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Abstract. In this paper, recent advances on the Immersed Structural Potential Method
(ISPM)1 are presented. This methodology, based on the original Immersed Boundary
Method2, was introduced with the purpose of modelling Fluid-Structure Interaction (FSI)
haemodynamic problems. The ISPM presents an alternative approach to compute the
equivalent fluid-structure interaction forces at the fluid mesh, accounts for a sophisticated
viscoelastic fibre-reinforced constitutive model to better describe the mechanics of cardio-
vascular tissues and utilises a novel time-integration methodology for the computation of
the deformation gradient tensor which ensures compliance with the incompressibility con-
straint. Comparison of the ISPM with alternative existing immersed methodologies will
be presented as well as various idealised cardiovascular numerical examples in order to
demonstrate the robustness and applicability of this numerical technique.

1 INTRODUCTION

The Immersed Boundary Method (IBM) was initially introduced2 with the purpose
of studying flow patterns around heart valves. The defining characteristic of “immersed
methods” is the numerical treatment of any solid structure within the fluid as a field of
body forces via convolution with smoothed approximations (kernels) of the Dirac delta
distribution. Immersed techniques posses many attractive features, particularly when
large deformation of thin structures in three dimensions is considered. Unfortunately,
the original IBM method is restricted to massless fibre-like (one dimensional) structures
immersed within the fluid and the discrete convolution with these kernels induces diffusive
effects at the solid boundaries.

Some of the extensions of the original IBM, such as the EIBM-IFEM3, have emerged
in order to palliate the aforementioned limitations. These methodologies rely on the
modelling of the immersed solid structure as a continuum spatially discretised by means

1



Antonio J. Gil, Aurelio Arranz Carreño, J. Bonet and O. Hassan

of an embedded Finite Element (F.E.) space. The deformation gradient tensor F is in-
terpolated within the immersed continuum by using standard space-varying F.E. shape
functions. Equivalent internal forces are computed at the nodes of the F.E. mesh after
suitable numerical integration of the stress tensor evaluated at Gauss points. The equiva-
lent nodal forces are then spread back to the Eulerian fluid domain. One disadvantage of
this methodology is the non-satisfaction of the incompressibility constraint with negative
implications in long term numerical simulations.

The Immersed Structural Potential Method (ISPM)1 was introduced as an improve-
ment to existing immersed methodologies. In this technique, the structure is modelled as
a potential energy functional completely immersed within the surrounding viscous fluid,
in such a way that the velocity field at any location within the structure domain is ob-
tained by means of interpolating kernel functions constructed on the Eulerian fluid mesh.
Hence, the structure is treated as a collection of integration points exclusively transported
by the fluid. Both interpolation and spreading operations are greatly improved by inter-
polating in a similar fashion to the Material Point Method4, 5, that is, the velocity field
and the spatial velocity gradient tensor are sampled directly at integration points within
the structure domain and the structural stresses are directly integrated back to the fluid
fluid. Computational time as well as diffusion errors at interfaces are reduced, as no inter-
polation/spreading is carried out within the structure domain, in contrast with existing
immersed methodologies.

The main objective of this article is to review the ISPM formulation, highlighting its
advantages and displaying some comparative results with existing immersed methodolo-
gies. The paper is broken-down as follows. Section 2 describes the governing equations
presented according to an integral conservation law formulation. The equations are par-
ticularised within the framework of a low order Finite Volume staggered method. Section
3 describes in detail the immersed methodology employed in order to evaluate the forc-
ing term required when resolving the Navier-Stokes equations. Section 4 summarises
the ISPM algorithm and displays its main differences with respect to existing immersed
methodologies. Finally, section 5 presents some numerical results before some concluding
remarks are drawn down.

