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Abstract. An algorithm for the solution of the velocity-vorticity formulation of the
Navier-Stokes equations will be presented. Boundary element method (BEM) based nu-
merical technique is used to solve the governing equations. Single domain BEM is em-
ployed to solve for vorticity on the boundary. Solution of vorticity and energy transport
equations is obtained via sub-domain BEM. After discretization the use of single domain
BEM results in fully populated system of linear equations, whose parameters need to be
stored in fully populated matrices. In order to avoid storage and calculation of fully pop-
ulated matrices, we employ the fast multipole method (FMM). Using FMM we obtain a
data sparse representation of the fully populated matrices and thus reduce storage, CPU
time requirements and the complexity of the problem from O(n2) to O(n log n).

The developed code has been coupled with a Lagrangian particle tracking solver. The
coupled algorithms are capable of simulation of dilute suspensions of particles in viscous
flows taking into account gravity, buoyancy, drag, pressure gradient and added mass. The
Lagrangian solver uses the Newton-Raphson method to determine the velocity of the fluid
at the location of the particle and the fourth order Runge-Kutta method to advance the
particle location and velocity through time.

The developed method was used to study behaviour of slightly buoyant and non-buoyant
particles in a lid driven cavity. We aimed at discovering cases when particles leave the
primary vortex and enter into secondary vortices, a phenomenon described in previous
experimental work. A parametric study of this phenomenon was performed. We confirmed
and extended experimental observations. It was found, that the diameter of the particle is
the crucial factor for the particle to gain entrance in the secondary vortex. The narrow
streamline corridors along the top and side walls prevent entrance of larger particles. The
limiting diameter was found to increase with the increase of the flows Reynolds number
value.

1
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1 INTRODUCTION

Dispersed two phase flows are commonly encountered in environmental flows and engi-
neering practice, especially in process engineering. Environmental flows commonly include
dispersion of solid or liquid particles in atmosphere and solid, liquid and gas particles in
hydrosphere. In process engineering, the main attraction of implementing dispersed mul-
tiphase flow systems is in a large contact area between the continuous and dispersed
phase, thus increasing the effective heat and mass transport between particles and fluid.
On the other hand, dispersed multiphase systems arise in pneumatic and slurry transport
systems, enabling effective transportation of granular material inside a process system, as
well as inside chemical reactors, as for example in crystallization and extraction processes.
In the latter case, mixing vessel with Rushton impellers is a frequently encountered pro-
cess equipment. A simplification of such a system is a driven cavity flow in a cubic cavity.
Existence of recirculation areas in corners of the cavity can effect the quality of the prod-
uct, as these areas posses characteristics of low heat and mass transfer. It is therefore an
important question, when and how do particles of various sizes and densities enter these
areas.

In this work we coupled a fluid flow solver with a Lagrangian particle tracking module.
We used the developed numerical algorithm to study particle movement in a lid driven
cavity flow. The case was experimentally studied by Tsorng et al.1 and offers an excellent
combination of a standard benchmark test case for fluid flow with praxis relevant study
of particle movement in the flow. The practical aspects refer to flow in various mixing
devices.

2 SIMULATION OF FLUID FLOW

Laminar viscous flow was simulated using a code developed by Ravnik et al.2, 3, 4.
The code solves the velocity-vorticity formulation of Navier-Stokes equations using the
boundary-domain integral method. A combination of sub-domain and single domain tech-
nique is used. Incompressible viscous Newtonian fluid with constant material properties
is considered. In velocity-vorticity formulation vorticity ~ω is defined as the curl of the
velocity ~ω = ~∇ × ~u. Both velocity and vorticity fields are divergence free. The viscous
fluid flow is governed by the kinematics equation

∇2~u + ~∇× ~ω = 0, (1)

which links the velocity and vorticity fields for every point in space and time. The kinetic
aspect of fluid movement is governed by the vorticity transport equation, written in non-
dimensional form:

∂~ω

∂t
+ (~u · ~∇)~ω = (~ω · ~∇)~u +

1

Re
∇2~ω, (2)

with the Reynolds number denoted by Re. Equation (2) equates the advective vorticity
transport on the left hand side with the vortex twisting and stretching term and the
diffusion term on the right hand side.
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The system of equations (1) and (2) is solved in a nonlinear loop of three steps. In
the first step, boundary vorticity values are calculated by solving the kinematics equation
by single domain BEM. The second step is the calculation of domain velocity values by
solving the kinematics equation by subdomain BEM and the final step is the solution of
vorticity transport equation for domain vorticity values using the boundary values from
the solution of the kinematics equation by subdomain BEM.

