
V European Conference on Computational Fluid Dynamics
ECCOMAS CFD 2010

J. C. F. Pereira and A. Sequeira (Eds)
Lisbon, Portugal, 14–17 June 2010

DEVELOPMENT OF TWO AND THREE-DIMENSIONAL EULER
SOLVERS FOR ADAPTIVELY REFINED CARTESIAN GRIDS

WITH MULTIGRID APPLICATIONS

Mehtap Cakmak*, M. Haluk Aksel†, and Cuneyt Sert††

*Georgia Institute of Technology
270 Ferst Drive Atlanta, Georgia 30332 USA

mcakmak@gatech.edu

†,††Middle East Technical University
Mechanical Engineering Department METU Ankara, TURKEY

†aksel@metu.edu.tr, ††csert@metu.edu.tr

Key words: Euler Equations, Cartesian Grid, Multigrid, Marching Cubes Algorithm

Abstract. An automated solver that works on adaptive Cartesian grids is developed to
simulate inviscid, compressible flows around simple and complex geometries. In
generating the Cartesian grid, marching squares and cubes algorithms are used to form
interfaces of cut cells. Geometry-based cell adaptation, which includes box adaptation
and cut cell adaptation, is applied in the mesh generation procedure. After obtaining an
appropriate initial mesh, flow solution is obtained using either Liou’s Advection
Upstream Splitting Method (AUSM) or Roe’s approximate Riemann solver with a cell-
centered finite volume approach. Least squares reconstruction of flow variables within
the computational cells is used to determine high gradient regions of flow. Solution
based grid adaptation is then applied in order to refine high gradient regions.
Multistage time stepping with local time steps and Fully Approximation Storage (FAS)
multigrid technique is used in order to increase the convergence rate.

Mehtap Cakmak, M. Haluk Aksel and Cuneyt Sert

 2

1 INTRODUCTION
Cartesian grids are a special form of the unstructured grids. They consist of squares

in two-dimensions and cubes in three-dimensions that are oriented parallel to the
coordinate axes. Since the elements are perfectly aligned with the coordinate axes, there
is no need for any complex formulation of velocity vectors for flux calculations in order
to get their normal and tangential components. To store connectivity information, it is
possible to use quadtree and octree data structures for two- and three-dimensional
problems, respectively. An important advantage of using Cartesian grids is easy
handling of complex geometries. Also, multigrid scheme can easily be applied to a
Cartesian flow solver. Finally, geometric and solution based adaptations can be
implemented without any user intervention.

The most important difficulty for creating a Cartesian mesh arises from contact
surfaces. Computational (leaf) cells, which have intersections with boundaries, are
called cut or split cells. Split cells are irregular cells, which violate the simplicity of
implementation of marching squares algorithm. But both cut and split cells play an
important role in working with curved geometries. In the very former studies of
Cartesian grids, curved boundaries were represented as stair-step boundaries. This
method was very simple, however; it produced unacceptable errors. Therefore, it is
decided to use cut and split cells as the most accurate method to define the curved
boundaries even though sizes of some cut cells are extremely small and as a result, they
may put severe restrictions on the convergence rate. In 1993, De Zeeuw [1] solved two-
dimensional Euler equations using a Cartesian grid based on quadtree data structure. He
implemented a multigrid scheme to increase the convergence rate of the solution. In
1994, Coirier [2] solved two-dimensional Euler and Navier Stokes equations using
Cartesian grids. He preferred binary tree data structure and performed solution based
grid refinement and coarsening. In 1995, Aftosmis [3] developed techniques for
meshing geometries with complex surfaces and the code CART3D solved three-
dimensional Euler equations using Cartesian grids accurately. In 2004, Hunt [4]
developed a code to solve the three-dimensional Euler equations by using parallel, block
adaptive Cartesian grid approach. Data structure and handling the geometry were very
similar to studies of Aftosmis. In 2005 and 2008, Bulgok [5] and Siyahhan [6]
developed two-dimensional Euler solvers for Cartesian grids. These references are the
milestones of the work presented in this paper.

