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Abstract. Recent developments in robustness and accuracy of computational methods to
predict flow of immiscible fluids separated by an interface made possible their application
to hydrodynamics design. The main challenge of those methods is to predict: accurately,
the global loads exerted by the water on marine structures (ships, offshore platforms, ..),
and reliably local informations on the flow field making possible the optimization of the
appendages and propulsive systems. Two important features of the computational method
are required: a flexible unstructured discretization applied to locally-refined grids and high-
performance parallelization of the CFD solvers able to run large 3D test cases (> 10
millions elements).

In this paper, we propose the application of a massively parallel incompressible Navier-
Stokes Eulerian two-phase flow solver to ship design process. The incompressible Navier-
Stokes solver introduced in [8] is based on a parallel fractional predictor-corrector scheme
implemented at the algebraic level, a Finite Element Method in space and implicit Finite
Differences in time. It captures the interface motion on a fixed mesh using a Level Set
method [24] discretized with the same features. The turbulence is modelled by the Spalart-
Allmaras one-equation closure [27]. A Reichardt wall function permits to approximate the
velocity field behavior in the boundary layer [20].

Our numerical method was tested against forces and wake shape experimental data on a
benchmark widely used in the ship hydrodynamics community : the bare hull David Taylor
Model Basin (DTMB) model 5512 at steady state [9, 12]. Our proposed scheme shows a
very high scalability tested on a large number of processors ( up to thousands ).
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1 INTRODUCTION

This paper studies the application to hydrodynamics of the fractional predictor-corrector
solvers for incompressible flow introduced in [8] following a two-phase flow approach.
Flows with interface motion (free surface and two-fluid interface problems) can be encoun-
tered in numerous fluid mechanics problems (ships, tsunamis, fluids in moving containers,
mould filling). The methods used to simulate the evolution of the fluid interface can be
classified in two categories: tracking techniques (moving mesh) and capturing techniques
(fixed mesh).

In interface tracking techniques, the mesh is updated to track the interface by deforma-
tion for simple flows or by unsteady remeshing for complex flows [29, 30]. Although, such
techniques give accurate interface representations, for complex 3D cases, they become too
expensive. In interface capturing techniques, an interface function is used to capture the
position of the interface within the resolution of a fixed computational mesh. This latter
kind of techniques will be part of our proposal.

We propose a highly parallel numerical solver for the two-phase flow incompressible
Navier-Stokes equations for hydrodynamics which consists of :

• a particular interface capturing technique, the Level Set method (LS),

• a time discretization based on implicit standard trapezoidal integration rule,

• a spatial discretization based on a stabilized Finite Element method referred to as
algebraic sub-grid scales (ASGS),

• algebraic Richardson and Orthomin methods for the pressure Schur complement
system that allow to obtain highly parallel solvers [7, 8],

• Reynolds Averaged Navier Stokes (RANS) equations using the Spalart-Allmaras
(SA) one-equation closure for turbulence modelling [27],

• a Reichardt wall function for the viscous layer modelling [20].

The Level Set (LS) Method widely used for capturing interface evolution was introduced
in the late 1980s by Osher and Sethian [15, 21]. It proposes to advect a relatively smooth
field φ, the zero contour of which is the interface to represent. Since the function to advect
is smooth (in contrast to the step function used by VOF methods), this method allows to
obtain accuracy higher than first order. The LS method is appealing mainly for several
reasons :

• it admits a convenient description of topologically complex interfaces, and it is quite
simple to implement,

• it combines well with Finite Element discretization,
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• it allows to discretize the problem on unstructured meshes,

• the interface location is accurately specified.

Conceptually, the ASGS method [3] is based on enlarging the finite element space by
adding information about the part of the solution of the variational Galerkin problem that
cannot be resolved by the computational grid. It permits to use equal interpolations for
the velocity and the pressure (avoiding the need to satisfy the classical inf-sup condition)
and deal with convection-dominated flows (cell Reynolds number greater than one).

Most of the fixed mesh methods for two-fluid phase flow share two basic steps. In the
first step, an advection equation using the velocity field of the last time step is solved to
allow to find the new interface position, and thus the material properties to be assigned
in the next time step to solve the incompressible Navier-Stokes equation. In the second
step, the two-phase flow Navier-Stokes equations are solved as one phase flow with variable
properties.

