity and
pressure errors both are O(h3) and thus show optimal accuracy. When ε = 1/100, the
asymptotic errors appear to be O(h2). Importantly, although this convergence order is
not optimal, over-stabilization by neglecting the h-dependent weight in the regularization
parameter does not thus sacrifice the asymptotic validity of the computational model as
h → 0.

The sensitivity with respect to a change of the stabilization parameter is explored
further in Figure 2 where the total pressure error is shown for the choice ε = Cεh, with Cε

being a parameter. We have max(Cε)/ min(Cε) = 20 for the values used in the experiment
and yet the pressure error is more or less the same (it is noted that the velocity error,
which is not shown, remains essentially unaffected by these variations). The robustness
observed suggests also that when nonuniform meshes are employed, using a “right” mesh
size h in the expression of the stabilization parameter may not be excessively important
for the performance.

Obviously, using uniform meshes is unrealistic in practice. Although the experiments
given so far demonstrate that the error behavior is not very sensitive with respect to the
choice of the stabilization parameter, a concern arises whether associating the mesh size h
with the longest edge in the mesh leads to over-stabilization and non-optimal accuracy in
regions where the mesh size is considerably smaller. For example, in a realistic case, one
may be interested in computing the surface traction on a boundary to a high accuracy,
while a less fine mesh may be used in other parts where a high resolution is not of an
interest. To imitate such a situation, we now consider three meshes which all have h = 1/5
and which are refined towards the edge where the vanishing surface traction condition is
imposed. The discretization mesh size on the traction boundary is taken to be hK = 1/50,
1/100 and 1/200, so that the ratio of the longest element edge to the shortest element
edge on the mesh varies as θ = 10, 20, 40. In Table 1 we give the vector 2-norm of the
total contact force t exerted on the boundary x1 = 0 when the constant stabilization
parameter ε = 5h/1000 is used. We see that the total force is O(h2

K) which is a locally
optimal behavior as the computation of the surface force requires evaluating the velocity
gradient.

θ = 10 θ = 20 θ = 40
|t| 4.6689E-06 1.1420E-06 2.8068E-07

||v′ − v′
h|| 1.2052E-05 8.7003E-06 1.2227E-05

||P ′ − P ′
h|| 9.8013E-05 5.9788E-05 1.2898E-04

Table 1: The vector 2-norm of the contact force t and the L2 norms of the velocity and total pressure
errors when a mesh of grading degree θ is used.
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Figure 1: The L2 norms of the velocity and total pressure errors in the case of the steady problem for
Re = 1. The stabilization parameter is varied as ε = hk/100, k = 0, 1, 2, and m = 2.
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Figure 2: The sensitivity of the total pressure error (m = 2) with respect to the value of the stabilization
parameter in the case of the steady problem for Re = 1.

Finally, the robustness with respect to variations of the Reynolds number is illustrated
in Figure 3 where the L2 norms of the total pressure and velocity errors on a sequence
of uniform meshes are displayed for Re = 1 and Re = 100. We see that both the errors
are essentially unaffected by the Reynolds number. An increasing error of the standard
pressure approximation p′h obtained by a post-processing computation

p′h =
1

E
(P ′

h −
1

2
v′

h · v′
h) = Re(P ′

h −
1

2
v′

h · v′
h) (14)

was nevertheless observed. Indeed, (14) implies that when the Euler number decreases,
smaller errors in v′

h and P ′
h are required in order to obtain the same accuracy of p′h .

3.2 Convergence of the steady-state version: linear approximation

In this section we repeat some of the convergence tests when linear approximation
is used, i.e. we now take m = 1. First, Figure 4 displays results corresponding to an
experiment similar to that which is considered in Figure 1. For reference we also show the
velocity and total pressure errors when the rotational form of the Navier-Stokes system
in the velocity and pressure variables is discretized using the MINI finite element. We see
that the approximations of the velocity and pressure are again optimally convergent with
order m+1 when the regularization parameter is scaled using the weight h. Furthermore,
an additional test showed that a slightly better convergence was again possible if the
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Figure 3: The sensitivity of the total pressure and velocity errors (m = 2 and ε = 5h/1000) with respect
to variations of the Reynolds number.

regularization parameter was taken to be ε = 5h/1000 instead of the value ε = h/100.
We note that the MINI element and the regularized scheme with the choice ε = h2/100
display more or less the same error behavior with the error of the pressure being O(h3/2).
It is also noted that the poor behavior seen in the case of ε = 1/100 is expected as the
approximation of ∇′ × ω′ may not be convergent in the case of linear approximation.

