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Abstract. A methodology to perform the implicit large-eddy simulation (LES) of the jet
noise radiated at high Reynolds number was developed. Unlike eddy-viscosity type models,
this approach assumes that the subgrid model may be determined by the structure of the
resolved flow and, therefore, does not require any additional subgrid-scale stress or heat
flux terms. High-order compact schemes were used for the spatial discretization and a
fourth-order Runge-Kutta method was used for the time integration. The high-frequency
content of the smallest unresolved subgrid scales was removed by the application of high-
order filtering, while the effect of these scales on the largest filtered scales was reconstructed
by an approximate deconvolution model. The non-conservative form of the compressible
Navier-Stokes equations was used to compute the flow solution in the physical domain.
While a characteristic-based formulation of the flow equations combined with a conceptual
model based on the characteristic analysis were employed to prescribe boundary conditions
and buffer zone treatments. By this modeling approach outgoing waves exit the domain
without generating high-frequency spurious wave reflections, which can contaminate the
acoustic field solution. Implicit LES were carried out to investigate the aerodynamic noise
radiated by the well-known test case of a Mach 0.9 jet at Reynolds number 6.5 × 104 .
Effects of grid resolution on the jet shear-layer characteristics, such as the jet inlet shear-
layer momentum thickness, were analysed. In the ongoing work, a parallel high-order flow
solver is being implemented to perform implicit LES of the noise radiated by 3D subsonic
round jets at high Reynolds number.
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1 INTRODUCTION

Noise radiation from an extensive region of unsteady hydrodynamics was firstly investi-
gated by Colonius et al.12 by performing direct numerical simulation (DNS) of the sound
generated by a two-dimensional mixing layer. The presence of flow-acoustic interactions
in the acoustic field was found to be very sensitive to small changes in the computed
flow-noise source. Mitchell et al. 27 performed the DNS for both the flow and the sound
radiated from subsonic and supersonic axisymmetric 2D jets. The predicted sound was
found to agree with predictions of Lighthill's acoustic analogy. Freund et al. 14 reported
the DNS of a turbulent jet at Mach number 1.92. As the flow was nearly isothermal, the
principal noise radiation mechanism was Mach waves generated by supersonically advect-
ing flow structures. Bogey and Bailly 8 computed by LES the sound field of a Mach 0.9
jet at Reynolds number 6.5 × 104 with the Smagorinsky model. Based on the unsteady
flow results obtained, they directly computed the aerodynamic noise. The mean flow and
turbulence intensities, as well as sound directivity and sound levels, were found to be
in good agreement with experimental data. Bodony and Lele 1 conducted a systematic
investigation of LES's predictive capability for jet noise at the Reynolds number range
from 1.3 × 104 to 3.36 × 105. Noise predictions for the unheated and heated jets were
found to be in agreement with experimental data35. Bogey and Bailly 7 showed that in-
flow conditions, particularly the spatial structure of inflow disturbances, can significantly
impact the development of jet flows and the radiated sound predicted by compressible
LES at high Reynolds numbers. Some attempts on round jets have been made by Choi
et al. 10 and Boersma and Lele 2 . Nevertheless, except for some recent studies of Bogey
and Bailly4,5,7 and Bodony and Lele 1 , the highest Reynolds numbers reached in the LES
simulations are still far bellow those of practical interest.

The main goal of the present work is to develop and validate an implicit LES method
based on approximate deconvolution33 and high-order filtering36 by the analysis of grid
resolution effects on the jet shear layer characteristics. In order to satisfy strict require-
ments of aeroacoustic computations at high Reynolds number, such as the large difference
of scales between the flow and the acoustic field, high-order compact schemes22 were used
for spatial discretization and a fourth-order Runge-Kutta method was employed for time
integration. The non-conservative form of the compressible Navier-Stokes equations was
used to compute the flow solution in the physical domain. While a characteristic-based
formulation32 was used to prescribe boundary conditions and the buffer zone. The wave
modal structure provided by this formulation allows us to define non-reflecting boundary
conditions and buffer zone treatments especially adapted for aeroacoustic computations.
Non-reflecting boundary conditions were specified to let outgoing disturbances exit the
computational boundaries without producing spurious wave reflections. Downstream of
the physical domain, a buffer zone11 was attached to damp outgoing disturbances before
they interact with the outflow boundary. Additionally, grid stretching was applied in the
buffer zone to help to dissipate large-scale disturbances of the jet flowfield.
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2 LARGE-EDDY SIMULATION METHODS

