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Abstract. We derive a more rigorous mathematical formulation for the interface re-

construction problem in the framework of the volume of fluid method. This leads to an

interpolatation problem which can be solved systematically by means of B-spline interpo-

lation allowing a higher order description of the interface segments. These segments need

to be patched. Three different methods to patch these segments are derived. Numerical

verification shows that a higher order description of the interface can be obtained by the

present method.

1 INTRODUCTION

Two-phase flow is a common issue in industry. This flow consists of two immiscible
fluids separated by an interface. Different numerical methods have been devised to com-
pute the evolution of this interface. In general these methods can be grouped into two
classes, the interface tracking methods and the interface capturing methods [13]. The in-
terface tracking methods such as particle methods [4] and the segment projection method
[16] follow the interface in a Lagrangian manner, whereas interface capturing methods,
such as the level set method [15] and the volume of fluid method (VOF) [13, 1] obtain
the evolution of the interface indirectly by extracting it from a field defined in the entire
space. For the level set method the evolution of the level set function is solved whereas
the volume of fluid method computes the evolution of the volume fraction field.
The volume fraction field denotes the amount of one phase in each cell of the computa-
tional domain. The evolution of this volume fraction field is the central task of the VOF
method. It can be subdivided into to two steps: the interface reconstruction step and the
advection step. The interface reconstruction step computes the interface position at time
t using the volume fraction field at time t. The advection step advects the volume fraction
field from time t to time t + ∆t. The VOF method has its origins in the works of [3] and
[7]. Substantial improvement of the interface reconstruction has been achieved with the
piecewise linear interface computation (PLIC) method by Youngs [17] in 1982. However
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the resulting interface is approximated by discontinuous linear segments which makes it
necessarily to estimate the curvature by additional approximation schemes. The PLIC
method is second order accurate with respect to the grid spacing. A third order parabolic
interface reconstruction scheme based on a very similar approach has been derived by
Price et al. in 1998 [10]. However due to the fact that a numerical minimization has to
be performed in each cell to find all the coefficients of the interface parabola, the method
enjoys less popularity. More recently in 2004 Lopez et al. [5] used a parametric cubic
spline interpolation through the midpoints of the PLIC interface segments and obtain
a smoother description of the interface. However, although cubic splines are known to
interpolate a function with fourth order accuracy, their method inherits the second order
accuracy of the PLIC method since it is based on the same approach.
In the present discussion we describe in more detail a very recent development of higher
order interface reconstruction. Higher order interface reconstruction approximates the in-
terface not as a piecewise function but as a continuous line. Opposed to the other methods
it is not based on the computation of an interface normal using the volume fraction field.
Instead a mathematical reformulation of the interface reconstruction problem in terms of
segments’ integrals is found which allows to transform the problem of finding the interface
into a problem of interpolating a function through a given set of points. Similar to the
segment projection method (SPM) [16], the interface is divided into segments for which a
set of interpolation points can be found from the volume fraction field. These interpola-
tion points allow a better-defined basis to approximate the interface. An important issue
in the high order interface reconstruction is the patching of these interface segments. The
present discussion focuses on this aspect of the high order interface reconstruction.
The present discussion is organized as follows: In the next section basic principles of
the VOF method necessary for the present discussion are summarized, followed by a
short section on the segment projection method. Thereafter we present the mathematical
reformulation of the interface reconstruction problem, section 4, and explain the basic
principles of the method, followed by a section on the interpolation. A more detailed
discussion of the segment patching is presented in section 6. A section on numerical
verifications follows before concluding the present discussion in section 8.

2 THE VOLUME OF FLUID METHOD [13, 1]

For a two-phase flow problem of a red and blue fluid, the two-dimensional domain
of definition Ω of our system can for each point in time t be divided into a region Ωred

occupied by the red fluid and a region Ωblue occupied by the blue fluid, cf. figure 1.
These regions are separated by an interface which is the common boundary of both

regions. A normal can be defined at each point on the interface. Predicting the evolution
of the interface is the central problem of two-phase flow computations. Both fluids, the
red and the blue, are supposed to be incompressible. Therefore the continuity equation
needs to be satisfied by both fluids. We can define a characteristic function χ which is
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Figure 1: The two dimensional domain Ω with the red fluid occupying the region Ωred and the blue
fluid occupying the region Ωblue. The boundary of Ωred and Ωblue separates both fluids and is called the
interface. At each point of the interface a normal ~n can be defined. The domain Ω is divided into small
control volumes, the cells. Each cell contains a number between zero and unity, the volume fraction,
indicating the amount of red fluid in the cell.