The boundary condition required to obtain the solution is the prescribed velocity on
the boundary. The unknown boundary conditions for the vorticity transport equation are
calculated as a part of the algorithm using single domain BEM.

2.1 Fast multipole single domain BEM

Consider an arbitrary domain Ω with a position vector ~r ∈ R3 and its boundary
Γ = ∂Ω. The integral form of the kinematics equation without derivatives of the velocity
and vorticity fields takes the following form:

c(~ξ)~v(~ξ) +

∫
Γ

~v ~∇u? · ~ndΓ =

∫
Γ

~v × (~n× ~∇)u?dΓ +

∫
Ω

(~ω × ~∇u?)dΩ, (3)

where ~ξ is the collocation point, u? = 1/4π|~r − ~ξ| is the fundamental solution of the
Laplace equation and ~n is the unit normal. In order to use the kinematics equation to
obtain boundary vorticity values, we must rewrite the equation (3) in a tangential form

by multiplying it with a normal in the source point ~n(~ξ):

c(~ξ)~n(~ξ)× ~v(~ξ) + ~n(~ξ)×
∫

Γ

~v~∇u? · ~ndΓ

= ~n(~ξ)×
∫

Γ

~v × (~n× ~∇)u?dΓ + ~n(~ξ)×
∫

Ω

(~ω × ~∇u?)dΩ. (4)

In order to write a linear system of equations for the unknown boundary vorticity values,
we set the source point into every boundary node of the whole computational domain.

In this work we use meshes made up of hexahedral domain elements and parallelepi-
pedial boundary elements. Shape functions are used to describe function variation in
elements. Quadratic interpolation is achieved by using 27 nodes per hexahedra and do-
main shape functions Φi. Boundary shape functions ϕi having 9 nodes are used within
each boundary element.

To be able to write a discrete form of the kinematics equation, the following integrals
must be calculated:

[H] =

∫
Γ

ϕi
~∇u? · ~ndΓ, [ ~H t] =

∫
Γ

ϕi(~n× ~∇)u?dΓ, [ ~D] =

∫
Ω

Φi
~∇u?dΩ. (5)

The square brackets denote integral matrices. Each collocation point location yields one
row in these matrices. The collocation point is placed into every boundary node, making
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the number of rows of matrices (5) equal to the number of boundary nodes. The number

of columns of matrices [H] and [ ~H t] is equal to the number of boundary nodes. The

domain matrices [ ~D] have the number of columns equal to the number of all nodes.
A discrete form of equation (4) is

[~n]× [H]{~v} = [~n]×
(
{~v} × [ ~H t]

)
+ [~n]×

(
{~ω} × [ ~D]

)
, (6)

where the curly brackets denote vectors of nodal values, [~n] is the matrix of nodal values

of ~n(~ξ) and the calculated c(~ξ) are added to the diagonal terms of the [H] matrix. In
order to use equation (6) to calculate boundary vorticity values, it must be rearranged so

that the boundary part of domain matrices [ ~DΓ] are moved to the left hand side and all
other matrices form the right hand side.

[~n]×
(
{~ωΓ} × [ ~DΓ]

)
= −[~n]× [H]{~v}+ [~n]×

(
{~v} × [ ~H t]

)
+ [~n]×

(
{~ωΩ} × [ ~DΩ]

)
, (7)

The domain matrices [ ~DΩ] on the right hand side take up most storage space and their

multiplication with vectors take up most CPU time. The number of elements in [ ~DΩ]
is equal to nb · nd, where nb is the number of boundary nodes and nd is the number of
domain nodes. Using the FMM we will set up an approximation of the domain matrices
[ ~D′

Ω] ≈ [ ~DΩ] whose complexity will scale as O(nd).
Let us consider the domain integrals in equation (5), which must be calculated in order

to set up [ ~DΩ]. Since for each collocation point ~ξ integrals for all domain cells must
be evaluated, we are obviously faced by a problem of quadratic complexity. The FMM,
described below, is used to reduce this complexity.