In the last few years, LES has achieved significant progress due to advances in com-
putational power, numerical algorithms and subgrid-scale models. LES has been applied
to a wide variety of turbulent flows, ranging from problems of scientific interest to those
with engineering applications. This trend has been motivated by the need to provide a
more realistic characterization of complex unsteady flows encountered in areas such as
flow control, aeroacoustics and fluid/structure interaction. Nevertheless, the vast major-
ity of LES research has been devoted to incompressible flows; while compressible flow
applications have only recently gained some attention, due to the increased complexity
introduced by the need to model the energy equation30,38.

2.1 Subgrid Eddy-Viscosity Type Models

LES methods for compressible flows have ranged from using the inherently limited
Smagorinsky eddy-viscosity type models, to more sophisticated and accurate dynamic
models. The Smagorinsky-type models exhibit two major drawbacks. They ignore turbu-
lence anisotropy and use a local balance assumption between the subgrid scale turbulence
kinetic energy production and its dissipation. Furthermore, they predict non-vanishing
subgrid eddy viscosity in regions where the flow is laminar. The dynamic procedures18,24

for computing the model coefficient from the resolved velocity field, which require no
adjustable constant, overcome these shortcomings. However, the numerical stabilization
become complicated when the dynamic model is applied to flow configurations in which
there are inhomogeneous directions. Vreman 37 developed a subgrid eddy-viscosity type
model especially suitable for laminar shear flows, since it vanishes subgrid dissipation in
laminar regions and does not require any averaging or clipping procedure for numerical
stabilization. Park et al. 29 proposed a dynamic procedure for determining the model
coefficient utilizing the global equilibrium between the subgrid and viscous dissipation.
In this approach, the model coefficient is globally constant in space but varies in time,
and it still garantees zero eddy viscosity in the laminar flow regions.

In traditional LES methods, the equations are obtained by spatial filtering of the flow
variables. Ideally, for incompressible flows the filtering of the Navier-Stokes equations
generates a closure problem in the form of an unknown residual subgrid-scale stress tensor:

τi,j = uiuj − ūiūj (1)

It should be emphasized, however, that the filtering equations are not closed because
of the presence of the nonlinear term uiuj, since the subgrid-scale stress tensor stems
from a closure problem introduced by the spatial filtering operation and not from the
discretization's inability to represent the small scales in the flow. As a result, the subgrid-
scale stress tensor strongly depends on the assumed filter shape, which causes a subgrid-
scale model to be inherently filter dependent. Hence, depending on the choice of the filter,
the corresponding model should satisfy very different requirements in terms of large-scale
dynamics and kinetic energy budget.
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2.2 Implicit LES Approach

An alternative approach to subgrid eddy-viscosity type models is the use of high-order
spatial filters to implictly model the energy content present in the poorly resolved smallest
scales of the flow. This aproach does not require any additional subgrid scale stress or
heat flux terms in the flow governing equations. Although the filter is applied explicitly
to the evolving solution, this approach is referred as implicit LES, since the application
of the spatial filter is a fundamental component to mantain stability by removing high-
frequency spurious numerical oscillations. The basis of the implicit LES approach is
that the numerical truncation error associated with the discretization has similar form or
action to the subgrid model. Such approach falls into the class of structural models, since
there is no assumed form of the nature of the subgrid flow. The subgrid model is entirely
determined by the structure of the resolved flow31. Nevertheless, even with the recently
increase of interest in implicit LES, there is not a consensus on the appropriate form of
the discretization error, since it is assumed that the numerics provide sufficient modeling
of the subgrid terms to allow correct dissipation of turbulent kinetic energy.