A straightforward way to solve the discretized Navier-Stokes equations is to consider
the monolithic scheme, that is to say to solve simultaneously the momentum and conti-
nuity equations in a coupled way. However, it is well known that, depending on the cases,
iterative algebraic solvers (GMRES) could poorly converge for these coupled equations,
unless a very robust preconditioner is used (like a so-called ILU preconditioner). Al-
though sequentially efficient, these kind of preconditioners have bad speedup properties,
precluding their use on large scale computers, where thousands of CPU’s are involved in
one single simulation because of its intensive communication needs.

One way of circumventing this fact is to “split” the discretized Navier-Stokes operator
dividing the solution process in stages. From an algebraic point of view, this procedure
consists in solving the pressure Schur complement system using an iterative method, via
the solution of an intermediate velocity field. This technique enables to use adapted
solvers to the momentum and Schur complement system equations. Traditional fractional
steps techniques split the Navier-Stokes equations first, and then solve consecutively the
momentum and continuity equations [2, 28, 17, 31, 19]. However, they introduce errors due
the splitting. Instead, the predictor-corrector schemes based on Richardson and Orthomin
methods considered here, converge to the monolithic solution. Thus they inherit the good
algebraic properties given by the splitting of the momentum and continuity equations.
The proposed schemes are both sequentially efficient and have shown a very high degree
of scalability tested up to thousands of processors [7, 8].

The remainder of the paper is organized as follows. In section 2, we recall the main
principles of the LS method and presents a particular implementation of this method with
a finite element implicit discretization. In section 3, we describe the mathematical model
used to solve the two-phase flow incompressible Navier-Stokes equations. In section 4, we
present the main features of the parallel fractional predictor corrector schemes. In section
5, we adress the Spalart-Allmaras turbulence modelling. In section 6, we describe the
viscous boundary layer treatment with the Reichardt wall function. Section 7, is devoted
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to validation. We validate our Incompressible Navier-Stokes two-phase flow solver on the
bare hull David Taylor Model Basin (DTMB) model 5512 at steady state [9, 12]. Two
algorithm features are evaluated : its accuracy compared to experimental data and its
parallel performance. Finally, some conclusions are given in section 8.

2 IMPLEMENTATION OF THE LEVEL SET METHOD

2.1 Level Set Principle

We assume that the interface divides the whole domain Ω in two disconnected domains
so that Ω = Ω1 ∪Ω2. The interface advection with a divergence free velocity field U, can
be written with the characteristic function χ so that:

∂χ

∂t
+ U · ∇χ = 0, with χ(x, t) =

{
= 1 if x ∈ Ω1

= 0 if x ∈ Ω2
(1)

The formal accuracy of the advection of a step function as χ is severely limited to first
order. To tackle this problem, we can distinguish two main approaches in the literature :

• a numerical scheme that exploits the fact that χ takes only two different values. A
particular way of doing this is the second-order VOF (see, for example [18]),

• χ is advected through an auxiliary smooth function. The LS method introduced by
Osher and Sethian [15, 21] relies on a such a function φ satisfying χ = H(φ).

In this paper, we choose the second option using the LS method. The underlying idea
behind this method is to embed an interface Γ in R3, which bounds an open region
Ω ∈ R3 as the zero level of a higher dimensional function φ(x, t). Let H be the step
function H(x) = 1 if x > 0 and H(x) = 0 elsewhere.

∂φ

∂t
+ U · ∇φ = 0 (2)

The Level Set function is defined as a continuous function, initialized and periodically
reset as the signed-distance to the interface φ = d(Γ) (|∇φ| = 1):

φ(x, t) =

{
> 0 if x ∈ Ω1

< 0 if x ∈ Ω2
(3)

The interface Γ corresponds to the zero level (Level Set) of the function φ.