2.1.1 Series expansion

The FMM is based on the fact that it is possible to separate the variables (i.e. the

collocation point ~ξ and the domain integration point ~r) of the integral kernel of equation
(5) by series expansion. The gradient of the Laplace fundamental solution of equation (5)
is expanded into a spherical harmonics series in the following manner:

~∇u? = ~∇ 1

4π|~r − ~ξ|
=

=
∞∑
l=0

l∑
m=−l

(−1)m

2l + 1

1

ξl+1
Y −m

l (θξ, ϕξ)~∇
[
rlY m

l (θr, ϕr)
]

=

=
∞∑
l=0

l∑
m=−l

(−1)m

2l + 1

1

ξl+1
Y −m

l (θξ, ϕξ)
{

lY m
l (θr, ϕr)r

l−2~r + rl ~∇Y m
l (θr, ϕr)

}
, (8)

where Y m
l are spherical harmonics in polar coordinate system; ~r = (r, ϕr, θr) and ~ξ =

(ξ, ϕξ, θξ).
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In order for the series (8) to converge we must have r/ξ < 1. This condition is not

satisfied for all ~ξ and ~r combinations in an arbitrary domain. However, since the integral
kernel depends only on the distance between the collocation and domain points, we may
swap ~ξ and ~r in order to meet the convergence criteria. Furthermore, it is also possible
to move the origin of the coordinate system so that the series convergence is improved.

Using the above expansion, the domain integrals of equation (5) may now be written
with separate variables, as

[ ~DΩ] ≈ [ ~D′
Ω] =

L∑
l=0

l∑
m=−l

Fm
l (~ξ)

∫
Ω

Gm
l (~r)dΩ, (9)

where F and G represent the above derived relationships. We are able to approximately
calculate each entry in the domain matrices with the above sum. The number of expansion
terms nexp = (L + 1)2 in the series controls the accuracy of the approximation.

Using the series (9) instead of the direct evaluation of the integral kernel does not by
itself bring a reduction of memory. Only when (9) is used on a cluster of collocation points
and domain cells it is possible to form a data sparse approximation of a part of the domain
matrix. The clusters are formed and organized in a hierarchical tree-like structure, which
is described below.

2.1.2 Cluster trees

Let us consider a cluster of nr nearby collocation points and a cluster of nc nearby
domain cells, as illustrated in Figure 1. These correspond to a nr × nc matrix block,

~r − ~ξ

Ω

Γ

Figure 1: A problem domain shown with a cluster of collocation points ~ξ and a cluster of domain cells.

which is a part of the domain matrix. Since the variables in equation (9) are separated, it
is possible to evaluate two lower order matrix blocks (nr×nexp) and (nexp×nc) instead of
the full matrix block (nr×nc). In the first lower order matrix block expansion terms F are
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evaluated for all collocation points. In the second one integrals of expansion terms G are
evaluated for all domain cells. Multiplication of the two lower order matrix blocks gives
the full nr × nc matrix block up to an expansion error, which is defined by the number
of terms in the expansion. But this is never done; namely we store the two lower order
matrices instead of the full matrix. This technique saves memory if the amount of data,
that must be stored in the two lower order matrices, is smaller than the amount of data
in the full matrix block, i.e.

2(nrnexp + ncnexp) < nrnc; (10)

the factor 2 on the left hand side is due to the fact that spherical harmonics are complex
and must be stored as such, while real values are stored in the full matrix. As long as the
collocation node cluster and the domain cells cluster are far apart from each other the
integral kernels are slowly varying functions, so we can expect a low number of expansion
terms to yield a suitable approximation. When the clusters are nearby, they should be
smaller and a larger number of expansion terms must be used. When the clusters coincide,
i.e. the collocation nodes are a part of the integration cells, the kernels are singular. Such
cluster pairs are called inadmissible and the corresponding matrix block is evaluated in
full, not approximated with two lower order matrices.

In order to be able to build a sparse approximation of the whole domain matrix, we
must divide the collocation points and domain cells into clusters. We constructed a tree of
collocation point clusters and a tree of clusters of domain cells. The trees were constructed
in a recursive hierarchical manner. The problem domain was enclosed by a parallelepiped.
All collocation points and all of the domain cells are within this root parallelepiped. They
make up root clusters of both trees. The parallelepiped is cut in half by a plane, breaking
the root clusters into two. The cutting process is repeated recursively, so the clusters on
each level have less and less collocation points and domain cells. Each branch in the tree
of clusters has two child branches corresponding to the cluster’s domain being cut in half.
The cutting planes are parallel to the coordinate system axes, a sequence of x− y, x− z
and y − z is used. Thus three cuts are needed to cut a cube into eight equal parts. The
cutting sequence is stopped, when the number of collocation nodes and domain cells in
the cluster is so small, that the condition (10) can no longer be satisfied.

