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Abstract. Approaches to modeling contact line motion within the volume-of-fluid method

are always presented for a flat surface. But what if a surface is geometrically more com-

plex, and, for example, contains a sharp corner? Here we present an algorithm for mod-

eling contact line motion around a sharp corner, by pinning an advancing contact line at

the corner, allowing the contact angle to increase and the contact line to rotate around

the corner, and then releasing the contact line when the contact angle has reached the

value associated with the other side of the corner. We present the algorithm details in the

context of the EI-LE advection method, and then present preliminary results that illustrate

the methodology.
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Figure 1: Two configurations of a droplet seated coaxially above an open pore, corresponding to two
different θ. The hatched area is a smooth solid.

1 INTRODUCTION

Contact line motion is an integral part of interfacial flows when a solid surface is in con-

tact with a liquid-gas interface (e.g. spray coating, ink-jet printing). Typically the contact

line moves over a continuous solid surface, but when the surface is geometrically more

complicated, for example, than a flat surface, then equilibrium interfacial configurations

may be metastable, because the configuration will depend on the way that equilibrium is

reached. Consider, for example, a droplet seated on a single pore in a surface, as depicted

in figure 1. To simulate the droplet flow into the pore, and to predict the final equilibrium

configuration, it is necessary to consider the effect of the sharp corner on the motion of the

contact line. In this article we examine exactly this scenario: the numerical simulation of

contact line motion at a sharp corner. The key to such a simulation is a treatment of the

sharp corner that is solely dependent on the geometry of the corner and on the contact

angle, based on the concept of contact line pinning [6].

For numerical simulation of immiscible incompressible two-phase Newtonian flow, an

interface tracking algorithm is usually combined with a flow solver. Among numerous
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methods devised for simulating two-phase flows, the volume-of-fluid (VoF) scheme is one

that preserves the volume of each component exactly [8, 9]. In the work presented here, the

mathematical model is based on a one-field approach: the Navier-Stokes (N-S) equation

is solved over the entire domain, alongside an advection equation for the VoF field. The

N-S equation is:

∂t(ρ~V ) + ∂~x · (ρ~V ~V ) = −∂~xp + ~FS + ~FB (1a)

∂~x ·
~V = 0 (1b)

where ~V is the velocity field, p is the pressure field, ~FS represents the surface forces

including viscous effects, ~FB represents any body forces such as gravity, ∂t represents the

derivative with respect to time and ∂~x represents the gradient operator. In equation (1a)

ρ =
∑

fkρk and µ =
∑

fkµk where fk is the volume fraction of phase k. The balanced

force CSF method is used for modeling the surface tension force [5]. The numerical

solution of the N-S equation is obtained by a projection method [3, 5, 2].

In a two-phase flow, if the volume fraction of the first phase is designated by f , that of

the second phase is 1−f , and so only one governing equation for the interface is required.

For a given velocity field, the volume fractions are advected by:

∂tf + ~V · ∂~xf = 0 (2)

Since these f values are discontinuous, the numerical solution of equation (2) must be

treated carefully. Many Eulerian and Lagrangian advection schemes have been suggested

to solve this equation [8, 9, 11]. In this article, the solution to this equation is of interest

when the contact line is near a sharp corner. We address such a treatment here, and
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investigate the accuracy of the presented technique.

2 THEORY

Since treatment of the sharp corner is performed within a VoF framework, we briefly

present the interface reconstruction and advection schemes that we implemented. The

interface reconstruction method is PLIC, in which the interface is represented by piecewise

linear segments [8]; these segments are then advected by the operator split EI-LE method

of Scardovelli et al. [11].