2 GOVERNING EQUATIONS.

Let us consider the motion of a continuum defined by means of a mapping φ estab-
lished between a reference or material configuration X ∈ Ω0 and a spatial or current
configuration x ∈ Ω at time t, namely x(t) = φ (X, t). The deformation gradient tensor
F is defined as the material gradient of the spatial position as:

F = ∇0x =
∂x

∂X
, J = detF (1)

where J is the jacobian of the transformation. In addition, the velocity u = [u, v]T of the
continuum is computed as u (X, t) = ∂x

∂t
. The conservation of linear momentum for an

2



Antonio J. Gil, Aurelio Arranz Carreño, J. Bonet and O. Hassan

arbitrary spatial volume Ω is expressed in integral form as:

D

Dt

∫
Ω

ρu dv =

∫
Ω

g dv +

∫
∂Ω

t da (2)

where g denotes an external volume force field per unit of volume and t = σn is the
traction vector associated to the Cauchy stress tensor σ and an element of area da in the
boundary of the current configuration ∂Ω with outward unit normal n. Decomposition
of the stress tensor σ into its volumetric −pI and deviatoric σ′ components renders:

D

Dt

∫
Ω

ρu dv =

∫
Ω

g dv −
∫

∂Ω

pn da+

∫
∂Ω

σ′n da (3)

In addition, application of the Reynolds’ transport theorem (Lie derivative) and the Gauss
divergence theorem on the first term of the above equation (3) yields:∫

Ω

∂

∂t
(ρu) dv +

∫
∂Ω

(ρu⊗ u) · n da =

∫
Ω

g dv −
∫

∂Ω

pn da+

∫
∂Ω

σ′n da (4)

In the case of a Newtonian viscous continuum, the deviatoric Cauchy stress tensor σ′ can
be expressed as:

σ′ = 2µ

(
d− 1

3
IdI

)
; Id = trd; d =

1

2

(
l + lT

)
(5)

where d is the strain rate tensor or rate of deformation tensor obtained as the symmetric
part of the spatial velocity gradient tensor l = ∇u and µ is the dynamic viscosity constant.

For an incompressible continuum, where the velocity field must be solenoidal ∇ ·u = 0,
the above equation (4) is simplified to:∫

Ω

∂

∂t
(ρu) dv +

∫
∂Ω

(ρu⊗ u+ pI − µ∇u) · n da =

∫
Ω

g dv (6)

which represents the conservation of linear momentum for an incompressible Newtonian
viscous continuum in an integral format. Within the framework of low order Finite
Volume schemes, Ω can be regarded as a control volume where above vector equation (6)
can be re-interpreted according to an Eulerian variational formulation as the following
weak form:

δW Ω (φ, δu) = δW Ω
iner (φ, δu) + δW Ω

int (φ, δu)− δW Ω
ext (φ, δu) = 0 (7)

δW Ω
iner =

∫
Ω

δu · ∂
∂t

(ρu) dv +

∫
∂Ω

δu · (ρu⊗ u) · n da (8)

δW Ω
int (φ, δu) =

∫
∂Ω

δu · (pI − µ∇u) · n da (9)

δW Ω
ext (φ, δu) =

∫
Ω

δu · g dv (10)
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where δu = [δu, δv]T is an arbitrary piecewise constant virtual velocity field with support
Ω = Ω

⋃
∂Ω. Particularising for the case of a uniformly spaced Cartesian staggered mesh,

let ΩuAx and ΩvAy be the control volumes associated with the Cartesian components of
the velocity uAx and vAy , respectively, with an arrangement similar to that of a Marker
And Cell (MAC) grid6. Here, Ax and Ay denote fluid cell edges perpendicular to the ox
and oy Cartesian axes, respectively, and uAx and vAy their corresponding edge velocities,
for which the above weak form (7) can be split into:

δWΩ
uAx
(
φ, δuAx

)
= δuAx

[∫
Ω

uAx

∂

∂t
(ρu) dv +

∫
∂Ω

uAx

Fu · n da−
∫

Ω
uAx

g · ex dv

]
(11)

δWΩ
vAy
(
φ, δvAy

)
= δvAy

[∫
Ω

vAy

∂

∂t
(ρv) dv +

∫
∂Ω

vAy

Fv · n da−
∫

Ω
vAy

g · ey dv

]
(12)

where {ex, ey} is the standard Cartesian basis. Equations (11-12) represent the conser-
vation of linear momentum variables ρu and ρv in an variational integral form with Fu

and Fv their corresponding interface fluxes, namely:

Fu = ρuu+ pex − µ∇u, Fv = ρvu+ pey − µ∇v (13)

The terms in above equations (11-12) can be approximated following a standard low
order Finite Volume procedure for a staggered Cartesian grid with spacing ∆x and ∆y .
Specifically, volume integrals

∫
Ω
dv are evaluated as:∫

Ω
uAx

∂

∂t
(ρu) dv ' ΩuAx

∆(ρuAx)

∆t
(14)∫

Ω
vAy

∂

∂t
(ρv) dv ' ΩvAy

∆(ρvAy)

∆t
(15)

being ΩuAx = ΩvAy = ∆x∆y the volume of a general control volume in the Cartesian grid
and, ∫

Ω
uAx

g · ex dv ' ΩuAxgAx
x (16)∫

Ω
vAy

g · ey dv ' ΩvAy gAy
y (17)

where gAx
x and g

Ay
y are the external forces per unit of volume allocated to control vol-

umes ΩuAx and ΩvAy , respectively. Similarly, the boundary integrals
∫

∂Ω
da are evaluated

after suitable numerical definition of approximate Riemann interface fluxes in order to
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guarantee the stability of the scheme, namely Fnum
u and Fnum

v . The pressure and vis-
cous components of Fnum

u and Fnum
v are obtained following a standard central difference

approach which yields, ∫
∂Ω

uAx

pex · n da ' ∆y
(
pAx

E − p
Ax
W

)
(18)∫

∂Ω
vAy

pey · n da ' ∆x
(
p

Ay

N − p
Ay

S

)
(19)

and,∫
∂Ω

uAx

∇u · n da ' ∆y

(
uAx

E − uAx

∆x
− uAx − uAx

W

∆x

)
+ ∆x

(
uAx

N − uAx

∆y
− uAx − uAx

S

∆y

)
(20)

∫
∂Ω

vAy

∇v · n da ' ∆y

(
v

Ay

E − vAy

∆x
− vAy − vAy

W

∆x

)
+ ∆x

(
v

Ay

N − vAy

∆y
− vAy − vAy

S

∆y

)
(21)

Finally, the convective components of the numerical fluxes, that is ρuu and ρvu, are
obtained using a stabilised convective approximation, such as QUICK, SMART, VONOS
or HLPA, which minimise numerical diffusion, avoid the creation of spurious oscillations
and reduce the total variation of the solution by accounting for the transportive nature
of the fluid.

3 Immersed structural potential.

Let us consider an incompressible deformable solid fully immersed within the surround-
ing incompressible viscous fluid. Following a numerical immersed strategy, the solid can
be modelled as a Helmholtz’s free energy functional whose spatial gradient defines a fluid-
structure interaction force field which is regarded as an external force field by the back-
ground viscous fluid. In addition, if the background fluid is incompressible and ensuring
that the numerical scheme used to solve the background fluid is free-divergence velocity
preserving, only the deviatoric component of the solid stress will need to be taken into
consideration. Hence, an equivalent homogeneous (distortional) component of the solid

energy functional Ψ̂s will be defined in terms of the isochoric component of the strain.
For spatial semi-discretisation purposes, the solid domain is modelled in a Lagrangian

manner as a collection of integration points ap immersed within the fluid, moving from an
initial position Xap to the spatial position xap at time instant t, through the deformation
gradient tensor F defined by the motion of the surrounding continuum (i.e. non-slip
condition). To describe the constitutive behaviour of the structure and within the context
of hyperelasticity, a potential energy functional Πs is the introduced,

Πs(φ) =

∫
Ωs

0

Ψ̂s (φ) dV '
∑
ap

Ψ̂s (φap)W ap (22)
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where Ψ̂s is the stored strain energy density functional per unit of undeformed volume
Ωs