With both cluster trees in place, the next step is to pair them, so a tree of pairs of
clusters can be formed. Each branch of the collocation tree is paired with each branch
of the domain cells tree on the same level and with each branch of the domain cells tree
on the next level thus forming branches on the tree of pairs of clusters. For each pair a
decision is taken based on the admissibility criterion whether a sparse approximation for
this cluster pair is possible or not. If the pair is admissible, the branch on the tree becomes
an admissible leaf, where the two low order matrices will be calculated. If admissibility
criterion is not reached until the last level of the tree, such cluster pairs are inadmissible
and will be calculated in full and not with the sparse approximation.
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2.1.3 Admissibility criterion

The admissibility criterion is devised as follows. Let us consider one branch of the tree
of pairs of clusters, which has a cluster of collocation points and a cluster of domain cells.
Firstly, we try to find an origin of the coordinate system in nodes within the domain
cells of the cluster. We choose such origin that the ratio r/ξ is minimal for all pairs of
collocation nodes and domain cells so the series will converge as fast as possible. If the
minimal ratio is above one, series expansion for this pair of clusters is not possible. Thus
this pair is not admissible. Secondly, if the r/ξ ratio is below one, we calculate the number
of expansion terms needed to have the accuracy of calculation of the integral kernel less
than user’s prescribed criteria ε. If the number of expansion terms is low enough, so that
condition (10) is fulfilled, this cluster pair is admissible. At this point the tree of pairs of
clusters gets a leaf - no further branching is necessary.

2.1.4 Implementation

A set of routines was written to form a hierarchical tree structure with evaluated
matrices on each of the admissible or inadmissible leaves. They are capable of constructing
an approximation of the domain matrices [ ~D′

Ω], which are used to evaluate the right hand
side of the discrete kinematics system of equations (7). The advantages of using the

approximation [ ~D′
Ω] instead of the fully populated [ ~DΩ] are summarized in the following

points.

• Since we have taken careful care of that the amount of data required to store ma-
trices in all admissible leaves is smaller than data storage of their fully populated
counterparts, we know that the memory required to store the FMM sparse approx-
imation of the domain matrices [ ~D′

Ω] will be less than the memory required to store

[ ~DΩ].

• Evaluation of the two lower order matrices for each admissible leaf is computation-
ally less expensive than the computation of their full matrix block counterpart. For
one, there are less matrix elements to evaluate; secondly one of the low-order ma-
trices holds values only (see equation (9)) and not integrals. The elements of the
second low-order matrix are integrals of slowly varying functions, thus less effort is
needed to evaluate them.

• We are approximating three domain matrices, each holding integrals of one compo-
nent of the gradient of the fundamental solution. Since one of the low-order matrices
in admissible leaves holds values independent of ~r, they are also independent of the
gradient direction. Thus only one set of these matrices, which is common for all
three directions, needs to be stored. This saves additional data storage space.
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3 LAGRANGIAN PARTICLE TRACKING

The equation of particle motion is given by

d2~r′

dt′2
= ~a′(~v′, ~u′), (11)

where ~r′ is the location of the particle and ~a′ is its acceleration, which depends on the
particle velocity ~v′ and on the fluid velocity ~u′.

The importance of the forces acting on particles in laminar and turbulent flow, which
contribute to its acceleration, is a topic of recent discussions. Armenio and Fiorotto5, for
example, analysed the importance of forces acting on a particle for different particle over
fluid density ratios. We considered the equation for particle acceleration as was given by
Maxey and Riley6:

d~v′

dt′
= ~g − ρ

ρp

~g +
~u′ − ~v′

τp

+
ρ

ρp

D~u′

Dt′
+

ρ

2ρp

(
d~u′

dt′
− d~v′

dt′

)
, (12)

where d/dt′ = ∂/∂t′ + (~v′ · ~∇) and D/Dt′ = ∂/∂t′ + (~u′ · ~∇). ρ, ν are the fluid density
and viscosity. ρp, dp, τp are the particle density, particle diameter and τp = ρpd