unity in the regions of the red fluid and vanishes in the regions of the blue fluid:

χ(x, y, t) =

{

0 if (x, y) ∈ Ωblue(t)

1 if (x, y) ∈ Ωred(t)
. (1)

We assume the surface of the cell normalized to unity. This characteristic function χ is
discontinuous across the interface. Therefore a geometric approach to the evolution of χ
is used in the volume of fluid method. The computational domain is cut into small control
volumes, cells, cf. figure 1. For the present method it is important that the domain is cut
into rectangular cells. This seems more restrictive than it actually is, since the coupling
of the interface to the Navier-Stokes solver is treated as a moving boundary which is not
aligned with the grid axes. Therefore also the treatment of a stationary boundary not
aligned with the grid axes should be feasible. For each cell the volume fraction Ci,j is
computed by

Ci,j(t) =

∫

i,j

χdxdy. (2)

The volume fraction Ci,j can be seen as the surface occupied by the red fluid in each
cell. Blue cells have a volume fraction of zero whereas red cells have a volume fraction of
unity. Mixed cells have a volume fraction in between zero and unity. The volume of fluid
method proposes a scheme to compute the evolution of Ci,j. This is done in two steps, the
interface reconstruction step and the advection step. The interface reconstruction step,
cf. figure 2, computes the interface position starting from the volume fractions in each
cell. In the present discussion we focus on this step of the volume of fluid method. This
interface is then used as an input to the Navier-Stokes solver which with its help computes
the velocity field ~u at time t + ∆t. Knowing the velocity field ~u at times t and t + ∆t,
the volume fractions Ci,j at time t and hence the interface at t, the advection step tells us
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Figure 2: Interface reconstruction by Youngs’ method [17]. In each mixed cell the interface normal is
computed. This normal defines a perpendicular line which is unequivocally defined by the fact that the
volume under the line should equal the volume fraction in the cell.

how to compute the volume fractions Ci,j at time t+∆t. This is done by tracing back the
cells from their position at t + ∆t to their position at t, cf. figure 3. Having the interface
at time t, the volume fraction in each back traced cell is computed by evaluating the
volume under the interface. For more details on the advection step, we refer to the work
of Cervone et al. [2] whose advection scheme is used throughout the present discussion.
For the interface reconstruction method this gives two constraints: not only needs the
interface to be reconstructed as accurately as possible from the volume fractions, but in
addition the interface reconstruction method needs to allow an exact evaluation of the
surface under the interface in order to assure surface conservation.
The most widely used method to reconstruct the interface is the piecewise linear interface
computation (PLIC) by Youngs [17]. This method computes first an approximation to the
interface normal ~n in a each mixed cell by computing the gradient of the volume fraction
field:

~n ≈
∇C

||∇C||
. (3)

This normal defines a unique perpendicular line cutting the mixed cell in such a way that
the surface under the line matches exactly the volume fraction in this cell, cf. figure 2.
A drawback of the PLIC method is that it approximates the interface as a piecewise line.
Therefore additional approximation schemes are necessary to estimate the curvature of
the interface.
In this discussion we present an interface reconstruction scheme based not on an approxi-
mation of the interface normal, but on a more rigorous mathematical formulation in terms
of the primitive of a segment. Dividing the interface into segments and describing the
evolution of each segment is the central object of the segment projection method (SPM)
[16], briefly outlined in the next section.
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Figure 3: Using the velocity field ~u at time t ant t + ∆t. The advection step computes the position at
time t of the points included in the cells at time t + ∆t. This is depicted by the green deformed square
whose points are advected into to pink cell at time t + ∆t.

3 THE SEGMENT PROJECTION METHOD [16]

The segment projection method was introduced by Tornberg and Engquist in 2003 [16].
The strategy of the method is to decompose the interface into x or y-monotone segments,
cf. figure 4, and to advect each segment individually.
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Figure 4: Decomposition of the interface of a circle into four segments.

The segments are described by a mapping taking the coordinate of the projected seg-
ment as an argument and returning the interface position. The circle in question, cf.
figure 4, can be decomposed into four segments which each are described by a mapping
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defined on an interval:

y → f1(y) on [a1, b1]

x → f2(x) on [a2, b2]

y → f3(y) on [a3, b3]

x → f4(x) on [a4, b4].

The evolution of these mappings is then solved in a Lagrangian manner. Therefore the
segment projection method belongs to the interface tracking methods. The present discus-
sion uses the concept of decomposing the interface into segments but relates the segment’s
interval to the volume fraction field leading to a set of interpolation points for the seg-
ment’s primitive. These concepts are elucidated in the next section.