The sensitivity with respect to a change of the Reynolds number is explored in Fig-
ure 5. Interestingly, the quality of the total pressure approximation improves clearly as the
Reynolds number increases. This behavior may be explained by the fact that the relative
importance of the poorly resolved stabilization term depending on ∇′×ω′

h diminishes for
larger Reynolds numbers.

3.3 Convergence of the evolutionary version

We now consider the time-dependent problem for which the solution is

v1 =
p0L

µ
sin(

x1

L
) sin(

x2

L
+

t

T
),

v2 =
p0L

µ
cos(

x1

L
) cos(

x2

L
+

t

T
),

p = 2p0 cos(
x1

L
) sin(

x2

L
+

t

T
)

(15)
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Figure 4: The L2 norms of the velocity and total pressure errors in the case of the steady problem when
Re = 1 and m = 1. The stabilization parameter for the regularized method is varied as ε = hk/100,
k = 0, 1, 2.
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Figure 5: The sensitivity of the total pressure and velocity errors (m = 1 and ε = 5h/1000) with respect
to variations of the Reynolds number.

on Ω = (0, L)×(0, L). In analogy to the steady state problem, the zero traction boundary
condition is satisfied on the edge x1 = 0. Here we set T = 1 and again take L = 1, ρ = 1,
p0 = 1, and V = p0L/µ. The Reynolds number and the Euler number are then defined
as for the steady problem, and the Strouhal number is expressed in terms of the viscosity
as S = µ. Also, the components of the body force are given by

f ′
1 = S sin(x′

1) cos(x′
2 + t′) + sin(x′

1) cos(x′
1),

f ′
2 = −S cos(x′

1) sin(x′
2 + t′) + (2/Re + 2E) cos(x′

1) cos(x′
2 + t′)

− cos(x′
2 + t′) sin(x′

2 + t′).

(16)

We note that the instantaneous solution at t′ = 1 is the same as the steady state solution
considered in the convergence study of the steady version.

For the time discretization the fully implicit BDF(2) is used. Throughout the exper-
iments considered in the following, we use the stabilization parameter ε = 5h/1000 and
take m = 2. To begin with, we verify that the added stabilization terms do not have an
effect on the time accuracy. To demonstrate this, we use a uniform mesh with h = 1/40
and employ time steps satisfying ∆t′ ≤ 1/80. In this regime the velocity and total pressure
errors are dominated by the spatial discretization error. The velocity and total pressure
errors at t′ = 1 which are recorded in Table 2 show that both the errors are of order 2.
That is, we see the expected behavior that when ∆t′ is halved, the error decreases by a
factor of about 4.
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∆t′ = 1/10 ∆t′ = 1/20 ∆t′ = 1/40 ∆t′ = 1/80
||v′ − v′

h|| 2.9592E-05 7.4450E-06 1.8693E-06 4.8136E-07
||P ′ − P ′

h|| 7.5811E-04 1.8989E-04 4.7517E-05 1.1925E-05

Table 2: The L2 norms of the velocity and total pressure errors at t′ = 1 for different time step sizes
(h = 1/40 and m = 2).

Next we use a small time step so that the errors become dominated by the spatial
discretization. The L2 norms of the velocity and total pressure errors given in Table 3 for
∆t′ = 1/320 show that both approximations are again optimally convergent with order
m + 1. Thus, the order of convergence with respect to the spatial discretization appears
to be optimal for both the steady and evolutionary versions of the equations when the
stabilization parameter is taken to be

ε =
5

1000
h. (17)

Importantly, it also appears that using very small time steps does not produce any anoma-
lies of the type reported in the related literature on stabilized finite element methods.5 If
we take h = 1/5 and ∆t′ = 1/2560, the L2 norms of the velocity and total pressure errors
are 5.8096 ·10−5 and 3.8742 ·10−4, respectively, which agree with the corresponding values
given in Table 3 to four digits even though the ratio h2/∆t′ is as large as 102.4.

h = 1/5 h = 1/10 h = 1/20 h = 1/40
||v′ − v′

h|| 5.8096E-05 8.0320E-06 9.5359E-07 1.2047E-07
||P ′ − P ′

h|| 3.8741E-04 6.0984E-05 7.6548E-06 1.2522E-06

Table 3: The L2 norms of the velocity and total pressure errors at t′ = 1 when ∆t′ = 1/320, m = 2 and
a sequence of uniformly refined meshes is used.