The analysis of the impact of spatial discretization errors on implicit LES establishes
the need of high-order spatial filtering16. The high order filtering of Navier-Stokes equa-
tions should provides dissipation at the higher modified wave numbers only, where the
spatial discretization already exhibits significant dispersion errors, and enforce numerical
stability on nonuniform grids. The filtering also should allow to eliminate numerical in-
stabilities arising from poor grid quality, unresolved scales, or boundary conditions, which
left to grow can potentially corrupt the flow solution. The filtering operation is defined
by Leonard 23 in the physical space as

f̄(x) =
∫

Ω
f(x′)G(x, x′; δ)dx′ (2)

where Ω is the entire domain, G is the filter kernel and δ is the filter width associated
to the smallest scale retained by the filtering operation. Thus, f̄ defines the size and
structure of the small scales.

In principle, to mantain acceptable numerical acurracy and proper resolution of low
wavenumbers, the filter accuracy should be equal or greater than the corresponding accu-
racy of the spatial discretization scheme. Thus, the flow variables were filtered in every
spatial direction at the final stage of each time step with sixth-order implicit filters36.
Sixth-order compact finite difference schemes22 were employed for the spatial discretiza-
tion and the fourth-order Runge-Kutta method was used for the temporal integration.

At the interior grid points i = 4, ..., N − 3, the implicit filtering approach is defined as
follows

αf f̄i−1 + f̄i + αf f̄i+1 =
4∑

n=1

an
2

(fi−n+1 + fi+n−1) (3)

The coefficients an are derived in terms of the filtering parameter αf by Taylor and Fourier
series analysis15;16
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a1 = +11
16

+ 5
8
αf , a2 = +15

32
+ 17

16
αf ,

a3 = − 3
16

+ 3
8
αf , a4 = + 1

32
+ 1

16
αf ,

where αf must satisfy the inequality −0.5 ≤ αf ≤ 0.5. Filters less dissipative are obtained
with higher values of αf within the given range, and for αf = 0.5 there is no filtering
effect. By contrast, the explicit filter (αf = 0) display significant degradation of the
spectral frequency response. Here the filter parameter was fixed as αf = 0.40.

As equation (3) has a right-hand side stencil of seven points, obviously it can not be
employed near the boundaries of the computational domain. Thus, the following implicit
filter is used at the grid points i = 2 and 3:

αf f̄i−1 + f̄i + αf f̄i+1 =
7∑

n=1

an,ifn (4)

For i = 2:
a1,2 = + 1

64
+ 31

32
αf , a2,2 = +29

32
+ 3

16
αf ,

a3,2 = +15
64

+ 17
32
αf , a4,2 = − 5

16
+ 5

8
αf ,

a5,2 = +15
64
− 15

32
αf , a6,2 = − 3

32
+ 3

16
αf ,

a7,2 = + 1
64
− 1

32
αf .

For i = 3:
a1,3 = − 1

64
+ 1

32
αf , a2,3 = + 3

32
+ 13

16
αf ,

a3,3 = +49
64

+ 15
32
αf , a4,3 = − 5

16
+ 5

8
αf ,

a5,3 = −15
64

+ 15
32
αf , a6,3 = + 3

32
− 3

16
αf ,

a7,3 = − 1
64

+ 1
32
αf .

Analogously, at the grid points i = N − 2 and N − 1:

αf f̄i−1 + f̄i + αf f̄i+1 =
7∑

n=1

an,N−i+1fN−n+1 (5)

While at the boundary points i = 1 and N , the flow variables were kept without applica-
tion of any filtering operation.

2.3 Approximate Deconvolution Model

The implicit LES approach re-interpreted by Mathews et al. 25 in the context of an
approximate deconvolution model33 was used in present study to compute the filtered
solution variable ū, by the following filtering operation

ū = G ∗ u =
∫
G(x− x′)u(x′)dx′ (6)

where G is the filter transfer function. If G has an inverse Q, an approximation of the
unfiltered variable u, denoted by u∗, may be obtained by deconvolution of the filtered
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variable ū as
u∗ = Q ∗ ū (7)

where the inverse filter transfer function Q may be obtained by a truncated power series
expansion

QN =
N∑
ν=0

(I −G)ν (8)

where I is the identity matrix and N = 1, 2, 3, ... the number of filtering steps. The family
of inverse filter transfer functions, QN , is based on the iterative deconvolution method of
Galdi 17 . High-order approximations u∗ from the unfiltered variable u, can be derived by
sucessive filtering operations applied to the filtered quantities

u∗ = ū+ (I −G) ∗ ū+ (I −G) ∗ ((I −G) ∗ ū) + ... (9)

In smooth regions of the flow, these filters have strong stability properties and high
consistency error O(δ2N+2), where δ is the filter width. As reported by Stolz et al. 34 , the
truncation order of the Eq. (9) determines the level of deconvolution. Here we choose the
third level quadratic extrapolation: u∗ ≈ Q2ū := 3ū−3¯̄u+ ¯̄̄u, since it affords a sufficiently
high-order consistency error O(δ5).