4 MATHEMATICAL REFORMULATION OF THE INTERFACE RECON-
STRUCTION PROBLEM

The volume fraction Ci,j can be interpreted as the surface of red fluid occupying the
cell i, j.

y
j+1

yj

xi
x i+1

red

blue

f

Figure 5: A cell intersected by the interface.

For a cell intersected by the interface as in figure 5, the surface integral of χ can be
rewritten as a one-dimensional integral of the interface segment f :

Ci,j =

∫ ∫

i,j

χdxdy =

xi+1
∫

xi

f(x)
∫

yj

dydx =

xi+1
∫

xi

f(x) dx − (xi+1 − xi)yj. (4)

Thus along a segment we only need to sum up the volume fractions which we can relate
to the integral of the interface segment f , cf. figure 6:

Ai =
∑

j

Ci,j =

xi+1
∫

xi

f(x) dx. (5)

6



Joris C.G. Verschaeve

2.2

3.8

4.8
5.1

4.7

3.7

2.0

A0 A1 A2 A3 A4 A5 A6
 0

 1

 2

 3

 4

 5

 6

 7

 0  1  2  3  4  5  6  7

Figure 6: Summing up the volume fractions along y for a segment along x, gives us the area Ai under
the interface between xi and xi+1.

By the fundamental theorem of integral and differential calculus, the integral of the
interface segment is equal to the difference of the segment’s primitive evaluated at the
integration boundaries:

Ai =

xi+1
∫

xi

f(x) dx = F (xi+1) − F (xi). (6)

This leads to a set of equations for each Ai. We can express Fi = F (xi) in terms of the
Ai by solving (6) recursively:

Fi =
i−1
∑

l=0

Al + F0. (7)

This leads to a set of pairs for each segment:

(xi, Fi) i = 0, . . . , n, (8)

where n is the number of pairs. In the following we will call this set of pairs, equation
(8), the interpolation points. The interface reconstruction problem can thus be divided
into three subproblems:

1. Divide the interface into segments.

2. Compute the interpolation points for each segments.

3. Find an interpolant interpolating the interpolation points for each segment.
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The first two points are of a rather technical nature and will not be treated in the present
discussion. It needs to be underscored that so far we did not do any approximation but
only found a different mathematical formulation for the interface reconstruction problem
in terms of an interpolation problem. Once we have found an interpolant F , we obtain
the segment f by differentiating F once:

f =
dF

dx
. (9)

The computation of the normal ~n involves the second derivative of F and the computation
of the curvature the second and the third derivative of F . The reason why we choose to
find first the segment’s primitive F instead of finding the segment f directly, for example
in terms of finite differences of the interpolation points, is the following. Most advec-
tion schemes approximate the back traced cell by polygons [2]. Knowing the segment’s
primitive allows us to compute the surface under the segment exactly by evaluating the
segment’s primitive at the intersections between the segment and the polygon, cf. figure
7.

Figure 7: Back traced cell approximated by a polygon. Computing the surface under the interface is
done by evaluating the surface primitive at the intersections between the polygon and the interface.

This ensures surface conservation of the algorithm. Since the abscissae of the interpo-
lation points, equation (8), cannot be chosen arbitrarily but are the result of the division
of the interface into segments, the method of interpolation used to find an approximation
of F must be able to deal with arbitrary point distributions. In the following section we
show how an interpolation by B-splines [6, 8, 14] can solve the problem.

5 INTERPOLATION BY B-SPLINES [6, 8, 14]

Knowing the interpolation points (xi, Fi), i = 0, . . . , n for a segment, we use an inter-
polation sP by B-splines of order P to find an approximation of F :

F (x) ≈ sP (x) =
n−1
∑

i=−P

ciB
P
i (x), (10)

where ci are the unknown coefficients which should be chosen in such a way, that sP (xi) =
Fi, i = 0, . . . , n; BP

i is the B-Spline of order P associated with the knot xi [8]. We assume
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P being an odd integer. B-Splines have finite support [6, 8, 14] and therefore by imposing
that the interpolant sP should take the values Fi at xi we obtain n conditions for the
n + P unknown coefficients ci:

ci−P BP
i−P (xi) + ci−P+1B

P
i−P+1(xi) + . . . + ci−1B

P
i−1(xi) = Fi. (11)

The missing P −1 conditions are obtained by imposing that the first (P −1)/2-derivatives
of sP should equal the first (P−1)/2- derivatives of the segment’s primitive at each ending,
x0 and xn. Since these (P − 1)/2 derivatives are unknown a priori, opposed to the F0

and Fn which are given by the volume fraction field, we need to approximate them by
some method. This is the subject of the following section where we will derive different
strategies for obtaining the derivatives of F at x0 and xn.
Having now n + P conditions for n + P unknowns ci, we can solve the band-diagonal
system (11). Band-diagonal systems can be solved very efficiently in order n number of
steps [9]. Therefore the additional cost of B-Spline interpolation is subdominant to the
overall cost.