2
p/ρ18ν is

the particle relaxation time. The terms included in the equation are gravity, buoyancy,
drag, pressure gradient term and added mass term. The equation is rewritten in non-
dimensional form with u0 and L being characteristic fluid velocity scale and characteristic
problem length scale, yielding ~u = ~u′/u0, ~v = ~v′/u0, t = t′u0/L:

~a =
d~v

dt
=

A

St
{~vs + ~u− ~v}+

3

2
R

∂~u

∂t
+ R{(~u +

1

2
~v) · ~∇}~u, (13)

where the Stokes number is defined as

St =
ρpd

2
pu0

ρ18νL
, (14)

the settling velocity is

~vs =
d2

p

18νu0

(
ρp

ρ
− 1

)
~g (15)

parametes R and A are

R =
ρ

ρp + 1
2
ρ
, A =

ρp

ρp + 1
2
ρ

=
1

1 + 1
2
R

(
1 + ρ

2ρp

) . (16)

In the case of very light particles (ρp � ρ, bubble limit) the parameters R and A tend
to R → 2, A → 0. In the aerosol limit (ρp � ρ), the parameters are R → 0, A → 1,
rendering the pressure gradient and added mass terms negligible. For fluid particles
(ρp = ρ), we have R = A = 2/3.
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With the acceleration of the particle given in equation (13) we may solve the parti-
cle equation of motion (11) by employing the 4th order Runge-Kutta method (Press et
al.7).We integrate the following six equations simultaneously:

dx

dt
= vx,

dvx

dt
= ax,

dy

dt
= vy,

dvy

dt
= ay,

dz

dt
= vz,

dvz

dt
= az (17)

The unknowns are the particle location x, y, z and particle velocity vx, vy, vz. The initial
particle location and velocity must be known. We require a subroutine calculating the
right hand sides of the six equations. In order to calculate the acceleration on the right
hand side, the velocity of the fluid ~u at the location of the particle is needed.

Flow simulations were performed on a mesh consisting of hexahedral elements. The
first task to be performed in order to find the velocity of the fluid at the location of the
particle is to find the mesh element in which the particle resides. This problem has been
considered by Zhou and Leschziner8 as well as by Cheng et al.9. We used the technique
proposed by Marchioli et al.10. We calculate outward pointing normal of each face of the
mesh element. Then, we calculate dot product between the normal and vector connecting
the element face and the particle location; ~r · ~n. If dot products for all element faces are
negative, then the particle is located in the element. See Fig. 2.

~n

~r

Figure 2: A 2D representation of a hexahedral mesh element. Element face normals ~n and particle
position vector ~r are shown.

To avoid searching through the whole grid, the algorithm examines the mesh element
in which the particle was located in the previous time step, secondly examines elements
neighbouring this element and finally loops through all elements. When using adequate
time steps, looping through all elements is necessary only in the case when particle leaves
the computational domain. The proposed method works only for convex elements.

The next step is to interpolate the fluid velocity, which is known in the element’s nodes,
to the location of the particle. The solution of this problem in 2D was given in Ravnik
et al.11 and for 3D curvilinear grids by Marchioli et al.10. We extended the algorithm
proposed in Ravnik et al.11 to three dimensions.

Consider single element in a mesh made out of arbitrary six sided parallelepipedial
elements and its counterpart in the local coordinate system (Fig. 3).
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x

z
ξ

ζ

1
-1

1

-1

y

η

x, y, z

xi, yi, zi

ξ, η, ζ

Figure 3: A 3D representation of a hexahedral mesh element and its counterpart in the local coordinate
system

A point inside the element (x, y, z) may be written in local coordinate system (ξ, η, ζ)
by using shape functions Φi(ξ, η, ζ) = f(1, ξ, η, ζ, ξη, ξζ, ηζ) as

x(ξ, η, ζ) =
8∑

i=1

Φi(ξ, η, ζ)xi, (18)

y(ξ, η, ζ) =
8∑

i=1

Φi(ξ, η, ζ)yi, (19)

z(ξ, η, ζ) =
8∑

i=1

Φi(ξ, η, ζ)zi. (20)

We are interested in exactly the inverse transformation; based on a known location (x, y, z)
find the coordinates (ξ, η, ζ) in the local coordinate system. When (ξ, η, ζ) are known,
we can interpolate any field function, which was the result of a CFD simulation, to the
location (x, y, z).