2 QUADTREE DATA STRUCTURE AND TWO-DIMENSIONAL GRID
GENERATION

2.1 Quadtree data structure
Dynamic data structures are used in this work to enable the variation of total number

of cells during the execution of the program. In addition, quadtree data structure enables
to store connectivity information between cells such as parental and neighboring
information. They are important for flux calculations, reconstruction and multigrid.

Quadtree data structure can be thought as a family tree which demonstrates the
relationships beginning from the oldest individual followed by his children,
grandchildren, etc. The oldest individual of the family tree becomes the root of the
quadtree [7]. Since each cell in a quadtree has a parent and four children, connectivity
information can be extracted using parent-children relations. Figure 1 illustrates a three
level quadtree data structure.

Mehtap Cakmak, M. Haluk Aksel and Cuneyt Sert

 3

Figure 1: Numeration of cells in a three level quadtree data structure

In the developed code for two-dimensional problems, all cells are identified with
their parents, four edge neighbors and four children. There are two types of neighbors
for two-dimensional problems. One is edge neighbor which is stored for each cell and
the other is vertex neighbor which is determined when it is required [7]. Since vertex
neighbors are not used as many times as edge neighbors and also they are easily
determined by the edge neighboring information, storage of them would be inefficient
in terms of memory usage. Moreover, level of a cell, center and corner coordinates are
stored for each cell, although the last two can also be computed when they are required
in case of memory shortage.

Cells that do not have any children are called computational cells and there are four
types of them. These are inside, outside, cut and split cells. All calculations are
performed using computational cells except the inside ones. Additional parameters are
stored for these special cells such as conservative variables, square index of a cell,
gradient and curl of velocity vector, etc. Finally, additional parameters such as
coordinates of centroid and cut locations are stored for only cut and split cells. Detailed
information can be found in Cakmak [7].

Grid refinement and coarsening is performed according to the one level rule, which
states that the level differences between two edge or vertex neighbors cannot exceed
one. This rule enables grid smoothness and facilitates the flux calculation and
application of reconstruction schemes. In addition, neighbor cells through the vertices of
a cell can easily be determined by means of this restriction.

2.2 Initial grid generation and geometry adaptation
After the specification of input geometry in the form of line segments, first the root

cell is created, followed by a uniform grid generation in which the root cell is divided
into squares successively until the initial desired resolution is obtained. A sample grid
obtained after uniform grid generation is shown in Figure 2.a.

The next step is inside-outside testing of corners of each computational cell, which is
necessary for determination of cut cells. In this study, ray-casting method is used for
this purpose since it is easily implemented in both two- and three-dimensional
problems. Detailed information about ray-casting method can be found in Cakmak [7].

After the testing of all four corners of a cell, cell type has to be determined. Each
corner of a computational cell has a parameter denoted by φ. This parameter is set as 1
or -1 for outside or inside corners, respectively. If all corners of a cell are outside or
inside of the geometry, the cell type is set as outside or inside, respectively. Types of
other remaining cells are set as cut cells. However, as demonstrated in Figure 3,
exceptional cases should be handled carefully. Although four corners of two sample
cells given in this figure are outside, the cells are actually cut by the given geometry.
These cells are set as split cells and they require special treatment.

Mehtap Cakmak, M. Haluk Aksel and Cuneyt Sert

 4

Figure 2: Sample grids for flow around a multi-element airfoil. (a) uniform grid, (b) box adaptation,

(c) cut and split cell adaptation, (d) curvature adaptation

Figure 3: These two split cells are exceptional cases for inside-outside check

After the determination of cell types, it is time to make geometric adaptations around
the given geometry to obtain the desired grid resolution around the geometry.
Geometric adaptations can be divided into three groups for two-dimensional code: box
adaptation, cut and split cell adaptation and curvature adaptation. In box adaptation cells
located in an imaginary rectangular box that encloses the input geometry are refined.
Size of this box is determined by the user of the program. A sample grid obtained after
box adaptation is shown in Figure 2.b.

