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Abstract. Including data into numerical simulations has always been an issue of paramount
relevance in the prediction of fluid geophysics phenomena; due to advanced and efficient
techniques in the field of biomedical imaging we can now collect a huge amount of mea-
surements for the cardiovascular system. Our goal is to use these noisy and sparse data
to get an accurate approximation of the blood flow in vessels in order to predict physical
quantities of medical relevance. The combination of measurements and governing princi-
ples is known in literature as Data Assimilation (DA).
In this work we propose a DA technique for including noisy measurements of the velocity
field into the simulation of the Navier-Stokes (NS) equations driven by hemodynamics
applications, since new devices make blood flow measurements available. Specifically, the
technique we present is formulated as an inverse problem where, we use a Discretize then
Optimize (DO) approach to minimize the misfit between the recovered velocity field and
the data, subject to the state equations; as a discretization technique the Finite Element
(FE) method has been selected. The DA procedure for this nonlinear problem is a combi-
nation of two approaches: the Newton method for the NS equations, a common iterative
procedure for the treatment of the nonlinear advection term, and the DA procedure we de-
signed and tested for linear problems, specifically, for the Oseen problem. Our formulation
is an iterative Newton-like procedure which exploits the DA technique for linear problems
at each iteration.
We present numerical results on a 2D NS test case, for which an exact flow is available;
upon the introduction of a suitable noise, this is used for the generation of the data. We
mainly focus on the error analysis: using noise-free data we check the consistency of our
technique, recovering the FE convergence rates for the discretization error w.r.t. the exact
solution. In the case of noisy data, we investigate the dependence of the discretization
error on the amount of noise, the number and the location of measurements. We will
show how the DA process improves the reliability of the numerical results on the primitive
variable (velocity) and other flow-related variables of biomedical interest.
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Figure 1: View of blood measured velocities in an
MRI of the ascending aorta [11]. Figure 2: Possible 3D domain and data.

1 INTRODUCTION

Numerical methods for incompressible fluid dynamics have recently received strong
impulse from applications to the cardiovascular system (see e.g. [5]). The integration of
medical images and numerical simulations is fundamental for the development of clinically
effective tools. The introduction and improvement of measurement and imaging devices
enhances the integration process and opens new challenging goals; as an example Figure 1
reports an MRI [11] of the ascending aorta where blood velocity measurements have been
collected. Beyond validation, these additional data can be used in numerical simulations
to improve the accuracy of the recovered solution and increase the reliability of numerical
results. While for hemodynamics this is a new field of investigation, the assimilation
problem is well-known in other engineering fields; among those we mention geophysics
and meteorology, where sparse and noisy data are combined with dynamic principles to
get an accurate prediction of physical phenomena. The process of combining governing
principles and data, which are sparse, irregularly distributed and subject to random noise
is known in literature as Data Assimilation (DA).
In this paper we present a DA technique in computational fluid dynamics for including
noisy measurements of the blood velocity into the simulation of the Navier-Stokes (NS)
equations in a region of interest. For a brief overview of DA techniques during the last
50 years we refer to [10]. In Section 2 we present the mathematical formulation of the
problem; in Section 3 we propose a DA procedure moving from the linear case to the
nonlinear one; in Section 4 we present and discuss numerical results and in Section 5 we
draw some conclusions and we present future research guidelines.

2 MATHEMATICAL FORMULATION OF THE DA PROBLEM

Given a domain Ω ∈ R2, which represents the vessel of interest, we assume that on
some internal and boundary points, xmi , i = 1, ..., Nd, not necessarily in correspondence of
grid nodes, a velocity measure is available (in Figure 2 a possible 3D domain is displayed);
we call d ∈ R2Nd the vector of horizontal and vertical velocity measurements. Moreover,
we denote by u(x) the velocity of the fluid, p(x) the pressure field, Γwall the physical

2



M. D’Elia, A. Veneziani

boundary of the vessel, Γin and Γout the inflow and outflow sections. We assume that
u(x) ∈ H1(Ω) and p(x) ∈ L2(Ω) satisfy the incompressible NS equations:{

−ν∇ · (∇u +∇uT) + (u · ∇)u +∇p = s in Ω;

∇ · u = 0 in Ω,
(1)

with boundary conditions
u = 0 on Γwall;

−ν(∇u +∇uT) · n + p · n = h on Γin;

−ν(∇u +∇uT) · n + p · n = g on Γout.