Analytical solution for (ξ, η, ζ) given (x, y, z) for the above system of equations can
not be found. The problem is solved numerically with the Newton-Raphson method7.
The method uses first order Taylor expansion to write a linear system of equations for
corrections of each unknown variable. Iteratively, the initial guesses for (ξ, η, ζ) are ad-
vanced towards the correct values. About a hundred iterations are needed to converge the
solution to accuracy of 10−6. This part of the particle tracking algorithm requires most
CPU time.

The particle tracking algorithm can be summarized in the following points.
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• Before simulation, pre-process mesh connectivity to make lists of neighbours for each
mesh element. This greatly speeds up finding of the mesh element within which the
particle is located.

• Use the element face normal times particle location dot product to find the mesh
element within which the particle is located. Remember the particle’s element of
the previous time step. Check it and its neighbours first.

• Use the Newton-Raphson method to determine the velocity of the fluid at the loca-
tion of the particle.

• Use the fourth order Runge-Kutta method to advance the particle location and
velocity through time.

4 TEST CASE

In the lid driven cavity, the moving top lid induces a large primary vortex in the
centre of a cubical enclosure. The size of the vortex increases with Reynolds number.
Secondary vortices appear in the corners of the cavity, their position and strength changing
with Reynolds number. Figure 4 shows the boundary conditions of the lid driven cavity
graphically. The Reynolds number for this case is defined with the length of cavity’s edge
L and the top wall velocity u0. The particle experiments performed by Tsorng et al.1

were done at Re = 130, Re = 470 and Re = 860, thus we simulated the flow at these
conditions.

Y

X

Z

left secondary
vortex

moving lid

1

1

0

primary vortex

right secondary vortex

Figure 4: Geometry and boundary conditions of the lid driven cavity test case.

Study of behaviour of particles in lid driven cavity flows a topic of recent research.
Kosinski et al.12 numerically studied behaviour of dust clouds taking into account particle-
particle interactions and two-way coupling. Tsorng et al.1 studied behaviour of macro-

11
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scopic rigid particles suspended in a fully three-dimensional lid driven cavity flow field.
They used 2D PIV experimental technique to examine the particle motion. Our aim was
to repeat and extend these experiments using the developed numerical technique. Tsorng
et al.1 reported most of their findings at Re = 470 and some at Re = 130 and Re = 860.
We chose the same Reynolds numbers for our numerical experiments.

Particle boundary condition on the walls of the cavity was implemented as an elastic
collision. A particle which is, after a time step, found outside of the problem domain,
is mirrored back inside into the domain. Its velocity is also mirrored across a plane
tangential to the wall.

We consider macroscopic particles with diameter dp = 3mm in a L = 10cm lid driven
cavity. The particles density was ρp = 1210kg/m3. The particles were inserted into two
fluids. The density of the first fluid was ρ = 1210.605kg/m3 making the particles slightly
buoyant. The density of the second fluid was ρ = 1209.153kg/m3 making the particles
non-buoyant with a small settling velocity. Flow Reynolds numbers Re = 130, Re = 470
and Re = 860 were considered. Lists of Stokes numbers and lid driving velocities are
given in Tables 1 and 2. The simulation parameters were chosen such that the particle
Stokes numbers are equal for both - buoyant and non-buoyant cases.

Table 1: Parameters used for Lagrangian particle tracking in lid driven cavity - case of non-buoyant
macro particles. Fluid properties: ρ = 1209.153kg/m3, ν = 17.3mm2/s; particle data: dp = 3mm,
ρp = 1210kg/m3; cavity size L = 10cm; equation of motion (13) parameters: A = 0.666822259, R =
0.666355483, vs = −0.19mm/s.

case Re u0[mm/s] St
d) 130 22.49 6.50 · 10−3

e) 470 81.31 23.51 · 10−3

f) 860 148.78 43.03 · 10−3

Table 2: Parameters used for Lagrangian particle tracking in lid driven cavity - case of slightly buoyant
macro particles. Fluid properties: ρ = 1210.6053kg/m3, ν = 37.2mm2/s; particle data: dp = 3mm,
ρp = 1210kg/m3; cavity size L = 10cm; equation of motion (13) parameters: A = 0.666555519, R =
0.666888963, vs = 0.0659mm/s.

case Re u0[mm/s] St
a) 130 48.36 6.49 · 10−3

b) 470 174.84 23.49 · 10−3

c) 860 319.92 42.97 · 10−3

Tsorng et al.1 examined the reasons for the fact that the macro (dp = 3mm) particles
remain entrained in the primary vortex and do not enter the secondary corner vortices.
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They argued that the particle size (i.e. diameter) is the crucial factor for this behaviour
considering the chosen particle and fluid densities. By examining the flow field, they
observed that only a narrow streamline corridor close to the top (z = 1) and right walls
(x = 1) lead to the secondary vortices. They concluded that the 3mm particles were too
large to enter this corridor and thus do not enter the secondary corner vortices. Their
findings are verified by careful experimental work, whereas they only used a CFD approach
for simulation of micro (fluid) particles paths, which were identical to fluid streamlines.