3 FLOW CONFIGURATION

3.1 Inflow Boundary Conditions

In the implicit LES of the jet, the inflow boundary conditions have been modeled by
imposing the following hyperbolic-tangent mean velocity profile

u(r) =
Uj
2

(
1 + tanh

(
ro − r

2δθ

))
(10)

where Uj is the jet inlet centerline velocity, ro is the jet radius and δθ is the inlet shear-
layer momentum thickness. The jet inlet velocities are normalized by the sound speed in
the ambient medium co and the Reynolds number of the flow is

ReD =
Uj ×D

ν
(11)

where D = 2ro is the jet width and ν the kinematic viscosity.

3.2 Near-Inflow Periodic or Random Excitations

In order to startup earlier the turbulent mixing process in the jet shear layer, a low-
amplitude excitation of incompressible nature, i.e. with zero divergence6 is added to the
velocity field, just downstream of the inflow boundary. The axisymmetric structure of this
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excitation has the form of a vortex ring of radius yo = ro, with streamwise and transverse
velocities

Uxo = 2
yo
y

y − yo
∆o

Exp

(
−Ln 2

(
∆x,y

∆o

)2
)

(12)

Uyo = 2
yo
y

x− xo
∆o

Exp

(
−Ln 2

(
∆x,y

∆o

)2
)

where y 6= 0 and ∆2
x,y = (x − xo)2 + (y − yo)2. ∆o is the minimum grid spacing in the

shear layer and xo is the streamwise location of the center of the excitation, chosen as
xo = 0.80yo. The velocity fluctuations given by Eq.(12) are then added onto the local
velocity components

ux = ux + UxoUj
n∑
i=0

αnεnCos(θn + φn)

(13)

uy = uy + UyoUj
n∑
i=0

αnεnCos(θn + φn)

where αn, φn and θn are, respectively, the amplitude, phase and azimuthal angle of each
one of the n+ 1 modes of excitation. The parameters for random excitations are θn = nθ,
εn = [−1, 1], φn = [0, π] and αn = 2.5 × 10−4, where n was set to 9. While for periodic
excitations εn = 1 and θn = 2πfnt, where fn are the excitation frequencies and t is the
time step, with n set to 1.

In the jet shear layer, instabilities are governed by two different modes associated with
two different characteristic length scales: the inlet shear-layer momentum thickness δθ
and the jet width D. The first mode is the fundamental frequency fo of the velocity
fluctuations. This mode is observed in the neighborhood of the jet inlet and is responsible
by the exponential growth of shear layer instabilities. The linear instability theory26

predicts that the strongest amplification rate of perturbations for the hyperbolic-tangent
velocity profile given by Eq. (10) is observed for

fo = 0.017
Uj
δθ

(14)

The second mode, known as the first sub-harmonic f1 = fo/2, corresponds to the frequency
of the vortex pairing process. In the current calculations this mode also characterizes the
frequency of the velocity fluctuations that occurs in the jet potential core, with amplitudes
fixed as αo = 2.5× 10−4 and α1 = αo/3, and phases as φo = 0 and φ1 = π/2.
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3.3 Buffer Zone

Similarly to Colonius et al. 11 , a buffer zone is attached downstream of the physical
domain to damp large-scale vortical structures originated by the turbulent jet flow. These
structures are effectively dissipated in the buffer zone, before they interact with the outflow
boundary, by adding artificial damping terms to the flow governing equations

∂Q

∂t

∣∣∣∣∣
dp

=
∂Q

∂t
− σdpQ′ (15)

Q is the solution vector [u, p] and σdp is a damping function defined as

σdp(r) =
1

4

(
1 + tanh

(
ao
r − 2ro

2δθ

))
(16)

with r2 = x2 + y2 and ao = 0.575.
The disturbance Q′ in the Eqs. (15) is computed at every time step t as follows

Q′(t) = Q(t) −
(
αQ̄(t−1) + (1− α)Q(t)

)
(17)

where Q̄(t−1) is the time-average solution computed in the previous time step and α = 0.90.
Additionally, was applied in the buffer zone the grid stretching to help to dissipate the
large-scale disturbances of the jet flowfield.