Cut and split cell adaptation is to refine the cut and split cells and also their
neighbors. A sample grid obtained after this adaptation is shown in Figure 2.c. Finally,
curvature adaptation is applied for cut and split cells. In curvature adaptation, angle
between the normal vectors of neighboring faces that are cut by a solid body is
calculated. If the angle is higher than a pre-specified threshold angle, these cells are
refined. Detailed information regarding this adaptation can be found in Siyahhan [6]. A
sample grid obtained after curvature adaptation is shown in Figure 2.d.

In this work, locations of cut points of cut cells are determined using marching
squares and cubes algorithms for two- and three-dimensional problems, respectively. In
marching squares algorithm, cut edges are automatically determined by the table given
in Figure 4; hence, cut locations are found and stored easily. Marching squares

Mehtap Cakmak, M. Haluk Aksel and Cuneyt Sert

 5

algorithm starts by indexing each corner and edge of a cell from 0 to 3 as seen in Figure
4. Square indices of corners of a cell are determined by using their φ values. These
values are summed to calculate a total square index. By using this total square index and
the given table, cut edges are determined. For example, total square index of the cell
shown in Figure 4 is nine and cut edges are found as zeroth (edge0) and second (edge2)
edges. After determining the cut edges, exact points at which these edges are cut are
found. These points are labeled as p0 and p1 in Figure 4. By locating these points it is
possible to determine the exact shape of the computational cut cell given by region
defined by points p0, cr1, cr2, p1.

Figure 4: Line table for marching squares algorithm and a sample cut cell

As it is mentioned previously, split cells require special attention. They may contain
only a single or multiple fluid regions. Flux calculation of split cells, which have only
one fluid region, is the same as cut cells. On the other hand, for split cells that have two
or more fluid regions, separate flux calculations are performed for each fluid region [7].
Although split cells make the data structure more complicated, they are required for the
implementation of multigrid method. Besides their complexity, split cells increase the
computational time and decrease the efficiency of the memory usage. For these reasons,
in some previous studies, multiple fluid regions inside split cells are combined into a
single fluid region [1, 5].

General method to determine and classify the split cells is to count the number of cut
points on the edges of a cell. It is obvious that inside and outside cells should not have
any cut points. If they have, they are set as split cells. Moreover, cut cells should have
only two cut points. If they have more than two cut points, they are also set as split
cells. After identifying split cells they need to be classified. A cell, labeled as inside cell
initially, can have two or four cut points on its edges. Another possibility is that a cell
that is labeled as outside cell initially can have two or four cut points on its edges. These
cells are assigned special total square index values. A final type of split cell forms when
a cell initially labeled as a cut cell has three, four or more than four cut points. If these
cells have three or four cut points their total square index remains the same. Otherwise,
if they have more than four cut points they are assigned a special total square index
value. These final types of split cells are rarely encountered and the flux formulations
for these cells are really difficult. Hence, in this work they are recursively refined until
their children become other defined types. Generally, they disappear after one or two
refinement processes.

Mehtap Cakmak, M. Haluk Aksel and Cuneyt Sert

 6

Classification of split cells is important because their specially assigned total square
indices are used in many processes such as determining the sequence of cut points, flux,
centroid and area calculations. Classified split cells can be found in Appendix A of
reference [7]. Flux calculations of split cells which have two separate fluid regions are
performed by considering them as two cut cells.

3 OCTREE DATA STRUCTURE AND THREE-DIMENSIONAL GRID
GENERATION

3.1 Octree data structure
Like the quadtree data structure, the octree data structure starts with the root cell at

the top followed by its children, grandchildren, etc. Any cell in the data structure uses
fifteen pointers to other cells in the mesh. One is for its parent; eight of them are for its
children and the rest of them are for its surface neighbors which are east, north, west,
south, top and bottom surface neighbors, respectively. Twelve edge and eight corner
neighbors are not stored but determined when they are necessary.