In order to complete the comparison, we examined the remaining situations using
previously described and verified numerical algorithm for flow simulation and particles
tracking. We inserted 1000 particles into flow fields. Initially, particles were randomly
distributed within a cube in the centre of the cavity (0.3 < x, y, z < 0.7). Particle diameter
was varied between 0.3mm and 2mm, since we have already confirmed in previous section,
that 3mm particles do not enter the secondary vortices. Both non-buoyant (Table 1) and
buoyant (Table 2) macro particles were considered. Initial particle velocity was the set
to be equal to the fluid velocity. Particles were tracked until all of them made at least
ten revolutions in the primary vortex. Particle traces were recorded and examined to
assert whether a particle did or did not enter the secondary vortices. We considered two
secondary vortices. The right secondary vortex is considered to be in the bottom right
region of the cavity, i.e. where x ≈ 1 and z ≈ 0, while the left secondary vortex is in the
bottom left part of the cavity, i.e. where x ≈ 0 and z ≈ 0. Locations of secondary vortices
are schematically shown in Figure 4. Results of entrainment of particles into secondary
vortices are shown in Table 3 and described below.

At Re = 130 we observed that regardless of the diameter size, none of the buoyant
particles enter the secondary vortices. All of the particles remain in the main vortex.
Particles with a small diameter can be found throughout the primary vortex. Particles
with a larger diameter move closer to the vortex core, but none actually enter the core.
Figure 5 shows locations of particles of three diameters, demonstrating this fact.

Non-buoyant particles at Re = 130 with diameters less than dp ≤ 0.5mm do not enter
the secondary vortices. Most of the particles remain entrapped in the primary vortex,
while some settle on the ground of the cavity. Particles with larger diameters enter the
left secondary vortex, but they are not entrapped within. They rather fall through the
slow flow of the left secondary vortex and settle on the ground. The larger the particle
diameter, the more particles settle on the ground. None of the particles are able to enter
the right secondary vortex.

Buoyant particles at Re = 470 with small diameter dp ≤ 0.75mm enter the secondary
vortices. Most of them enter the right vortex around the central plane. Thus, particles
may be found in the entire cavity. An interesting phenomenon occurs with dp = 1mm
particles. Although they do not enter the core of the right secondary vortex around the
central y = 0.5 plane, they are sucked into the right corners of the cavity. Cavity with
particle positions demonstrating this effect is shown in Figure 6. Particles with diameters
dp = 1.25mm and dp = 1.5mm enter only the left vortex, while dp = 2mm particles do
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not enter any of the secondary vortices.
Non-buoyant particles at Re = 470 with small diameter dp ≤ 0.75mm enter the sec-

ondary vortices after first making a few revolutions in the main vortex. At dp = 0.75mm
some particles settle on the ground of the cavity. At dp = 1mm the situation is similar to
the buoyant case. The particles do not enter the right secondary vortex in the centre of
the cavity, but do reach the corners of the cavity. However, since they are non-buoyant
they settle on the bottom of the cavity. Cavity with particle positions demonstrating
this effect is shown in Figure 6. Particles with diameter dp ≥ 1.25mm enter only the left
secondary vortex. Some of the particles, which enter the left secondary vortex, settle to
the ground. As the particle diameter increases the number of particles entering the left
vortex and the number of particles settling to the ground diminishes.

Buoyant particles at Re = 860 with diameters dp ≤ 1mm enter the secondary vortices
and can be, after a long time, found in the whole cavity. For dp = 1.25mm and dp = 1.5mm
particles can be found only in the left secondary vortex, while none enter the right vortex.
At dp = 2mm all particles remain in the primary vortex. Figure 7 shows these differences
graphically.