0 and W ap is the material or Lagrangian weight associated with a structure integra-
tion point ap. With the purpose of distinguishing the surrounding fluid phase from the
immersed solid phase, a superindex (.)s will be employed when referring to the latter.
The velocity of the deformable immersed solid can be obtained after suitable definition
of an interpolation operator which enables to transfer information from the background
Eulerian fluid to the Lagrangian solid. Specifically, the velocity u at any integration point
xap can be evaluated as follows:

uap = [uap , vap ]T , uap = I(u)(xap) =

∑
Ax

uAxϕAx (xap) ,
∑
Ay

uAyϕAy (xap)

T

(23)

where
ϕAx(x) = ϕ(x− xAx), ϕAy(x) = ϕ(x− xAy) (24)

are interpolating kernel functions centred at fluid cell edges Ax and Ay, defined by the
spatial position xAx and xAy , mid-points of their respective fluid cell edges. For a Carte-
sian Eulerian mesh, it is convenient to formulate the kernel functions by means of a tensor
product expansion as follows,

ϕ(x) =
1

∆x∆y
φ
( x

∆x

)
φ

(
y

∆y

)
, x = [x, y]T (25)

In above equation (25), φ is a continuous function approximating the one dimensional
Dirac Delta distribution7, 8. Similarly, a virtual velocity field vector δus = [δus δvs]T

evaluated at a structure particle ap can also be described as,

δuap = [δuap , δvap ]T = I(δu)(xap) =

∑
Ax

δuAxϕAx (xap) ,
∑
Ay

δuAyϕAy (xap)

T

(26)

where a consistent interpolating methodology is employed as in equation (23), to ensure
conservation of the overall scheme. The internal virtual work formulated in the case of
the immersed solid domain is defined as the directional derivative of the Helmholtz’s free
energy functional with respect to a virtual velocity field vector9, 10 as follows,

δW s
int(φ, δu

s) = DΠs(φ) [δus] (27)

and after substitution of equation (22) into (27), we arrive at

δW s
int(φ, δu

s) =

∫
Ωs

0

∂Ψ̂s

∂F
: DF [δus] dV '

∑
ap

W ap

(
∂Ψ̂s

∂F
: DF [δus]

)ap

(28)
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Alternatively, after a suitable push forward operation, the above formulae (28) can be
re-expressed according to an Updated Lagrangian Formulation (ULF) by introduction of
the Kirchhoff stress tensor τ ′s as,

δW s
int(φ, δu

s) =

∫
Ωs

0

τ ′s : ∇δus dV '
∑
ap

W apτ ′s,ap : ∇δuap (29)

The evaluation of the above formula (29) requires the computation of the spatial gradient
of the virtual velocity at integration point ap as,

∇δuap = ∇I(δu)(xap) =

∑
Ax

δuAx∇ϕAx (xap) ,
∑
Ay

δvAy∇ϕAy (xap)

T

(30)

After re-writing the Kirchhoff stress tensor in the form τ ′s =
[
τ ′sx , τ

′s
y

]T
, equation (29)

can be reformulated in a continuum manner as,

δW s
int(φ, δu

s) =

∫
Ωs

0

(
τ ′sx ·∇I(δu)(xs) + τ ′sy ·∇I(δv)(xs)

)
dV (31)

Substitution of equation (30) back into (31) yields in a discrete manner,

δW s
int(φ, δu

s) '
∑
ap

W ap

∑
Ax

δuAxτ ′s,ap
x ·∇ϕAx(xap) +

∑
Ay

δvAyτ ′s,ap
y ·∇ϕAy(xap)


(32)

where after interchanging the summation operators, a final re-arrangement of the above
formula (32) yields,

δW s
int(φ, δu

s) =
∑
Ax

δuAxfAx
x +

∑
Ay

δvAyfAy
y (33)

where,

fAx
x =

∫
Ωs

0

τ ′sx ·∇ϕAx(xs)dV '
∑
ap

W apτ ′s,ap
x ·∇ϕAx(xap) (34)

fAy
y =

∫
Ωs

0

τ ′sy ·∇ϕAy(xs)dV '
∑
ap

W apτ ′s,ap
y ·∇ϕAy(xap) (35)

In order to guarantee conservation of the scheme, and after observing equations (11-12,16-
17) and (33), it can be deduced that:

gAx
x =

fAx
x

ΩuAx

, gAy
y =

f
Ay
y

ΩvAy

(36)

where gAx
x and g

Ay
y represent the fluid-structure interaction force per unit of volume which

must be applied at the fluid cell edges Ax and Ay, respectively.
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4 Algorithmic comparison of the Immersed Structural Potential Method
(ISPM) with alternative immersed methodologies.