3.4 Non-Reflecting Boundary Conditions

As in aeroacoustic computations the domain must be large enough to allow wave prop-
agation in the far-field, the deviations from the flow velocity fluctuations are likely to be
small owing solely to acoustic fluctuations. Therefore, far-field non-reflecting boundary
conditions may be obtained by simply setting to zero the incoming waves at the outflow
and lateral boundaries. Reflections of spurious waves generated by the excitation at the
inflow boundary were minimized by the application of a near-inflow absorbing zone28.

4 RESULTS

In this work, the Reynolds number was set to 6.5× 104 and the Mach number to 0.9.
The choice of this Mach number may be justified by the considerable amount of numerical
and experimental studies at similar flow conditions. The Reynolds number adopted is an
intermediate value between jets obtained by DNS (ReD < 103) and experimental jets
(ReD > 105). The inlet momentum thickness was chosen as δθ = 0.05ro, which is large
enough to afford the development of turbulent structures in the jet shear layer before the
end of the potential core. The preliminary tests for evaluation and validation of the present
implicit LES approach were performed in a two-dimensional flow configuration to reduce
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the inherently high computational cost of 3D computations. The mesh was discretized
in Cartesian coordinates with 255 × 225 grid points in a computational domain which
extends to 50ro in the streamwise direction and from −25ro to 25ro in the transverse
direction. As the velocity gradients are more pronounced in the jet shear layer, the mesh
was more refined in this region, with an uniform grid spacing of ∆y = ro/32. Outside
the shear layer the grid was gradually stretched up to an uniform grid spacing of 0.602ro
in the acoustic field. In the streamwise direction, the grid discretization was relatively
coarser, with an uniform grid spacing of 0.071ro from the jet inlet up to the end of the
potential core. The grid was gradually stretched downstream of the potential core up to
a maximum grid spacing of 1.402ro at the outflow boundary.

4.1 Grid Resolution Effects on the Jet Shear Layer Characteristics

The development of turbulence by the jet is very sensitive to inflow conditions char-
acterizing the jet shear layer evolution9,19. As reported by several studies of jets, small
variations on the inflow conditions can significantly change the jet shear layer character-
istics. Kim and Choi 21 observed that inflow conditions effects on jet characteristics, as
the momentum thickness and the Reynolds number, substantially depend on the accurate
resolution of the jet shear layer. In the LES of a 3D round jet 3 was employed 26 grid
points to discretize the jet half-width. However, the LES of round jets using explicit
selective/high-order filtering 7 , the jet radius was discretized in a Cartesian grid with 15
points. Therefore, understanding grid resolution effects on the jet characteristics may be
critical for predicting the jet flow dynamics.

Effect of grid resolution were investigated by forcing the near-inlet shear layer region,
just downstream of the inflow boundary, with low-amplitude periodic and random excita-
tions. The inverse of the jet mean centerline velocity, Uj, normalized by the jet inlet mean
centerline velocity, Uc is represented in Fig.1 for different grid resolutions. To accurately
resolve the large gradients of velocity in the shear layer, the grid points were gradually

clustered, by locally decreasing the grid spacing from ∆y = ro/18 to ro/36. When the
grid spacing was decreased from ∆y = ro/32 to ro/36 in the jet shear layer, it may be
observed the convergence, since the curves Uj/Uc tend to be superposed. As the initial
shear layer evolution is laminar for the current jet inflow conditions (ReD = 6.5×104 and
δθ = 0.05ro), it appears that the jet mean centerline velocity should be constant in the
whole jet potential core. However, small fluctuations on the jet mean centerline velocity
were detected within the jet potential core, for 5 ≤ x/ro ≤ 9. It is important to notice,
that this behavior within the potential core has already been observed experimentally20

and numerically7. In the far downstream region, as expected, we see that the inverse of
the jet centerline velocity decaying rate presents linear growth for both periodic and ran-
dom excitations. Nevertheless, when the jet near-inlet shear layer region was periodically
excited, the potential core breaks up earlier and the inverse of the velocity decaying rate
presents smaller growth in the far downstream region.
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Figure 1: Representation of the inverse of the jet mean centerline velocity, Uc, for different grid resolutions
in the jet shear layer, excited with random and periodic excitations.