In the three-dimensional code, there are three types of computational cells: inside,
outside and cut cells. Since the three-dimensional grid generation is more complicated
compared to two-dimensional one, split cells are not treated specially. Instead, these
irregular cells which are not inside, outside or cut cells are recursively refined until their
children become one of these three regular types. Consequently, the data structure is not
as complicated as the two-dimensional grid generation code. In two-dimensional grid
generation, centroid and area of cut cells are calculated by triangulation of the outside
part of cut cells. For three-dimensional case, centroid and volume of cut cells are
calculated by dividing the outside part into tetrahedrons.

3.2 Initial grid generation and geometry adaptation
After providing the solid geometry to the code as a triangulated surface, similar to

the two-dimensional case uniform refinement of the root cell, box adaptation and cut
cell adaptation are used to obtain the final grid that can be used by the flow solver.
Sample grids obtained after box and cut cell adaptations are shown in Figure 5.

Figure 5: Application of box and cut cell adaptations for the flow around a sphere problem

After geometric adaptations, it is time to calculate the coordinates of cut points and
create the cut surfaces of cut cells by using total cube indices and the table defined by
marching cubes algorithm. This table can be found in reference [8]. Numbering of edges
and corners is presented in Figure 6.a. Cube indices of a cell are calculated by using φ

Mehtap Cakmak, M. Haluk Aksel and Cuneyt Sert

 7

value of each corner. Cube index of an outside corner is zero and cube index of an
inside corner is equal to two to the power of corner number defined in Figure 6.a. For
example, if the third corner of a cell is an inside cell, its cube index is two to the power
three. Total cube index of a cell is calculated by summing up cube indices of all corners.
Total cube index of the cell given in Figure 6.b is equal to seven, because its zeroth,
first and second corners are inside the geometry. Cut edges of this cell and triangular cut
surfaces are found by means of the marching cubes table, which has the following row
for a cube index value of seven,

According to this information, cut edges are the 2nd, 8th, 3rd, 10th and 9th edges. When
cut edges are known, cut locations on these edges are found by the line-triangle
intersection method given in reference [9]. After finding cut locations, three cut-
triangular surfaces which pass through these points can be drawn by following the
sequence given in the table. It is important to note that normal vectors of each triangular
surface are pointing to the outside part of the cell. This feature of triangles facilitates the
flux, volume and centroid calculations.

Figure 6: Details of marching cubes algorithm for a 3D case. (a) Numbering of edgesand vertices, (b)
Cut surfaces obtained by using the marching cubes table

4 FLOW SOLVER

Finite-volume formulation of the three-dimensional conservative Euler equations is
achieved by using a cell-centered approach. Flow variables are stored at the centroids of
cells and it is assumed that they do not vary inside of the control volume. As a result,
spatial discretized form of three-dimensional Euler equations can be written as

1

1 ()∂
= − Φ = −

∂ Ω Ω∑
nFaces

i i
i=

q Res qA
t

 (1)

where Ai and Ω are the area of the ith surface and the volume of a cell, respectively.
Vector of conserved variables q and vector of fluxes passing through the cell faces Ф
are defined as follows

Mehtap Cakmak, M. Haluk Aksel and Cuneyt Sert

 8

ρ
ρ
ρ
ρ
ρ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

u
q v

w
E

ρ
ρ
ρ

ρ
ρ

⎛ ⎞
⎜ ⎟

+⎜ ⎟
⎜ ⎟Φ = +
⎜ ⎟
⎜ ⎟+
⎜ ⎟⎜ ⎟
⎝ ⎠

n

n x

n y

n z

n

V
uV pn
vV pn

wV pn
V H

 (2)

where Vn= unx +vny +wnz is the velocity along the unit outward normal of a surface of a
cell, ρ is the density of the fluid. H is the specific total enthalpy and p is the fluid static
pressure.

4.1 Multistage time stepping
In the explicit multistage time stepping method used, discretized Euler equations are

solved starting from a known initial solution. In this work, three-stage time stepping as
defined is used

=0 nq q
1

0 ()α
υ

−Δ
= −

Ω

m
m m tRes qq q (3)

1 =m+ mq q

where αm denotes the stage coefficients and Δt is the time step. CFL numbers (υ) and
stage coefficients are used as defined in reference [10].