(2)

Here, h(x) : R2 → R2 and g(x) : R2 → R2 are the Neumann data on the inflow and
outflow boundaries; moreover, h is unknown.
Among available DA procedures, we formulate our assimilation technique as a control
problem where we aim at minimizing the misfit between the predicted data and the
data itself tuning the control variable h(x). In this framework, u and p are regarded as
functions of h. More precisely, let dist(u(h),d) be the distance between the measured
velocity data d and the recovered velocity u (to be specified later on). Given d, our
goal is to find h∗ such that dist(u(h∗),d) ≤ dist(u(h),d) for any feasible h, under the
constraint of (1) for u(h) and p(h).

3 NUMERICAL SOLUTION OF THE DA PROBLEM

For the numerical solution of the optimization problem we first focus on the linear
Oseen problem (i.e. we replace the nonlinear term (u · ∇)u in (1) with (β · ∇)u, being β
a given convective field).
Here, we follow a Discretize-then-Optimize (DO) procedure. Other approaches are pos-
sible, however preliminary results suggest that DO is the most effective (see [2]). In the
DO procedure we first discretize the minimization problem subject to the Oseen equations
using the Finite Element (FE) method with a suitable choice of compatible FE space [9];
then, we solve the induced algebraic optimization problem. Let us introduce the following
notations,

V =

[
U
P

]
, D = [Q O]; S =

[
C BT

B O

]
, R =

[
N
O

]
, (3)

where U ∈ RNu , P ∈ RNp and H ∈ RNh are the discretized velocity, pressure and flux vec-
tor; let C and B be the discretization of the advection-diffusion and divergence operators
and N the discretization of the mass operator computed only on inlet boundary nodes.
More specifically, the matrix N comes from the discretization of the term

∫
Γin

h v dσ
coming from integration by parts in the weak formulation of the problem. Also, Q is a
selection matrix designed such that [QU]i is the numerical solution corresponding to di
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(i.e. in the same location). Specifically, when measurement nodes do not correspond to
grid points, [QU]i is the value of the FE numerical solution evaluated at xi obtained by a
weighted sum of the FE basis functions. Upon discretization, the algebraic minimization
problem reads,

min
1

2
‖DV − d‖2

2 +
a

2
‖LH‖2

2

s.t. SV = RH + F.
(4)

Here a regularization term has been added to the functional due to the possible ill-
posedness or ill-conditioning of the problem, possibly caused by the position of the data
and pinpointed by the amount of noise; L is the discretization of a regularization operator
(e.g. the gradient).
For the solution of problem (4), we write the Lagrangian and we solve the associated set
of equations, coming from the optimality necessary conditions. The Lagrangian reads

L(V,H,Λ) =
1

2
‖DV − d‖2

2 +
a

2
‖LH‖2

2 + ΛT(SV − RH− F); (5)

where Λ ∈ RNu+Np is the Lagrangian multiplier. The set of necessary conditions for
the optimality is given by 

DT(DV − d) + STΛ = 0;

aLTLH− RTΛ = 0;

SV − RH = F.

(6)

Upon block elimination, the reduced system reads

(RTS−TDTDS−1R + aLTL)H = RTS−TDTd. (7)

By defining Z=DS−1R system (7) reads

(ZTZ + aLTL)H = ZTd, (8)

where Z, can be regarded as Z=∂DV(H)/∂H, the so-called sensitivity matrix. The
spectral properties of this matrix determine the conditioning of the problem.