2.1 INTERFACE RECONSTRUCTION AND ADVECTION

In order to reconstruct an interface via PLIC, an interface normal and a line constant

are required. Given the normal, the unique line constant can be computed explicitly [10];

normals can be computed in many ways [9]. For simplicity, we use the height function

(HF) method to compute both normals and curvatures [4]. The HF technique computes

the interface normal by calculating fluid “heights” in a 7× 3 stencil, and then calculating

the central difference of these heights (see figure 2). The orientation of the stencil should

be most normal to the interface, and so a simple estimate of the normal (e.g. Parker and

Youngs [7]) is used to estimate stencil orientation. Assuming that the interface is more

horizontal than vertical, three fluid heights are defined as:

Hi+α =

3
∑

β=−3

fi+α,j+β∆yj+β for α = −1, 0, 1 (3)

4



Poorya A. Ferdowsi and Markus Bussmann

h(x)

j + 3

j − 3

j − 1

j

i + 1i − 1 i

x

y

Figure 2: Heights Hi−1, Hi and Hi+1 for the interface cell (i, j).

where ∆y is the vertical dimension of a cell. The interface normal is then obtained by

the central difference technique:

nx = Hi+1 − Hi−1

ny = xi+1 − xi−1

(4)

and curvature evaluated as:

κ =
ÿ

(1 + ẏ2)
3

2

(5)

where ẏ = nx/ny, and ÿ is the numerical discretization of the second order derivative.

When the interface normal and curvature are required near a solid phase, close to a

contact line, we use the extended HF method of Afkhami et al. [1], where the interface is

first reconstructed in the contact line cell1 and then extended into the solid. The volume

fractions is the ghost cells are obtained by extrapolating a linear approximation of the

interface after which the HF method can be applied as usual.

After reconstructing the interface at each timestep, it must be advected by the velocity

1a cell containing a three-phase line (in 2D this appears as a point).
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field. We used the split EI-LE method [11], since it preserves mass exactly and is consistent

(i.e. no “wisps” appears in the solution). The volume fraction advection equation (2) is

discretized into an implicit Eulerian step in one direction:

f
(n+ 1

2
)

i,j =
f

(n)
i,j + F

(n)
l − F

(n)
r

1 + ul − ur

(6)

followed by a Lagrangian explicit step in the other:

f
(n+1)
i,j = f

(n+ 1

2
)

i,j (1 + ul − ur) + G
(n+ 1

2
)

t − G
(n+ 1

2
)

b (7)

Fl, Fr, Gb and Gt are the fluxed fractions from the left, right, bottom and top faces of

the cell (i, j), respectively, that are computed based on the reconstruction at each level;

ul and ur are the Courant numbers at the left and right faces of the cell (i, j). In the

Lagrangian step, the faces of the cell are advected first, and then the fluxed fractions are

calculated (i.e. Gt and Gb); during the Eulerian step, the fluxed fractions Fl and Fr are

computed first and then the interface is advected (see figure 3). After each sweep, the

interface is reconstructed. Finally the order of the sweep direction alternates with each

timestep.

2.2 SHARP CORNER TREATMENT

In this section we explain how the advection scheme must be amended when the contact

line is near a sharp corner, as shown in figure 4. The method is based on the concept

of contact line pinning [6]: when the contact line reaches an ideally sharp corner, it pins

itself there and then rotates about the corner until it reaches the contact angle on the

other side, as illustrated in figure 4.

To model this phenomenon, we compute the apparent contact angle based on the
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Figure 3: (a) The net outward flux areas used in the EI step are calculated by intersecting the total
outflux rectangles within the shaded fluid region. (b) In the LE step, the faces of the cell are advected
first along the advection direction; then the net outflux is calculated. BB′C′C

⋂

B′2′1′A′ is the net
outflux through the top face.

volume fraction of the contact line cell. Here, for the sake of simplicity, we consider a

wall angle φ =
π

2
. We also assume that the contact angle on a smooth surface, θ <

π

2
.

Now, we modify the advection scheme and compute the apparent contact angle θa when

the contact line is pinned to the sharp corner, as shown in figure 5.