In alternative immersed methodologies11, the deformable solid is modelled using a
Finite Element (F.E.) mesh. This way, an interpolation-spreading strategy based upon
kernel functions is established exclusively between the background Eulerian fluid cell
edges and the immersed nodes of the F.E. solid mesh. The deformation gradient tensor
F is then obtained within the immersed continuum by using standard space-varying F.E.
shape functions. Equivalent internal forces are computed at the nodes of the F.E. mesh
after suitable numerical integration of the stress tensor evaluated at Gauss points. The
equivalent nodal forces are then spread back to the Eulerian fluid mesh by means of kernel
functions ensuring conservation of the scheme.

Two flowcharts are displayed in Figures (1-2) to explain the various computational steps
needed in both the ISPM and by using an alternative immersed methodology, respectively.
In both algorithms, for the sake of simplicity, a fixed point iteration scheme is used to
guarantee full coupling between the fluid phase and the solid phase within each time step.
A residual norm is computed between the two latest available force terms at iterations k
and k + 1, whereby satisfaction of the coupling between both phases is assessed, leading
to either a new iteration k + 2 or a new time step n+ 2.

The number of steps shown in Figure 2 required to complete the calculation of immersed
forces {fAx

x , f
Ay
y } is clearly greater than in Figure 1, which results into a more expensive

computational algorithm. Specifically, the evaluation of the deformation gradient tensor
F at every Gauss point gp requires two interpolation stages; first, interpolation of the
velocity field {uAx , vAy} from the fluid mesh to the solid F.E. nodes va and, second,
computation of F gp by using the gradient of the F.E. shape functions ∇0N

a
gp

. Similarly,

the computation of the immersed forces {fAx
x , f

Ay
y } at every fluid cell edge is carried out

after two spatial integration steps; first, the deviatoric Kirchhoff stress tensor is integrated
at every gauss point τ ′gp to obtain equivalent internal F.E. nodal forces fa and, second,
the forces are then spread to the fluid cell edges. Furthermore, looping over elements
and over gauss points in turn, is more computationally demanding than looping over
integration points.

8
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• Fixed point iteration, while ‖fn+1
k − fn+1

k−1‖/‖f
n‖ > tolerance

– Compute solid immersed forces

· Loop over integration points ap

1. Interpolate velocity field at structure integration points ap

u
ap,n+1
k+1 = I

(
un+1

k+1

) (
x

ap,n+1
k

)
2. Interpolate velocity gradient tensor at structure integration points ap

l
ap,n+1
k+1 =

[
∇I

(
un+1

k+1

) (
x

ap,n+1
k

)]
3. Integrate Ḟ = lF according to

F
ap,n+1
k+1 = e

(
∆tl

ap,n+1

k+1

)
F ap,n

4. Evaluate constitutive law to obtain deviatoric Kirchhoff stress

τ
′s,ap,n+1
k+1 = G(F

ap,n+1
k+1 , l

ap,n+1
k+1 )

5. Spatial integration of Kirchhoff stress to obtain forces at fluid cell edges

fAi,n+1
i,k+1 =

∑
ap

W apτ
′s,ap

i ·∇ϕAi(xap), i = x, y

6. Add inertia and gravity forces if required at fluid cell edges

f ine,Ai,n+1
i,k+1 =

∑
ap

W ap∆ρap

(
gi−

D(uap · ei)