Γ = {x | φ(x, t) = 0} (4)

The motion of the interface is determined by the velocity field, U, which for our case
is given externally by the material velocity of the fluid flow simulation. Note that in
principle the equation (2) only needs to be solved locally near the interface, cf. [1, 16].
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2.2 Finite Element Implicit Discretization

Due to the pure convective type of equation (2), we use the SUPG technique to stabilize
it. The time discretization is carried out using the generalized trapezoidal rule, i.e. a
finite difference scheme. Let us introduce a uniform partition of the time interval [0;T ]
and define

φn+θ := θφn+1 + (1− θ)φn (5)

δt := tn − tn−1 (6)

δtφ
n+θ :=

φn+θ − φn

θδt
(7)

where δt is the time step size and superscript n denotes the approximated solution at
time nδt. The parameter θ ∈ [0, 1] determines the order of the scheme. A first order
scheme is obtained by choosing θ = 1 (Euler) and a second order method is obtained with
θ = 0.5 (Crank–Nicolson). Let us define

∫
Ω′(·)dΩ =

∑
K

∫
ΩK

(·)dΩ where ΩK is the interior
of element K of the partition. Then the discrete problem, both in space and time, is
stabilized by the SUPG technique which is described as follows : Given a velocity at time
un+θ
h at time tn+θ and a φnh at time tn, find φn+θ

h ∈ Vh by solving the discrete variational
problem : ∫

Ω′ ( αφn+θ
h + un+θ

h · ∇φn+θ
h )( vh + τun+θ

h · ∇vh )dΩ

=
∫
Ω′ ( αφnh )( vh + τun+θ

h · ∇vh )dΩ (8)

with α = 1
θδt

. The parameter τ is chosen in order to obtain a stable numerical scheme
with optimal convergence rate. It is computed within each element domain Ωe as :

τ =
he

2|ue|
(9)

where he is the element length in the direction of the flow and |ue| the velocity norm of
element e. Finally the LS at time step n+ 1 is computed as :

φn+1
h = φnh +

φn+θ
h − φnh

θ
. (10)

2.3 Redistanciation

Initially |∇φ| = 1, but when the Level Set function φ is advected, |∇φ| can tend
to zero (for example in a case where the velocity field is stretching the LS iso-values).
Then, the accuracy of the interface advection and the computation of interface properties
(curvature and contact angle) is no more ensured cf [11]. This is one of the motivations
of the periodical replacement of the φ solution of the advection problem by the signed
distance to its zero level.

d(φ)(x, t) = sign(φ)dist(x,Γ(φ)). (11)
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The replacement of φ by d(φ) is ensured at the discrete level by algorithms called
redistanciation or reinitialisation. They should maintain as accurately as possible the
level φ = 0, which defines the interface and adjust the degrees of freedom of function φ
closer to a signed distance to the interface.

In the literature, we can distinguish two types of redistanciation: by geometrical com-
putation or by solving an equation cf. [21, 15, 25, 26].

For the redistanciation using an equation, we use the one proposed by Sussman et al.
[25]:

dτ + w.∇d = sign(φ) (12)

with w = sign(φ) ∇φ|∇φ| . The increasing complexity of the geometrical redistanciation makes
it unfeasible for large 3D test cases. Thus in this paper, we use the Sussman one’s. Note
that we use the same SUPG stabilization for the redistanciation equation (12) as the
one described for the LS advection (cf subsection 2.2) with un+θ = sign(φ) ∇φ|∇φ| and an
additional right hand side term. But we solve it explicitly with first order in time.

2.4 Enforcing Mass Conservation

If no phase change occurs, the mass of each of the two fluids should be conserved.
Being an incompressible flow, the volume occupied by any fluid should be preserved as
well. Eventually, the LS method will introduce loss or gain of mass, the reasons are
manifold: loss of steepness in the interface region, inexact divergence of the velocity field,
error in advection, etc. Inacuracies accumulate in time. After several simulation time
steps, the volume can vary widely. This lack of exact conservation of liquid mass has
been reported repeatedly in the literature [26, 22, 14]. We can basically classify the
methods to enforce mass conservation in two groups :

• The methods which consist in adding and removing mass in the interface region in
order to obtain an exact conservation of mass. At the end of every timestep, the
total amount of fluid mass is compared to the expected value. The expected value
is determined from the mass at the previous timestep, plus the massflux across all
boundaries during the timestep. The difference between the expected and actual
mass is typically very small, then a quick convergence is achieved by simply adding
and removing mass appropriately through an iterative Newton method. There are
two versions of this correction : small uniform correction on all the interface [22]
(cφ= cst) and a correction proportional to the absolute value of the normal velocity
of the interface [13] (cφ= cst|v. ∇φ|∇φ| |) .