Small non-buoyant particles at Re = 860 enter both secondary vortices when their
diameter is less than dp ≤ 1mm. There is no settling of particles with dp = 0.3mm. With
increasing diameter more and more particles settle on the ground. At dp = 1.25mm and
dp = 1.5mm the particles are able to reach only the left secondary vortex. Most of the
particles, which enter the secondary vortex, settle to the ground. However at dp = 2mm
no settling occurs at all. All of the particles are kept in the primary vortex, none enter
the secondary vortices and none settle to the ground.

In summary, we discovered that only particles with diameters below a certain limit are
able to enter in both secondary vortices. This limit depends on the Reynolds number.
Particles with diameters above this limit are able to enter into the left secondary vortex
only. As the particle diameter is increased even further, all particles remain in the primary
vortex. The difference between buoyant and non-buoyant particles is expressed above all
in the fact that the non-buoyant particles tend to settle to the ground. Since the secondary
vortices are located at the bottom of the cavity, the non-buoyant particles are able to enter
the secondary vortices with higher diameters than the buoyant particles.

5 CONCLUSIONS

A Lagrangian particle tracking algorithm was presented for simulation of dilute sus-
pensions of particles in viscous flow. The physical model includes gravity, buoyancy, drag,
pressure gradient and added mass effects. The particle equation of motion was solved and
advanced through time by the Runge-Kutta method. Interpolation of fluid velocity to the
location of the particle in the computational mesh was done by solving a non-linear sys-
tem of equations using the Newton-Raphson method. Boundary element method based
numerical algorithm for the solution of velocity-vorticity form of Navier-Stokes equations
was used to simulate viscous flow.
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Table 3: Entrance of particles in secondary vortices in the bottom right and left part of the cavity.
Particles do not enter the secondary vortices (-), particles enter both secondary vortices (+), (l) particles
enter the left secondary vortex only.

Re = 130 Re = 470 Re = 860
dp[mm] buoy. non-buoy. buoy. non-buoy. buoy. non-buoy.

0.3 - - + + + +
0.5 - - + + + +
0.75 - l + + + +
1.0 - l l l + +
1.25 - l l l l l
1.5 - l l l l l
2.0 - l - l - -
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Figure 5: Buoyant particles with dp = 0.3mm (left), dp = 1mm (middle) and dp = 2mm (right) at
Re = 130 after a long time shown on the x− z plane. None of the particles enter the secondary vortices.
Smaller particles find their way into the whole primary vortex, while larger are kept in a torus shape by
the flow. Contours of ux flow velocity component are shown in a slice at y = 0.94.
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Figure 6: Buoyant (left) and non-buoyant (right) dp = 1mm particle positions after a long time in a
cavity at Re = 470. None of the particles enter the right secondary vortex at x = 1, y = 0.5, while they
are entrained into both x = 1 corners. Particle colour refers to its y coordinate. Contours of ux flow
velocity component are shown in a slice at y = 0.94.
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Figure 7: Buoyant particles with dp = 1mm (left), dp = 1.5mm (middle) and dp = 2mm (right) at
Re = 860 after a long time shown on the x − z plane. While the small particles enter both secondary
vortices, the middle size particles enter only the left secondary vortex and the large particles do not enter
any. Contours of ux flow velocity component are shown in a slice at y = 0.94.
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The particle tracking code was validated by revisiting a problem of particle movement
in a cellular flow field. Very good agreement between present results and previously
published results of other authors was observed.

The developed algorithm was used to study the behaviour of macroscopic slightly buoy-
ant and slightly non-buoyant particles in a lid driven cavity. The flow in a lid driven cavity
is fully three-dimensional and features a primary vortex in the main part of the cavity
as well as secondary vortices in the corners of the cavity. We investigated the particle
movement and discovered, that particles above a certain size, can not enter secondary
vortices. The size limit increases with Reynolds number value. For the selected diameter
data range, in case of Re=470 the limit is dp = 0.75mm, and in case of Re=860 the limit
is dp = 1.0mm, both limits valid for the case of entering both secondary vortices. The
physical reason for such behaviour was found to be the flow structure. Only small stream-
line paths lead to the secondary vortices, which can not be entered by larger particles.
Thus the larger particles remain trapped in the primary vortex, while smaller particles
are able to enter into the secondary vortices in the corners of the cavity.
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[2] J. Ravnik, L. Škerget, and Z. Žunič. Combined single domain and subdomain BEM
for 3D laminar viscous flow. Eng. Anal. Bound. Elem., 33:420–424, 2009.
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