3.1 DA procedure for the NS problem

For the solution of the DA problem for the NS equations we combine the DA procedure
for linear problems presented in Section 3 and a fixed point method for the solution of
the NS equations; in particular, we employ both Picard and Newton methods (for the
formulation of the two techniques we refer to [8]).
We solve the DA problem iteratively: given an initial guess for the discrete velocity U, at
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each step we minimize the functional in (4) subject to the constraint given by a Picard
or Newton iteration. More precisely, in the following we set

Sk =

[
C + Ak BT

B O

]
, Fk = F + wYk, (9)

where Ak and Yk are related to the linearization of the NS equations. Specifically, Ak is
the FE matrix coming from the discretization of the term (uk ·∇)uk+1 +w(uk+1 ·∇)uk and
Yk is the vector coming from the discretization of (uk · ∇)uk. The coefficient w ∈ [0, 1]
activates the Newton process: w = 0 corresponds to classical Picard iterations, w ∈ (0, 1)
to relaxed Newton iterations and w = 1 to pure Newton iterations. The algorithm reads:

Algoritm 1. Given an initial guess U0

do

solve : min
1

2
‖DVk+1 − d‖2

2 +
a

2
‖LHk+1‖2

2

s.t. SkVk+1 = RHk+1 + Fk;

k = k + 1;

while (‖Uk −Uk+1‖ ≥ δ).

The parameter δ is a user-defined tolerance.
Since the Newton method is only locally convergent, a good initial guess U0 is required;
a common procedure is to perform a few Picard iterations and use the resulting velocity
as an initial guess (we refer to this method as Picard-Newton).

4 NUMERICAL RESULTS

In this Section we present numerical results obtained performing the DA procedure on
the NS problem. Using noise free data we verify the consistency of Algorithm 1 with both
Picard and Picard-Newton iterations. Then, we introduce noisy data for investigating
the dependence of the discretization error on the number of data, their location and the
amount of noise. Also, we present numerical results in a curved domain pointing out the
accuracy of the vector assimilated with the noisy data. The computation of an index of
hemodynamic interest such as the Wall Shear Stress (WSS) is also reported.
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4.1 An analytical test case

All simulations presented in this Section are based on the 2D NS flow in the domain
Ω = [−0.5, 1.5]× [0, 2] whose analytical solution reads

[u]1(x, y) = 1− eλx cos(2πy),

[u]2(x, y) =
λ

2π
eλx sin(2πy),

p(x, y) =
1

2
e2λx + C.

(10)

Here, the viscosity of the fluid is ν = 0.035m2/s, the adimensional parameter λ is such
that λ = 1

2
(ν−1−

√
ν−2 + 16π2), and C is a constant chosen to give a zero mean pressure.

Data Generation We assume data to be given on the inflow boundary and on some
internal points in the computational domain, not necessarily in correspondence of grid
points. These data are generated adding white noise uniformly distributed in space (glob-
ally) to the exact solution. In this procedure we fix the Signal-to-Noise Ratio, SNR; this
fact determines the parameters of the noise probability distribution in the generation pro-
cess. In real applications this value is strongly determined by the biomedical tools used
to observe the data. In the case of noisy data from a 4D scan of the aorta, SNR can be
as low as 10 for flow measures (personal communication of Dr. M. Brummer).

Implementation details We implement the FE method with choice of compatible
FE spaces P1bubble-P1 for velocity and pressure respectively. For our DO approach we
use the regularizing operator L = ∇d (a discretization of the gradient) and we generate
the optimal parameter by means of the Discrepancy Principle (DP) [7]. With noise free
data, the optimal regularization parameter is of the order of 10−9 and no regularization
is used; note that the location of measurement nodes affects the well-posedness and the
conditioning of the problem in a nontrivial way (see Section 4.2 and [3] for more details).
A critical step in the DA procedure is the solution of system (8). We rely on the GMRES
method; its bottleneck is the solution of linear systems associated with S and ST where
an efficient preconditioner is required; we solve these systems monolithically with the
Pressure-Advection-Diffusion preconditioner introduced by Elman et al. in [4]. Table 1
reports stopping criteria used for each linear system involved. Prec(Sk) stands for the
preconditioned system; also, r(x) is the residual at the current iteration and rhs is the
right hand side of the current system.
Numerical results are obtained with the C++ FE library lifeV 1 and post-processed with
ParaView 2.