• The methods which consist in improving the mass conservation in the advection
step [14, 23].

In this paper, we use the uniform mass correction.
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3 STABILIZED FINITE ELEMENT DISCRETIZATION OF THE TWO
PHASE TURBULENT INCOMPRESSIBLE NAVIER-STOKES EQUA-
TIONS

The velocity u and pressure p fields of two incompressible fluids moving in the domain
Ω = Ω1 ∪Ω1 during the time interval (t0, tf ) can be described by the incompressible two
fluid RANS equations [26, 25]:

ρ[
∂u

∂t
+ (u.∇)u]−∇.[2(µ+ µt)ε(u)] +∇p = ρf in Ω,

∇.u = 0 in Ω

where ρ is the density, µ the dynamic viscosity, µt the eddy dynamic viscosity (turbulence
modelling), ε is the velocity strain rate where ε(u) = 1

2
(∇u+ut) and f the vector external

body forces, which includes the gravity force ρg. The density, velocity, dynamic viscosity
and pressure are defined as

u, p, ρ, µ =

{
u1, p1, ρ1, µ1 x ∈ Ω1

u2, p2, ρ2, µ2 x ∈ Ω2

where Ω1 indicates the part of Ω occupied by fluid number 1 and Ω2 indicates the part of
Ω occupied by fluid number 2. The extent of Ω1 and Ω2 is given by the level set function
φ (cf paragraph 2.1) together with initial and boundary conditions. To ensure stability
the density and viscosity jumps are smoothed at the interface [26].

ASGS stabilization [3] is used to deal with convection-dominated flows and to circum-
vent the well known div-stability restriction for the velocity and pressure Finite Element
space, allowing in particular equal interpolation for both unknowns.

Let v and q be the velocity and pressure test functions, respectively (belonging to V
and Q which are the usual Sobolev spaces). The weak form of Navier Stokes equations
writes:

(ρ∂tu,v) + a(u,v)− b(p,v) = (ρf ,v),

b(q,u) = 0

with a(u,v) = (ρ(ui.∇)ui, v) + (2(µ + µt)ε(u), ε(v)) and b(q,v) =
∫

Ω q∇.vdΩ. For the
linearization of the ui.∇ui term, we use the Picard method. See [12] for an introduction
and [13] for a complete mathematical analysis.

The space discretization using the stabilized Finite Element method with ASGS writes
for the momentum equation :

(ρ∂tuh,vh) + a(uh,vh)− b(ph,vh) + s1(uh,vh) + s2(ph,vh)

= (ρf ,vh) + (fu,vh) (13)
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with

s1(uh,vh) =
∫

Ω′
τ1(ρ(uih∇)vh +∇.[2(µ+ µt)ε(vh)]).(ρ(uih.∇)uh −∇.[2(µ+ µt)ε(uh)])dΩ

+
∫

Ω′
τ2(∇.uh)(∇.vh)dΩ,

s2(ph,vh) =
∫

Ω′
τ1(ρ(uih.∇)vh +∇.[2(µ+ µt)ε(vh)]).∇ph dΩ

(fu,vh) =
∫

Ω′
τ1(ρ(uih.∇)vh +∇.[2(µ+ µt)ε(vh)]).ρf dΩ

and for the continuity equation:

b(qh,uh) + s3(uh, qh) + s4(ph, qh) = (fp, qh) (14)

s3(uh, qh) =
∫

Ω′
τ1∇qh.(ρ(uih.∇)uh −∇.[2µε(uh)])dΩ,

s4(ph, qh) =
∫

Ω′
τ1∇qh.∇phdΩ,

(fp, qh) =
∫

Ω′
τ1∇qh.ρfdΩ

The terms s1, s2, s3, s4, (fu,vh) and (fp, qh) are additional terms introduced by the ASGS
stabilization mixing the momentum and continuity equations. See [6] for all the details
of the formulation. Parameters τ1 and τ2 are usually referred to as the stabilization
parameters, and they are computed elementwise. For this, we make use of [3]’s formulas

τ1 =

[
4µ

h2
e

+
2ρ|ue|
h

]−1

,

τ2 =
h2
e

τ1

= 4µ+ 2ρ|ue|he

where he is the characteristic minimum element size and half of it for quadratic elements
[3]. Note that the time discretization is carried out using the generalized trapezoidal rule
as described in section 2.2 for the LS advection.