6 SEGMENT PATCHING

Opposed to the segment projection method, it is not possible to let overlap the seg-
ments, since this would not ensure exact mass conservation in the back traced cell con-
taining the overlap. Therefore we need a point at which two consecutive segments match
in order to obtain a continuous interface. This point is called the patching point. We
devised three methods to obtain the (P − 1)/2 derivatives at the endings of the segments
in order to patch the segments.

1. Finite Differences
Using the interpolation points, equation (8), we can by means of finite differences
compute the (P − 1)/2 derivatives at the endings of each segment.

2. Continuity
Using Faa di Bruno’s formula [12] to relate the higher order derivatives of a function
to its inverse, P − 1 constraints can be obtained for the P − 1 unknowns at each
ending of two consecutive splines ((P −1)/2 from each spline ending). Without loss

of generality we write x 7→ F1(x) and y 7→ F2(y), then y = f1(x) = dF1(x)
dx

is the first

segment and x = f2(y) = dF2(y)
dy

is the second segment. The first few constraints at

the patching point (x0, y0) can be written as follows:

y0 = f1(x0) or x0 = f2(y0) (12)

df1(x0)

dx

df2(y0)

dy
− 1 = 0 (13)

d2f1(x0)

dx2

(

df2(y0)

dy

)3

+
d2f2(y0)

dy2
= 0 (14)

9
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For a spline of order P = 3, the coordinates of the patching point (x0, y0) are the
unknowns of the system. They can be adjusted in such a way that constraints (12-
13) are satisfied in order to obtain continuity in the first derivative of the segments.
Practically this is done by choosing an initial value for x0 and y0 and iteration by
means of a Newton-Raphson method until the constraints are satisfied.

3. Parametric Periodic Spline
Having an initial guess for the patching points and for the higher derivatives at the
endings of the segments, we can construct a spline through the interpolation points
for each segment. By differentiation we can compute the interface position for each
segments. Sampling a set of interface points for each segment gives us an ordered
set of points:

{(xi, yi)|i = 1, . . . m}, (15)

where m is the number of points. Since the interface is a periodic line, there exists
a periodic parametrization (x(t), y(t)) such that:

x(ti) = xi

y(ti) = yi

x(ti+m) = xi

y(ti+m) = yi

In order to find the periodic sequence ti, i = 1, . . . m we propose a simple “fix-
point” scheme. An initial guess t0i is computed by evaluating the Euclidean distance
between the point (xi, yi) and (xi−1, yi−1) and adding this to t0i−1:

t0i = t0i−1 +

√

(xi − xi−1)
2 + (yi − yi−1)

2 and t01 = 0. (16)

This periodic sequence is used to construct a periodic parametric spline s0 inter-
polating the points (xi, yi), i = 1, . . . ,m. At a certain iteration n of our fix-point
scheme, using the periodic parametric spline sn we obtain tn+1

i by computing the
arc length dn between (xi, yi) and (xi−1, yi−1):

dn =

tni
∫

tn
i−1

√

(

dsn
x(t)

dt

)2

+

(

dsn
y (t)

dt

)2

dt, (17)

and adding it to tn+1
i−1 :

tn+1
i = tn+1

i−1 + dn. (18)

Interpolating the points (xi, yi) using the tn+1
i gives us the periodic parametric spline

sn+1 of iteration n + 1.
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This simple fix-point scheme will gives us a periodic parametrization of the interface.
Once we have this parametrization we can evaluate the derivatives of our periodic
parametric spline at the patching points between the segments and using Faa di
Bruno’s formula [12] find a new guess for the derivatives at the endings of the
segments. This new guess for the derivatives allows us to construct more accurate
interpolations for the segment primitives which in turn allows us to obtain more
accurate interface points (xi, yi). This can then again be used to construct a new
periodic parametric spline interpolating these points using the above method. This
gives rise to a second (outer) fix point scheme allowing us to reach very accurate
interpolants. The order of the interpolating splines used for the fix-point schemes
should increase with increasing accuracy in order to keep the error contribution due
to the interpolation subdominant compared to the error of the derivatives at the
ending of the segments.