1Free C++ library, which the authors are developers of, available on www.lifev.org.
2An open-source, multi-platform application designed to visualize data sets, available on

www.paraview.org.

6



M. D’Elia, A. Veneziani

system solver toll stopping criteria
Sk GMRES 1.e-9 ‖r(x)‖/‖r(x0)‖

Prec(Sk) GMRES 1.e-9 ‖r(x)‖/‖rhs‖
ZTZ GMRES 1.e-6 ‖r(x)‖/‖rhs‖

Table 1: Parameters setting for the iterative solvers (implemented in the external library AZTEC).

method
h = 0.16 h = 0.072 h = 0.05

EU t it EU t it EU t it

Picard 4.98e-2 23 6 9.59e-3 540 5 4.79e-3 4680 5
Picard-Newton 4.97e-2 20 5 (3) 9.49e-3 780 4 (2) 4.73e-3 5600 4 (2)

Table 2: Numerical results using Picard iterations and Picard-Newton iterations. In brackets, the number
of Picard iterations to get the initial guess.

4.2 Error analysis with noise free data

In order to investigate consistency of our method, using noise free data we analyze the
discretize-error with respect to the exact solution. In this case we have to recover the FE
error convergence rate as a function of the discretization parameter ∆x. In this test case
the set of measurement points is a subset of the set of grid nodes; specifically, we consider
data on Γin and on three internal layers (in correspondence of x = 0, 0.5, 1).
In Table 2 we report for Picard and Picard-Newton iterations the discretization error

EU =
‖U−Uex‖2

‖Uex‖2

(11)

and the number of iterations of Algorithm 1 (in the case of Picard-Newton it corresponds
to the sum of Picard iterations performed to obtain the initial guess and Newton iterations
to get convergence, the latter is reported in brackets). Same results are reported in
Figure 3 in a loglog scale with a reference quadratic curve. With both techniques we
recover the expected FE convergence rate; also, for each mesh the Newton method yields
a slightly better accuracy. Moreover, we observe that the number of iterations needed for
the convergence is almost mesh independent and that, as expected, the Newton method
requires less iterations to satisfy the stopping criteria. A deeper theoretical investigation
is needed to prove that it preserves its quadratic convergence when combined with the DA
procedure. In Figure 4 (left) we report the computed pressure and velocity field obtained
in correspondence of ∆x = 0.072 after four Picard-Newton iterations. The recovered
velocity field matches accurately the data, represented by the white vector field on Γin
and on three internal layers.
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Figure 3: Relative errors EU versus ∆x for Picard (left) and Picard-Newton (right) iterations with noise
free data.

4.3 Error analysis with noisy data

In this Section we consider the case of noisy data and we investigate the dependence
of the discretization error on the number of available measures, on their position and on
the amount of noise.
In Table 3 we report the discretization error and the number of iterations performed by
Algorithm 1 in correspondence of SNR = 20 for different numbers of measurement points
Nd; no regularization is used in this case. For this simulation we still sample the data on
Γin and on three internal layers. In Figure 4 (right) we report the computed field and the
noisy data: the presence of the noise is evident in the vertical components. In particular,
we notice that the noise mainly affects low magnitude velocities; this happens since the
amount of noise does not depend on the local magnitude of the velocity vector field.
In correspondence of these low magnitude values the recovered assimilated field differs
significantly from the data and it is closer to the exact solution thanks to the assimilation
process.

In Figure 5 (left) we report the error and a reference curve O(
√
N−1
d ). We note that,

for a given set of n independent identically distributed random variables, the standard
deviation is proportional to

√
n−1; this explains our results.