The set of discretized incompressible Navier-Stokes equations (13) and (14) can be
reformulated in a matrix form as the following :[

Auu Aup

Apu App

] [
u
p

]
=

[
bu
bp

]

The solution of this system, using a direct solver or an iterative solver with preconditioning
is referred as monolithic scheme.
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4 PARALLEL PREDICTOR CORRECTOR SCHEMES USING PRESSURE
SCHUR COMPLEMENT

The parallel predictor corrector schemes we use are based on the solution of the pressure
Schur complement system [5]. This consits of the pressure equation obtained after elim-
inating the velocity from the momentum equation by manipulating the previous matrix
system. It reads as follows :

Sp = bs (15)

with

S = App −ApuA
−1
uuAup (16)

bs = bp −ApuA
−1
uubu

Assembling the previous system is obviously not viable since it involves the inverse A−1
uu .

The predictor-corrector schemes we use are based on solving iteratively for the Schur
complement with appropriate preconditioners Q [8]. The proposed schemes are based on
four main blocks.

• Momentum block

1. Solve Momentum equation Auuu
k+1 = bu −Auppk

2. Update Schur complement system rk = bs − Spk

• Richardson block

1. Solve Schur complement equation Qz = rk

2. Update pressure pk+1 = pk + z

• Orthomin block

1. Solve Schur complement equation Qz = rk

2. Solve Momentum equation Auuv = Aupz

3. Compute x = Appz−Apuv

4. Compute α =
〈rk,x〉
〈x,x〉

5. Update velocity uk+1 = uk − αv

6. Update pressure pk+1 = pk − αv

7. Update Schur complement residual rk+1 = rk − αx

• Correction block
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1. Update velocity uk+1 = uk + C(pk+1 − pk)

In [8] we introduced two preconditioners. The first one is the well-known δt∆ operator
used in classical fractional step techniques. The second one is based on the approximate
weak form of Uzawa operator ∇.(τ1∇), where τ1 is the classical stabilization parameter,
that is the local inverse of the momentum operator used in variational multiscale methods
[7].
C is a correction matrix such that the continuity equation is almost satisfied at iteration
k + 1 up to an error vector ε such that

Appp
k+1 + Apuu

k+1 = bp + ε (17)

In the Orthomin iteration α is a relaxation parameter computed dynamically in order to
minimize the norm of the residual at next iteration ||rk+1||2.

Richardson and Orthomin iterations are defined according to the previous blocks (cf
[8] for more details):

• Momentum preserving Richardson iteration (MR)

1. Call Momentum block

2. Call Richardson block

3. Call Momentum block

• Continuity preserving Richardson iteration (CR)

1. Call Momentum block

2. Call Richardson block

3. Call Correction block

• Momentum preserving Orthomin iteration (MO)

1. Call Momentum block

2. Call Orthomin block

• Continuity preserving Orthomin iteration (CO)

1. Call Momentum block

2. Call Orthomin block

3. Call Richardson block

4. Call Correction block

10
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The Continuity preserving Richardson iteration corresponds to the traditional fractional
scheme [2, 28]. As we seek for transient solutions, we use the previous algorithms as
predictor-corrector like schemes. This is achieved by coupling the linearization and Schur
complement solver loops (index noted as i). In this case, and if convergence is achieved,
the solution at each time step is the same as that of the monolithic scheme.

5 SPALART-ALLMARAS TURBULENCE MODELLING

The turbulence model chosen to compute the eddy kinematic viscosity νt = µt/ρ is the
Spalart-Allmaras turbulence model. This model was devised “using empiricism and argu-
ments of dimensional analysis, Galilean invariance, and selective dependence on molecular
viscosity” [27]. It consists of a transport equation for the eddy viscosity νt. For any details
on the equation, see the original publication of the authors [27]. The equation writes as :

∂tνt + u.∇νt − cb1Sνt −
1

σ
[∇.(νt∇νt) + cb2(∇νt)2] + cw1fw

ν2
t

d2
= 0 in Ω × (0, T ), (18)

where cb1 , cb2 , σ and cw1 are constants, S is the norm of the vorticity, fw is a function
depending on S, νt and the distance to the wall d. This equation is the high Reynolds
number version of the model. Additional corrections enable for to compute low Reynolds
number and transition effects. This equation must be supplied with appropriate and
boundary conditions.