Dt

∣∣∣∣n+1

k+1

)
ϕAi

(
x

ap,n+1
k

)
7. Update spatial position of integration points ap

x
ap,n+1
k+1 = xap,n +

1

2
∆t
(
u

ap,n+1
k+1 + uap,n

)
– Solve Navier-Stokes equations to obtain pn+1

k+2 , uAx,n+1
k+1 , v

Ay ,n+1
k+1

Figure 1: Flowchart of the Immersed Structural Potential Method .
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• Fixed point iteration, while ‖fn+1
k − fn+1

k−1‖/‖f
n‖ > tolerance

– Compute solid immersed forces

1. Interpolate velocity field at F.E. mesh nodes a:

ua,n+1
k+1 = I

(
un+1

k+1

) (
xa,n+1

k

)
2. Time integration of the spatial position for node a:

xa,n+1
k+1 = xa,n +

1

2

(
ua,n+1

k+1 + ua,n
)

3. Loop over elements e

· Loop over Gauss points gp for element e

i. Compute deformation gradient F at Gauss point gp:

F
gp,n+1
k+1 =

∑
a

xa,n+1
k+1 ⊗∇0N

a
gp

ii. Compute velocity gradient l at Gauss point gp:

l
gp,n+1
k+1 =

∑
a

ua,n+1
k+1 ⊗∇Na

gp

iii. Evaluate constitutive law to obtain deviatoric Kirchhoff stress:

τ
′s,gp,n+1
k+1 = G(F

gp,n+1
k+1 , l

gp,n+1
k+1 )

iv. Spatial integration of Kirchhoff stress to obtain forces at each node a:

fa,n+1
k+1 =

∑
gp

Jgpτ ′s,gp∇Na
gp

v. Add inertia and gravity forces if required at each node a:

f ine,a,n+1
k+1 =

∑
gp

Jgp∆ρgp

(
g −

∑
b

Na
gp
N b

gp

D

Dt

(
ua,n+1

k+1

))
4. Spread nodal forces back onto the fluid cell edges:

f
Ay

i = Si(f)(xAy), i = x, y

– Solve Navier-Stokes equations to obtain pn+1
k+2 , uAx,n+1

k+1 , v
Ay ,n+1
k+1

Figure 2: Flowchart of alternative immersed methodology.
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5 NUMERICAL EXAMPLES

In this section we present some examples featuring the interaction of membranes with
a range of flows. The purpose of this will be to show via examples some of the qualities
of the numerical solution that is attained with the ISPM.

5.1 Two dimensional membrane under constant amplitude Poiseuille flow

For the first case, we will consider the interaction of a two dimensional membrane
with a constant amplitude Poiseuille flow in a rectangular channel. This can serve as an
idealisation of a two dimensional blood vessel (see Figure 3). As a first approximation, we
will consider it to be filled with an incompressible Newtonian viscous fluid with viscosity
µ = 10 dyne/cm2 and density ρ = 100g/cm3. Both top and bottom boundaries are
treated as walls (non-slip) and are fixed, and a thin flexible membrane is attached to the
top wall. A Poiseuille inlet condition with constant amplitude A(t) = 1 cm/s is applied
on the left hand side of the domain (x = 0) and outflow boundary conditions are applied
on the right side. The membrane considered will be initially rectangular of 0.0212 cm in
width and 0.8 cm in length, and its constitutive behaviour will be assumed to be that of
a nearly incompressible Neo-Hookean material, with shear modulus µs = 2 · 107dyne/cm2

and the same density than that of the surrounding fluid.
This problem has been solved with both the EIBM and the ISPM in time, and as it

is to be expected, the flexible membrane deforms under the force exerted by the fluid
(see Figure 4) and consequently distorts the corresponding flow. It is particularly worth
turning our attention to a particular feature of the solution: the satisfaction of the in-
compressibility constraint. In Figure 5 we can observe the Jacobian of the deformation
gradient for both EIBM and ISPM at time t = 3 s. As it can be seen in the corre-
sponding solution obtained using the EIBM, errors in J are in the range of −35% to 25%
approximately. These excessive errors are localised around the root tip, leading edge and
flap tips. It can be shown that faster flows (hence causing more deformation) can even
produce negative Jacobians in some elements, halting execution. If we look now at the
corresponding solution using the ISPM (Figure 5b), the corresponding J is 1 throughout
the structure. This is due to the structure-preserving scheme employed in the ISPM to
obtain the deformation gradient tensor after time integration of the spatial velocity gra-
dient tensor. It is worth noting that this is a very important feature to preserve in this
type of problems, as not doing so quickly leads to unacceptable errors, and eventually,
non-robustness of the algorithm.