7 NUMERICAL VERIFICATION

As a numerical verification of our higher order interface reconstruction scheme and the
segment patching schemes, we chose the interface reconstruction test of Rider and Kothe
[11] and Lopez et al. [5]. The test of Rider and Kothe consists in reconstructing an
interface from the exact volume fraction field of a circle with radius r = 0.368 centered
at (0.525, 0.464) in a two-dimensional box of sidelenght 1, cf. figure 8.
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Figure 8: Examples of interfaces used as a numerical verification of the present interface reconstruction
scheme. Left: Circle of Rider and Kothe [11]. Right: Bat-shaped interface of Lopez et al. [5]. The figures
display the interface segments (in different colors) reconstructed by the present interface reconstruction
scheme.

The test of Lopez et al. requires the reconstruction of a bat shaped interface given by
the following equation:

cos (6πx) (4x − 2)2 + (4y − 2)2 = 1
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in a two-dimensional box of side length 1, cf. figure 8. In a first step we combined the
segment patching by finite differences and continuity in such a way, that we first use
the value of the derivatives of the segment’s primitive obtained by finite differentiating
the interpolation points. If the continuity of one of the first P − 1 derivatives across
the patching point is not satisfied, we use a Newton-Raphson scheme to improve the
derivatives at the patching point. For better resolved interfaces the finite differentiation
is most often accurate enough. An example of the patched segments for the circle of Rider
and Kothe and the bat-shaped interface of Lopez et al. can be seen in figure 8. Performing
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Figure 9: Error decrease of the present interface reconstruction scheme for different orders P of B-spline
interpolation and different resolutions N (the number of cells along the side lengths of the boxes. Left:
Circle of Rider and Kothe [11]. Right: Bat-shaped interface of Lopez et al. [5].

these tests for different resolutions, cf. figure 9, we see that the error decreases with third
order accuracy for a third order spline and with fifth order for a fifth order spline. This is
what we might expect given the error bound for B-spline interpolation in [6] on page 52.
The convergence for seventh order splines seems to be seventh order, however for ninth
order it is difficult to say whether the convergence is ninth order or not. This is due to the
inaccurate estimation of the derivatives at the segment endings. In order to obtain more
accurate estimations of the derivatives we use the fix-point scheme above. The resulting
error decrease for the periodic parametric spline is shown in figure 10, revealing an error
decrease as expected by the error bound in [6] on page 52. Fixing the resolution N and
increasing the order P of the B-splines leads to a spectral, meaning faster than algebraic,
convergence of the interpolation for the circle of Kothe, cf. figure 11. This is however not
always the case as can be seen for the error decrease of the periodic parametric splines
for the bat-shaped interface of Lopez et al., cf. figure 12, since increasing the order of
the B-splines can be done without increasing the spatial resolution of the interpolation.
This is opposed to classical spectral methods, such as Chebyshev polynomials or Legendre
polynomials where increasing the order of the interpolation increases the number of Gauß’
points at which the function is interpolated. Therefore an aliasing error of interpolation
can persist if the function is not well resolved when using B-splines. In order to test
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Figure 10: Error decrease of a parametric periodic spline for different orders P of interpolation and
different resolutions N for the circle of Rider and Kothe [11].

the practical value of the current interface reconstruction method, we coupled it to the
advection scheme of Cervone et al. [2] and perform the Vortex test of Rider and Kothe
[11] using B-splines of order 3 with a resolution of N = 32 cells along each axis, a CFL-
number of 1/2 and a period of T = 2. The position of the segments for T = 1 and T = 2
can be seen in figure 13.

Although it is also difficult for the present method to predict the position of the tail of
the drop correctly, the resulting error is smaller than for a PLIC interface reconstruction.

8 CONCLUSIONS

The more rigorous mathematical formulation of the interface reconstruction problem in
terms of an interpolation problem for the segment’s primitive, allowed us to derive a higher
order interface reconstruction scheme using B-splines. A main difficulty is the patching of
these segments. We derived three strategies to achieve an accurate patching: estimation
of the derivatives at the endings of the segments by finite differences, solving a set of
constraints to guarantee continuity of first derivatives of the segments and patching by
constructing a periodic parametric spline using the periodicity of the interface. Numerical
tests showed that for an order ≤ 7, finite differencing and the continuity constraints
are enough to patch the segments. Better accuracy can be obtained by using periodic
parametric splines, if the drop shape is well resolved.
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Figure 13: Vortex test of Rider and Kothe [11] using the present interface reconstruction method. The
resolution is 32 cells in each spatial direction, a cfl number of 1/2 and a period of 2.
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