6 REICHARDT WALL FUNCTION APPROACH

The RANS and turbulence equations can be solved using the wall function approach on
the boundary of the computational domain. The wall function approach implemented in
this work consists in assuming that the computational wall ΓM is located sufficiently far
from the real wall (variable on ΓM are identified with a hat) where the no-slip condition
for the velocity holds. It avoids solving for the large gradients present in the boundary
layer. Then we use a model equation for the tangential traction tt together with a non-
penetrating condition for the velocity û as well as a model equation for the eddy viscosity
(cf Figure 1):

tt = −ρU
2
∗ û

|û|
(19)

where U∗ is the friction velocity. We define Û+ = |û|
U∗

, ŷ the prescribed normal distance

of ΓM to the wall and ŷ+ = ŷU∗
ν

the non-dimensional distance to the wall. The so-called
Reichardt’s law which writes as follows :

Û+ =
1

κ
ln(1 + 0.4ŷ+) + 7.8[1− exp(

ŷ+

11
)− ŷ+

11
exp(−0.33)ŷ+], (20)

enables one to estimate U∗ from the value of û known from a previous iteration (using a
Newton-Raphson scheme).
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Figure 1: Local system on the boundary ΓM

The wall condition for the eddy viscosity is computed using the classical mixing length
hypothesis together with the Van-Driest damping function, i.e., we impose that

νt = lmix|∂u/∂y|, (21)

where the mixing length is given by lmix = κŷ+[1− exp(ŷ+ − /26)].

7 NUMERICAL VALIDATION

7.0.1 Kelvin wake around steady DTMB 5512 model

The problem under study is the computation of the steady Kelvin wake around a US
Navy surface combatant restrained from motions, advancing in flat sea at constant speed
(Re = 4.78.106 (water), Fr = 0.28). The ship is the bare hull David Taylor Model Basin
(DTMB) model 5512, a 1:46.6 model scale of a modern surface combatant. The geometry
is a benchmark on the ship hydrodynamics community, tested in the towing tanks at
DTMB, IIHR (Iowa) [9] and INSEAN (Italy) [10]. It has a sonar dome, which provides
additional geometric complexity. The DTMB 5512 model is L = 3.048 m long with 0.132
m draft.

The computational domain extends from -L ≤ x ≤ 2 L, -L ≤ y ≤ L, -0.2 L ≤ z ≤ 0.2
L for the medium speed case in dimensionless coordinates. The simulation is performed
for the entire ship-hull. The ship axis is aligned with the x-axis with the bow at x =
0 and the stern at x = 1. The free surface at rest lies at z = 0. At t = 0, the ship is
accelerated impulsively to full speed. Figure 2 shows a cut at y = 0 of the tetrahedra
mesh. The mesh is refined in the vicinity of the whole interface and the ship geometry.
It is not refined in the boundary layer.

Figure 3 shows the comparison of the convergence on the momentum and continuity
residuals for four predictor-corrector scheme options : Momentum preserving Richardson
iteration (MR), Continuity preserving Richardson iteration (CR), Momentum preserving
Orthomin iteration (MO) and Continuity preserving Orthomin iteration (CO) (cf section
3.1). The MR options diverges on this benchmark, the CR options does not show to be
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robust either. Both options with Orthomin iteration show good convergence. The MO
option gives better convergence on the momentum residual and the CO on the continuity
one, as expected. For the DTMB 5512 steady state simulation, we choose to use the MO
iteration which is less demanding in computation terms. Table 1 gives a sum up of the
parameters of the numerical simulation.

Figure 2: Cut at y = 0 of the DTMB5512 tetrahedra mesh

Figure 3: Convergence comparison of four Predictor Corrector Scur complement solver scheme options
(MR, CR, MO, CO) on Momentum (Left) and Continuity (Right) residual convergence

The steady Kelvin wake establishes after a simulation time of 12s (cf Figure 4). Figure
5 shows a good agreement for the established wave elevation profile between the numerical
results and for the experimental data [12].