In Figure 5 (right) we report in a loglog scale the discretization error versus the inverse of
the signal to noise ratio for SNR = {33.3, 20, 10, 8.3}. We can notice a linear behavior
by a comparison with the dashed reference curve. As SNR gets smaller, more Newton
iterations are required to reach convergence; we can infer that a higher amount of noise
affects the conditioning of the problem.
The number of available measures on the inflow boundary and the additional availability
of internal measurements affects the quality of the solution in terms of accuracy and well-
conditioning of the numerical problem [3]. This is verified in the following tests performed
on the domain Ω defined above, related results are reported in Table 4.
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Figure 4: On the left, the computed pressure and velocity vector field with the noise-free data (white
vector field). On the right the computed pressure and velocity vector field with the noisy data (black
vector field) for SNR = 20.

• test 1. data on all grid nodes on Γin;

• test 2. data on half of the grid nodes on Γin;

• test 3. data on 12 points (not necessary grid nodes) on on Γin;

• test 4. data on all grid nodes on Γin and 30 points x ∈ [−0.5, 0]× [0, 2];

• test 5. data on all grid nodes on Γin and 30 points x ∈ [1, 1.5]× [0, 2];

• test 6. data on all grid nodes on Γin and 30 points x ∈ [−0.5, 1.5]× [0, 2];

Here, we use ∆x = 0.072 and SNR = 20. Regularization is required by the ill-
conditioning of the problem which gets worse as we decrease the number of available
measurements on Γin; further investigation on the relation between the well-posedness (or
conditioning) of the problem and the displacement of the data will be addressed in [3].
From these results we notice that the number of iterations required to reach convergence
is not related to the number of available measurements and neither to the conditioning of
the problem; however, it affects the number of GMRES iterations in the solution of the
single optimization problem and the accuracy of the computed solution. Accuracy is im-
proved by regularization; this happens because of the smoothing and filtering properties
of the regularizing term. Finally, we notice that the availability of additional measure-
ments at some internal points (not necessarily in correspondence of grid nodes) improves
the accuracy of the solution. Also, in this specific case, a uniform distribution of internal
measurement nodes yields a slightly better accuracy.
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SNR
Nd = 48 Nd = 112 Nd = 160

E t it E t it E t it

20 6.95e-2 28 5 (3) 3.96e-2 3240 5 (2) 2.97e-2 4740 4 (2)

Table 3: Numerical results using Newton-Picard iterations.

Figure 5: Relative errors EU versus ∆x with noisy data (left); relative errors EU versus SNR−1 (right)
for Picard-Newton iterations.

4.4 Towards real geometries

In this Section we want to focus on a more complex geometry; in particular, we want
to reproduce in a 2D computational domain a section of the aortic arc, which is the vessel
we are mainly interested in and where we assume to have some velocity measurements as
in Figure 1. Specifically, we introduce the computational domain, we describe a new data
generation procedure and we report some results obtained with the DA technique for the
NS formulation. As done previously, we use compatible FE spaces P1bubble-P1 for the
approximation of the velocity and pressure fields and we rely on the software FreeFem++
for the mesh generation. In Figure 6 (left) we report the computational domain, which is
a rough approximation of a section of the ascending aorta. We assume to have velocity
measurements on the inflow boundary Γin and on three internal layers Γdata, as shown
in Figures 6 and 7 (left) for noise free and noisy data. Also, we prescribe homogeneous
Dirichlet boundary conditions on Γwall and homogeneous Neumann boundary conditions
on the outflow boundary Γout. As anticipated above, a new data generation procedure
needs to be designed, since the analytic solution is not available. As a reference solution
we use a numerical solution, computed with the FE method on a very fine grid, which can
be considered a reliable approximation of the exact solution. For the computation of this
approximate solution, which we call UFE, we prescribe the following boundary conditions,
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test EU it