In figures 2(a)-(d) were evaluated, for different grid resolutions in the jet shear layer,
the instantaneous of vorticity field, ωxy = ∂v/∂x − ∂u/∂y, of a periodically excited jet.
As show Figs.2(a) and (b), for about x = 3ro, the initial shear-layer tickness was strongly
affected by the coarser resolutions in the jet shear layer. The coarser meshes introduce
an upstream effect on the initial shear layer evolution, such that the initial shear-layer
tickness is affected by feedback effects from the downstream development of the large-
scale vortices13. Nevertheless, when finer meshs were used in Figs.2(c) and (d), the initial
shear layer evolution was almost unaffected by feedback effects. Thus, for the present
shear-layer tickness, δθ = 0.05ro, it was required at most the grid spacing of ∆y = ro/32
in the jet shear layer to achieve accurate predictions of the jet flow dynamics.

Figure 2: Representation of the vorticity field, ωxy, for the grid resolutions: (a) ∆y = ro/18; (b) ro/24;
(c) ro/32 and (d) ro/36 in the jet shear layer. Physical domain for 0 ≤ x/ro ≤ 18 and −4 ≤ y/ro ≤ 4.
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4.2 Aerodynamic Noise Generation by the Vortex Pairing Proccess

The complet cycle of noise generation by the vortex pairing proccess in the jet shear
layer is depicted in Fig.3 by the snapshots of vorticity, ωxy, at four successive instants
of time separated by Tp/4, where Tp is the period of time. The introduction of a low-
amplitude periodic excitation in the near-inlet shear layer region trigger the

Figure 3: Vortex pairing proccess in the jet shear layer.
Snapshots of vorticity, ωxy, represented at four successive
instants of time, separated by Tp/4. Physical domain for
4 ≤ x/ro ≤ 18 and −3 ≤ y/ro ≤ 3.

non-linear growth of Kelvin-Helmholtz
instabilities, which rapidly evolve and
saturate downstream to form large-
scale vortical structures axisymmetri-
cally distributed in the jet shear layer.
The evolutive proccess of growth, ap-
proximation, interaction, pairing and
merging of two consecutive vortical
structures in the jet shear layer give
rise to the vortex pairing process. The
details of vorticity field reveal that the
vortex pairing is not responsible for
feedback mechanisms on the jet flow
dynamics. The vortex pairing proc-
cess occurs at a fixed position around
x = 12ro every period of time Tp =
1/fp with frequence fp = fo/2, where
fo is the fundamental frequency of the
excitation. The merging of two con-
secutive vortical structures generates a
larger-scale vortex, which is convected
downstream by the flow. It should
be remarked that the large-scale vorti-
cal structures which are originated af-
ter the vortex pairing process must be
rapidly dissipated in the buffer zone
(located after x = 18ro) to avoid the
eventual development of other vortex
pairings, which may introduce unde-
sirable secondary sound sources in the
jet shear layer.

4.3 Acoustic Field Propagation

The acoustic field generated aerodynamically by vortex pairing process described in
the previous section is depicted by the dilatation, Θ = ∇.u, in Fig.4. The complete cycle
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Figure 4: Acoustic field propagation repre-
sented by the dilatation, Θ = ∇.u, at four
successive instants of time, separated by Tp/4.
The computational domain 0 ≤ x/ro ≤ 50 and
−25 ≤ y/ro ≤ 25 includes a buffer zone for
18 ≤ x/ro ≤ 50 and −4 ≤ y/ro ≤ 4.