Table 2 compares the experimental values and the numerical values for some forces
exerted by the water on the ship. The evaluated forces are the drag force Fx, the viscous
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Mesh size : 2526423 nodes, 14553898 elements (tetrahedra).
Domain size : 3L× 2L× 0.4L (3D unstructured mesh)
Interface height at rest : a = 0.0m
Density : ρl = 997.8 kg/m3 ρg = 1.2 kg/m3

Viscosity : µl = 9.772.10−4 kg/m s, µg = 1.7.10−5 kg/m s
Volumic forces (gravity) : g = −9.81 m.s−2

Entrance and exit boundary conditions : prescribed velocity U = 1.536 m.s
Boundary conditions : Reichardt wall function, ŷ = 0.006
Turbulence modelling : RANS using SA
Time step : ∆t = 0.01s
Predictor corrector scheme : Momentum preserving Orthomin iteration (MO)
Volume correction : uniform
Redistanciation : solving equation (12)
Momentum Solver : BI CGSTAB
Continuity Solver : Deflated CG

Table 1: Parameters for the numerical simulation of the steady DTMB 5512 model

force Fvx, the pressure force Fpx, the drag coefficient CT = Fx

0.5ρU2
c S

and the frictional drag

coefficient CF = Fvx

0.5ρU2
c S

[9]. S = 1, 370 m2 is the static wetted surface. CF can evaluated

using the model-ship correlation line (ITTC 1957) CF = 0.075
(log10Re−2.0)2

= 3.425 10−3.

Value Experimental or formula value Numerical value new mesh Relative Error
Fx 7.432 N 7.28 N 2%
Fvx 5.52 N 5.24 N 4.71%
Fpx 1.912 N 2.04 N 6.7 %
CT 4.607 10−3 4.514 10−3

CF 3.425 10−3 3.249 10−3

Table 2: Comparison of experimental and numerical data on drag forces and coefficients. at t = 12s.

The relative error between the experimental value and the numerical value for CT is in
the range of uncertainty analysis described in [12]. Thus our simulation gives a relatively
accurate prediction of the forces exerted on the boat.

To measure the parallel performance of our Predictor Corrector Incompressible Navier-
Stokes Two-Phase Flow Solver, we have executed a scalability test on this 3D benchmark
on a large number of processors, up to 1000. Table 3 and Figure 6 show the results for
one iteration of the MO iteration. We observe a good scalability up to 200 processors,
where we have the best trade-off between communication and computation time. Note
that the graph of Figure 6 can be extrapolated. Indeed, our experience indicates, that
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Figure 4: View of the Kelvin wake around steady DTMB 5512 at Fr = 0.28

the key parameter that limitates scalability is the number of nodes per processor. The
number of elements by processors for the 1000 processors run is very few. Therefore, we
expect that for a mesh with 5 times more nodes we could scale up to 1000 processors.

Processors Number 10 100 200 500 1000
Average Computation time per iteration 65.16 7.26 3.64 1.73 1
(normalized by the 1000 processors values)
Acceleration - 90 179 375 652
Elements Number 1455390 145539 72769 29108 14554
per processors

Table 3: Parallel performance of two-phase flow solver on steady DTMB 5512 benchmark
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Figure 5: Wave elevation profile for DTMB5512 (Fr=0.28). Up: Level Set numerical results. Bottom:
Experimental data [12] (contours from −5.10−3 to 5.10−3 with intervals of 5.10−4)

Figure 6: Scalability test on steady DTMB 5512 benchmark

8 CONCLUSIONS

In this paper, an extension of a massively parallel incompressible Navier-Stokes Eule-
rian solver [8] has been successfully applied to ship design process through a two-phase
flow approach. The Finite Element discretization in space [6] along with the Level Set
Method [24] to capture the interface motion allows the use of a flexible unstructured
locally-refined mesh.

On the steady DTMB 5512 [9], the association of our two-phase solver with a Spalart-
Allmaras turbulence modelling [27] and a Reichardt wall function approach was validated
against experimental free surface elevation and forces. The combination of the LS method
and the parallel fractional predictor-scheme proved high performance parallelization on
this 3D benchmark.
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Future work will include transient simulations, mesh adaptation and fluid-structure
interactions.
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