Suppose that the contact line has reached the sharp corner. Cells (i, j) and (i −

1, j) must be treated differently; other configurations can be treated similarly. For now,

θa

θ

θ

φ

180◦ − φ

Figure 4: A contact line at a corner, and the limits of the apparent contact angle.
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Figure 5: The pinned contact line for two different θ. The dashed line is the reconstructed interface after
one time step. θa is the new contact angle in the contact line cell where the contact line is pinned.

suppose that the contact line is in cell (i− 1, j), pinned to the sharp corner, and that the

contact angle is θa ≥ θ. In this case, for a square mesh, the corresponding pinned volume

fraction fp is:










θa <
π

4
⇒ fp =

1

2
tan θa

θa ≥
π

4
⇒ fp = 1 −

1

2
cot θa

(8)

Notice that, when the contact angle is assumed to be pinned to the corner, the only fluid

that ought to cross the right face is the gas phase. So, for advection in the x direction

one can compute a temporary fraction f ∗ based on the EI-LE method assuming that no

fluid leaves the right face; that is F
(n)
r = 0 in equation (6). (A similar approach would be

required for Lagrangian advection in the x direction). For advection in the y direction,

both phases can flux through the top face. If the temporary fraction f ∗ ∈ [fp, 1], then

f (n+1) = f ∗, and one can calculate the apparent contact angle as follows:















f ∗ <
1

2
⇒ θ

(n+1)
a = tan−1

(

2f (n+1)
)

f ∗ ≥
1

2
⇒ θ

(n+1)
a = cot−1

(

2(1 − f (n+1))
)

(9)
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If f ∗ /∈ [fp, 1], then one computes f (n+1) as usual by releasing the pinned contact line,

thereby allowing any fluid to flux out of the right face of the cell (i − 1, j).

When the interface is in the cell (i, j), and when the contact line is pinned, similar

to the previous discussion, only the phase corresponding to f = 0 can leave the bottom

face. So, G
(n+ 1

2
)

b = 0 in equation (7) (similarly for Eulerian advection in the x direction).

In this case, equation (8) is still valid, but if f ∗ < fp the contact line can remain pinned

to the edge, and θ
(n+1)
a is calculated by equation (9); otherwise, the contact line must be

released, and the new volume fraction can be computed as usual.

Finally, knowing θa one can reconstruct the interface in the contact line cell and then

calculate the interface curvature as usual.

3 RESULTS

In this section we investigate the ability of the method we have presented, for treating

contact line motion near a sharp corner. Consider a sessile drop on a pedestal, with an

initial contact angle θ = 75◦, as illustrated in figure 6. Due to symmetry, only half of the
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Figure 7: Equilibrium configuration for different corner positions.

domain is considered. Then the contact angle is suddenly changed to θ = 30◦. We run

the simulation for three different pedestal sizes.

The fluids used in this simulation are water and air. Surface tension coefficient σ = 728

N/m. Geometric parameters are h = 4.732×10−1 m and r = 1.035×10−1 m. The domain

is a 0.5×1 m2 rectangle and the grid size is fixed at ∆ =
1

32
. The pedestal width l is set to

7∆, 8∆ and 9∆. The Poisson solver uses a two-level preconditioned GMRES technique.

Machine accuracy is assumed to be 10−13 which is also set as the convergence tolerance

for the GMRES solver.

From a thermodynamic viewpoint, in the absence of a sharp corner, the drop will

spread over the surface and oscillate until it reaches to an equilibrium configuration. But,

in presence of the sharp corner, the droplet instead pins to the edge [6] . These equilibrium

configurations are depicted in figure 7. Simulation results are shown in figure 8 at three

different times. We see that the equilibrium configuration predicted numerically is in good

agreement with the thermodynamic one. Due to spurious currents which are induced

by inaccuracies in the curvature computation, the interface is still vibrating about the

corresponding exact interface, even after 5 seconds. We see that by changing the pedestal

size, it is possible to control the equilibrium contact angle at the pinned corner as well
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as the maximum spread. For wider pedestals, equilibrium contact angles are smaller. In

none of these cases, does the drop wet the vertical side of the pedestal.
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Figure 8: (a)-(c) Results at three steps when l = 9∆; (d)-(f) when l = 8∆; (g)-(i) when l = 7∆. The
exact equilibrium configuration is shown by the dashed line; the numerical results are shown by the solid
line. ∆ = 1/32 is the grid size.
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