1 5.074e-2 4
2 7.334e-2 4
3 7.664e-2 4

test EU it

1 4.748e-2 4
2 6.590e-2 4
3 6.679e-2 4
4 3.860e-2 4
5 4.414e-2 4
6 3.161e-2 4

Table 4: Numerical results for noisy data with SNR = 20 without (left) and with (right) regularization.

being k = 1,

u = 0 on Γwall; −ν ∂u

∂n
+ p = 0 on Γout; u = [ 0 k(r2 − x)(x− r1) ]T on Γin. (12)

UFE is used both for data generation and error evaluation. More specifically, the data
are generated adding a random noise to PUFE; here, P is a projector of the FE solution
computed on a finer grid on the FE space associated with the current computational grid.
In this way, the reference solution is affected both by the FE approximation error and the
projection one. This fact, anyway, does not affect the reliability of our results; in fact,
the FE approximation error and the projection one can be regarded as part of the noise
of our data. We measure the error by computing the following index

‖U− PUFE‖L2

‖UFE‖L2

.

In Figure 6 (right) we report the pressure and velocity vector field, computed with the
DA technique, together with the noise-free data: the velocity matches the data in corre-
spondence of the internal layers. In Figure 7 (right) we report the computed pressure and
velocity vector field with a noisy data generated with SNR = 10; which is a realistic value
for true instrumental noise. In this case, the noise mainly affects the components of the
velocity which are transversal to the flow (they are supposed to be close to zero). Despite
this, the recovered field is close to the reference solution; this confirms the noise-filtering
property of the DA process.

The wall shear stress Finally, we want to consider the computation of the Wall Shear
Stress (WSS) which is a quantity of medical interest . It is defined as the tangent com-
ponent of the stress exerted by the fluid (blood in this case) on the arterial wall; formally

τ = ν(∇u +∇uT)n− ν
((

(∇u +∇uT)n
)
· n
)
n, (13)

where n is the normal vector in correspondence of the wall. An accurate approximation
of the WSS is fundamental in the investigation of cardiovascular pathologies since it is an
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Figure 6: On the left, computational mesh reproducing the aortic arc and noise free data. On the right,
pressure and velocity fields recovered from noise free data.

index of the possibility of rupture of the vessel wall and of the formation of stenosis [5].
Approximations of the WSS retrieved from indirect measurements velocities are in general
unreliable because of post-process operations and the noise affecting the measures. DA can
be considered a way for improving the reliability of this computation thanks to the noise-
filtering due to the introduction of the numerical blood flow model. In Figure 8 we report
a comparison between the WSS computed using the reference solution PUFE and the one
computed upon assimilated velocities; we note that by means of DA the recovered WSS
catches accurately the behavior of the reference one. These preliminary results pinpoint
the role of DA as a way for filtering and eventually computing hemodynamical indexes
with good accuracy.

5 CONCLUSIONS

On the basis of a DA procedure for linear problems we developed an efficient algorithm
for the integration of noisy data and the numerical simulation of the NS equations. The
combination of Picard and Newton iterations in Algorithm 1 yields convergence after few
iterations. However, the computational effort is still high and the numerical solution
can be improved employing a more efficient preconditioner for the Oseen problem. A
possible choice is the Augmented Lagrangian preconditioner which can either improve
the conditioning and stabilize possible advection dominated phenomena [1].
As expected, the noise affects both the accuracy of the solution and the efficiency of the
procedure. Also, data location plays a fundamental role in the well-conditioning of the
formulation: numerical tests proved that both regularization and a suitable measurements
distribution might improve the spectral properties of the problem (more details will be
reported in [3]).
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Figure 7: On the left, computational mesh reproducing the aortic arc and noise free data. On the right,
pressure and velocity fields recovered from noise free data.

The well-posedness of the formulation and an estimate of the discretization error related to
the noise level are the subject of future theoretical investigation. Under a computational
perspective, we aim at improving the efficiency of the numerical procedure in the solution
of the control problem and to test our method on real data and 3D geometries.
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