For steady flows that are solved in the current work, local time stepping can be used.
In three-dimensional problems, local time step of each cell is defined as

1

1

()

Δ
=

Ω +∑
nFaces

cell
cell n i i

i=

t

c V A
 (4)

where ccell is the local speed of sound which is calculated by using the flow variables
stored at the cell centroid.

4.2 Flux computation

Two different methods, which are approximate Riemann solver of Roe [4, 7, 11, and
12] and Liou’s Advection Upstream Splitting Method (AUSM) [6, 7, 11, and 13] are
used for the calculation of fluxes, Фi, through each face.

In AUSM method, Mach number and pressure appearing in the convection flux terms
are split. Split Mach number M½, and split pressure vector p½ are the average of Mach
numbers and pressure vectors on the left and right sides of a face. The cell, whose flux
values will be calculated, is denoted as left side and the neighboring cell is represented
as right side.

() ()() () ()()1 1 1
2 2 2

1()
2
⎡ ⎤′ ′ ′ ′Φ = + − − +⎢ ⎥⎣ ⎦L R L R R Lq ,q M F q F q M F q F q p (5)

where

Mehtap Cakmak, M. Haluk Aksel and Cuneyt Sert

 9

()

ρ
ρ
ρ
ρ
ρ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟′ =
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

L

c
uc

F q vc
wc
Hc

 ()

ρ
ρ
ρ
ρ
ρ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟′ =
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

R

R

c
uc

F q vc
wc
Hc

 (6)

()1/2
1
2

+ −= +L RM M M ()1
2

1
2

+ −= +L Rp p p (7)

()21 1 1
4

1 () 1
2

+

⎧ + ≤⎪⎪= ⎨
⎪ + >
⎪⎩

L L

L

L L L

M M
M

M M M

()21 1 1
4

1 () 1
2

−

⎧− − ≤⎪⎪= ⎨
⎪ − >
⎪⎩

R R

R

R R R

M M
M

M M M
 (8)

2 1
1 1

+ +

⎧ − ≤
⎪= ⎨ >⎪
⎩

L L

L L L
L

L

M M
p p M

M
M

2 1

1 1
− −

⎧− − ≤
⎪= ⎨ >⎪
⎩

R R

R R R
R

R

M M
p p M

M
M

 (9)

4.3 Initial guess and boundary conditions
Far-field conditions are set as the initial guess for all computation cells and two

different boundary conditions are implemented into the code. First one is the solid
boundary condition that size, density, pressure, specific enthalpy and tangential
components of the velocity vector for the ghost cells are taken the same as the cut cells.
On the other hand, normal velocity vector of a ghost cell is taken as the opposite
direction of the normal velocity vector of the cut cell. The other boundary condition is
far-field condition in which flow variables of ghost cells are equated to those of the far-
field.

4.4 Multigrid method
Formulation of multigrid method is different for linear [14, 15, and 16] and nonlinear

[1 and 17] problems.
Multigrid method is used to accelerate the convergence rate of iterative solutions. It

is based on error smoothing and coarse grid principles, in which high and low frequency
errors are eliminated, respectively. Transformation from fine to coarse grid is called
restriction and retransformation from coarse to fine grid is called prolongation.
Implementation of multigrid is achieved in four steps known as fine grid iteration,
restriction, prolongation and correction as explained below.

(i) Fine grid iterations: Initially, a number of iterations are performed on the finest
grid which is denoted by h-level by using multistage time stepping method. However, in
multigrid method, formulation of multistage time stepping scheme is different. An
additional parameter called forcing function (FFh), which is set as zero for all
computational cells of the finest grid, is added to the equation and the new multistage
time stepping scheme becomes

()0 1
α

υ −

Δ ⎡ ⎤= − +⎣ ⎦Ω
h h h hm
m m

tq q Res q FF (10)

(ii) Restriction: In this step, grid is coarsened to start eliminating low frequency
errors. Transfer of h-level grid to 2h-level grid is summarized to explain the coarsening
algorithm for Cartesian meshes. First of all, parent cells, whose children are all