of noise propagation is described by the snap-
shots of dilatation at four sucessive instants of
time, separated by Tp/4. The acoustic field
solution is displayed on the whole computa-
tional domain for 0 < x/ro < 50 and −25 <
y/ro < 25, except on the buffer zone of aero-
dynamic dissipation, located after x/ro = 18
and for −4 < y/ro < 4. Even with a rel-
atively small width compared to the domain
width, the buffer zone is able to efficiently dis-
sipate all aerodynamic instabilities which arise
in the near-field mixing region downstream of
the vortex pairing location, avoiding the even-
tual appearance of other secondary vortex pair-
ing sound sources, which can contaminate the
original acoustic field solution. It is impor-
tant to remark that the fully computational
domain is represented in Fig.4. This domain
does not require any artificial acoustic absorb-
ing region at the outflow boundary and at the
far-field boundaries, what considerably simpli-
fies the numerical implementation and reduces
the computational cost. The acoustic field
propagation and the corresponding vortex pair-
ing proccess in the jet shear layer described
above present qualitative agreement with pre-
vious results obtained from three-dimensional
simulations of axisymmetric round jets3 at the
same Reynolds number and jet inlet momentum
thickness.

4.4 Aerodynamic Flow Noise-Source
and Acoustic Field Propagation

The aerodynamic flow noise-source region
and the acoustic field propagation are repre-
sented in Fig.5 by the vorticity, ωxy, and di-
latation, Θ. It is important to remark that both
fields were directly computed by the present im-
plicit LES procedure without the need of any
modeling approach. It should be noticed in
Fig.5 that the acoustic wavefronts propagate
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from the region of the aerodynamic field that give rise to the vortex pairing process,
which is located at the end of the potential core at around x/ro = 12.

Figure 5: Aerodynamic and acoustic fields rep-
resented, respectively, by the vorticity, ωxy and
dilatation, Θ. Upper regions of the physical do-
main, excluding the buffer zone of aerodynamic
dissipation located after x/ro = 18.

Thus, it was verified that the only dominant
noise source in the jet shear layer is the noise
radiated from the region where the vortex pair-
ing takes place. The absence of spurious waves
near the inflow is due to the incompressible na-
ture6 of the excitation. It should be noted that
the acoustic waves propagate through the far-
field boundary without producing any signifi-
cant spurious wave reflections, because of the
application of the nonreflecting boundary con-
dition. The noise radiated on the acoustic field
decays to zero for an angle around 80o, with
phase shifting for wider angles of radiation rel-
ative to the shear layer axis. This particularly
high directive character of sound radiation, es-
pecially noticed at high Mach numbers, is at-
tributed to the axisymmetric quadrupolar na-
ture of the sound source, as already observed
by LES of three-dimensional jets8.

5 CONCLUDING REMARKS

Preliminary tests were carried out for evaluation and validation of a highly accurate
implicit LES approach especially developed for the computation of the aerodynamic noise
radiated from a Mach 0.9 cold jet at Reynolds number 6.5 × 104. To startup earlier the
turbulent mixing process in the jet shear layer, the near-inlet shear layer region was forced
with low-amplitude periodic or random excitations, Effects of grid resolution on the jet
shear layer characteristics were investigated for the jet inlet shear layer momentum thick-
ness δθ = 0.05ro. The evaluation of the vorticity field, ωxy, for different grid resolutions,
shows that the initial shear layer tickness was strongly affected by the coarser grid resolu-
tions. In fact, a maximum grid spacing in the jet shear layer of ∆y = ro/32 was required
for the accurate prediction of the jet flow dynamics. It was observed that the introduction
of a near-inflow periodic excitation trigger the growth of Kelvin-Helmholtz instabilities,
which rapidly evolve downstream to give rise to the vortex pairing process in the jet shear
layer. The aerodynamic development of the vortex pairing proccess presents qualitative
agreement with previous results taken from the literature at the same Reynolds number
and inlet momentum thickness. The analysis of the corresponding acoustic field prop-
agation shows that the dominant sound source produced in the jet shear layer was the
sound radiated from the vortex pairing process, without any significant wave oscillations
provided by the excitation. The particularly high directive character of sound radiation,
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especially noticed at high Mach numbers, was attributed to the axisymmetric quadrupolar
nature of the noise source. In the ongoing works, a parallel high-order finite-sized overlap
flow solver is being developed to investigate Mach number and thermal instability effects
arising from the heated three-dimensional round jets. It is hoped that high Reynolds
number 3D computations of both cold and heated jet flow-noise sources and its inher-
ently coupled noise propagation will allow us to investigate more deeply the underlying
nonlinear mechanisms by which noise is aerodynamically generated in turbulent free shear
layer flows at less idealized flow conditions.
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