In previous sections it has been shown how the ISPM is less computationally demanding
by merely comparing the number of interpolations and way in which forces are integrated.
We can also show this in a much more tangible way by means of runtime comparisons
per number of integration points/mesh nodes used to discretise the solid. In Figure 6 it
can be observed that alternative immersed methodologies (EIBM) are from 23% to 26%
more expensive than the equivalent discretisation using ISPM.

11
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Figure 3: Geometry and boundary conditions for a flexible membrane subjected to steady Poiseuille flow
(not drawn to scale). Dimensions are in cm.
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Figure 4: Streamlines (in blue) and membrane position for t = 3 s using the ISPM.

5.2 Three dimensional membrane subjected to pulsatile flow

In this section we consider a generalisation of the above example to a thin elastic mem-
brane immersed in a fully three dimensional viscous fluid with viscosity µ = 1 dyne/cm2

and density ρ = 1 g/cm3. For simplicity, we initially consider a prismatic channel Ω of
8 cm in length and 2 cm in height and depth and place a nearly incompressible Neo-
hookean (µs = 3846 dyne/cm2, ρ = 1 g/cm3) flat membrane Ωs of dimensions 0.02×1×2
cm occluding half of the channel. The geometry can be seen as a simple extrusion of
the previous two dimensional flap example, with the subtle difference of the boundary
conditions. We will consider a tensor product of a Poiseuille flow for the inlet on the left
and outlet boundary conditions on the right. All the other boundaries will be treated
as non-slip walls. Please note that this attaches the membrane not only to the top of
the channel, but also to the frontal and rear walls, creating a clearly different problem
than that modelled by the two dimensional counterparts. We also consider an inlet flow
pulsatile in amplitude modulated by

A(t) =
5

2
(sin (2πt) + 1.1) (37)

We discretise the fluid in a sequence of meshes with (24+i, 22+i, 22+i) cells in x-,y- and z-
directions for i = 1, . . . , 3, and the solid using 18865, 46900 and 125265 integration nodes
respectively. In Figure 7 three different snapshots of the solution can be observed for
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(a) (b)
Figure 5: Jacobian of the deformation gradient F for the deformable membrane under Poiseuille flow for
t = 3 s: (a) EIBM; (b) ISPM. Dimensions are in cm.
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Figure 6: Left: Time (s) required to evaluate FSI forces vs. number of integration points (ISPM) / FE
mesh nodes (EIBM). Right: Relative speedup of ISPM vs EIBM as a function of number of integration
points (computed as the ratio of time required by EIBM / time required by ISPM).

i = 3. As it can be seen in the figure, the method successfully captures the flow pattern
created by the presence of the membrane. Up to time t = 0.25 s the flow is accelerating
thus stretching the membrane towards the right. As it decelerates (for times between
t = 0.25 s and t = 0.5 s) a complex vortex forms downstream of the membrane that
causes it to bend and fold slightly.

6 CONCLUSIONS

In this paper, the new Immersed Structural Potential Method has been revisited and
formulated following an integral formulation. Specifically, the incompressible Navier-
Stokes fluid equations have been resolved according to a low order Finite Volume staggered
formulation and the force field source term, characteristic of any immersed methodology,
has been introduced following variational principles. Conservation of the scheme is guar-
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t = 0.15 s t = 0.3 s t = 0.5 s

Figure 7: Streamlines, velocity slices and deformation of a thin elastic leaflet under 3D pulsatile flow.
Colour represents horizontal velocity component.

anteed due its construction and satisfaction of the incompressibility constraint is also
fulfilled as a result of the suitable time integration of the spatial velocity gradient tensor.
The methodology described compares very well with existing immersed methodologies
in terms of accuracy and displays a dramatic improvement with respect to inadmissi-
ble changes in volume. Furthermore, it provides a substantial saving in computational
time as well as greater algorithmic simplicity, making it very attractive for subsequent
implementation into parallel architecture.
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