3.4 Flow around a cylinder

To demonstrate the utility of the ideas further, we finally consider a more realistic
problem setup and show that the regularization terms may enhance substantially the
quality of a discrete solution already on a coarse mesh. The problem we consider is a
standard benchmark case of two-dimensional flow over a circular cylinder.6 The compu-
tational domain is given by Ω = (0, 2.2 m) × (0, H) \ ΩC , where H = 0.41 m and the
boundary of the body ΩC is a circle having the diameter D = 0.1 m and the center point
at x=(0.2m,0.2m). On the inflow boundary x1 = 0 a flow profile with components

v1 = 6 sin(πt/8)(1− x2/H)x2/H (m/s),

v2 = 0
(18)

is prescribed, while on the outflow boundary x1 = 2.2 m the normal component of the
surface traction and the tangential velocity are assumed to vanish. A zero velocity condi-
tion is imposed at the top and bottom of the channel. In addition, the fluid density and
viscosity are given by ρ = 1 kg/m3 and µ = 0.001 kg/(ms).

12



Mika Malinen

It has been demonstrated in a recent study4 that a computational model based on
the rotational form discretized by using standard inf-sup stable finite elements may fail to
produce a discrete solution which reproduces a characteristic vortex shedding phenomenon
associated with the flow problem. As noted therein, the failure may be explained, at least
partially, by the fact that the total pressure solution is basically as detailed as the velocity
solution and hence inf-sup stable discretizations, which typically use a higher dimensional
approximation for the velocity compared to that of the pressure, may leave the discrete
total pressure inaccurate. Obviously, such a disparity is naturally avoided when the same
approximation space is used for the discretization of the velocity and total pressure.

In Figure 6 a coarse mesh approximation of the total pressure at t = 5 obtained by using
inf-sup stable P2P1 approximation of the rotational form in the velocity and pressure
variables is compared with the regularized solution defined on the same triangulation
with m = 2. The contour plots shown illustrate that P2P1 approximation indeed fails to
reproduce the von Karman vortex street, while the regularized scheme is able to produce
the vortex shedding phenomenon. We note that in both simulations the fully implicit
BDF(2) time-stepping with the time step ∆t = 0.005 was employed. It should also
be noted that the dimensionless equations were not employed here. In particular, the
equation (10) may be expressed in terms of the dimensional variables as

−(∇ · v, φ)Ω − ε(ρ
∂v

∂t
+ ρω × v + µ∇× ω +∇P − f ,∇φ)Ω = 0, (19)

where

ε =
L

ρV
ε. (20)

Here V = V (t) was taken to be the maximum flow speed on the inflow boundary and the
dimensionless parameter ε was defined as in (17).

4 CONCLUDING REMARKS

The pressure Poisson equation formulations have traditionally been employed to de-
velop sequential solution methods1,7 for the incompressible Navier–Stokes equations and,
also, to recover the pressure solution in connection with the stream function-vorticity
schemes8. In this paper we have considered an alternate way to utilize a consistent pres-
sure equation in the formulation of consistently stabilized finite element methods. The
regularization idea considered has been demonstrated to be useful especially when the
rotational form of the Navier–Stokes system is used. An attraction of resulting schemes is
that the performance is not very sensitive with respect to a choice of stabilization param-
eter. In the computational experiments the optimal orders of convergence were realized
for large ranges of stabilization parameter and other problem or discretization parameter
values.

The regularization strategy considered requires that the vorticity is treated as an aux-
iliary variable. This may seem as a significant computational burden compared to using
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Figure 6: Contour plots of the total pressure approximation at t = 5 (s) on a coarse mesh displayed when
the regularized scheme with m = 2 (middle) and the P2P1 discretization of the rotational form in the
velocity and pressure variables (bottom) are employed. The P2P1 approximation fails to produce the
von Karman vortex street, traces of which are visible in the case of the regularized discretization.
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standard formulations in the velocity and pressure variables, in particular, when the equa-
tions are posed on a three-dimensional region. We note, however, that given a velocity the
continuous vorticity approximation is here computed via the L2 projection and efficient it-
erative methods for this subproblem are available. Therefore — given that the stabilization
terms affect only the divergence-free constraint and that efficient methods for the vorticity
computation exist — we expect that efficient block preconditioned solvers2,9 developed in
the context of standard velocity-pressure formulations may be extended to handle the lin-
ear systems arising here. We note that certain other stabilization strategies10,11 similarly
require handling an additional L2 projection in order to evaluate the regularization terms.
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