Mehtap Cakmak, M. Haluk Aksel and Cuneyt Sert

 10

computational cells, are flagged [18]. If the flagged parent cells do not violate the one
level rule when they are coarsened, they are set as new computational cells. If they
violate the rule, their flags are removed and they remain as parent cells. When 2h-level
grid is obtained, initial approximate solutions and forcing functions of new
computational cells are required. These are defined as

()

()
1

2 2
0

1

=

=

⎧
Ω⎪

⎪⎪= = ⎨ Ω⎪
⎪
⎪⎩

∑

∑

nChildren
h
m i

i
h h h nChildren

h m
i

i
h
m

q
for parent cells in h level grid

q qI q

q for leaf cells in h level grid

 (11)

()() ()
() ()

2
02

1

2
0

=

⎧
+⎪

= ⎨
⎪ +⎩

∑
nChildren

h h h
mh ii

h h h
m

Res q FF - Res q for parent cells in h level grid
FF

Res q FF - Res q for leaf cells in h level grid
 (12)

After the determination of approximate solutions and forcing functions for
computational cells for the coarse level, new approximate solutions are found by using
the modified multistage time stepping scheme defined in the previous section.

(iii) Prolongation: Approximate solution obtained using coarse grid is interpolated
to fine grid which become new initial solution of the fine grid. For the interpolation
operation, injection operator is used. The following equation exemplifies this process,
which shows the interpolation of approximate solution from 4h level grid to 2h level
grid.

() () ()()2 42 2 2
4 2= + −h new h newh h 4h h

m h h mq q I q I q (13)

where injection operator is defined as ()2 4 4
4 =h h h

hI q q . In this work, the saw-tooth cycle
is used and therefore, no iteration is performed in the prolongation step.

(iv) Correction and final iterations: After the improved approximation solutions,
qh(new), of the finest mesh are obtained in the prolongation step. These values are
substituted into the modified multistage time stepping scheme given previously and a
number of iterations are performed.

In previous Cartesian studies, split cells are recursively refined and newly formed
cells are treated as an outside, inside or cut cells. However, this procedure harms the
effectiveness of the multigrid technique and it is not used in this two-dimensional study.
For example, the grid given in Figure 7.a is generated around a multi-element airfoil. A
few of split cells remain in the grid after recursive refinements and their sizes are very
small. Therefore, their types can be transferred from split to outside, inside or cut cells
by modifying the geometry. However, if the grid in Figure 7.a is taken as the first level
(h level) of multigrid, three level (8h level) coarsening results in the grid given in Figure
7.b. As seen number of split cells increase in the coarsened grid and the elimination of
these cells by modifying their types causes solution errors. In the extreme case, all the
cells around the flap become split cells at 32h level grid and modifying the geometry at
this level will result in a completely deleted flap. This of course degrades the solution
accuracy. Generated grid around the geometry for the coarsest grid when split cells are
not eliminated is shown in Figure 7.d and it is clearly seen that only the leading edge
part of the flap is eliminated instead of eliminating the whole flap.

Mehtap Cakmak, M. Haluk Aksel and Cuneyt Sert

 11

 (a) h multigrid level (b) 8h multigrid level

 (c) 32h multigrid level (d) The coarsest mesh obtained by using split cells

Figure 7: Multigrid levels for Cartesian mesh around multi-element airfoil

4.5 Reconstruction and solution adaptation
Reconstruction is required for determination of cells to be refined or coarsened.

Least squares reconstruction is used in this work to calculate gradients of flow variables
in a cell and estimate the value of these variables at a certain point inside the cell. In
addition, a limiting procedure is used so that flow variables obtained inside a cell do not
exceed the limits of variables defined for that cell and the neighboring cells. The
derivation and detailed information regarding least squares reconstruction method and
limiting can be found in references [7, 19, and 20].

Solution adaptation is to put more grid points in the high gradient regions and
remove grid points from the regions where the gradients are low. The criteria used in
this work are the gradient and curl of the velocity vectors and the strength of the entropy
wave [4]. These criteria for each cell are calculated by

τ = ∇ ⋅ Ω0.5
G V (14)

τ = ∇× Ω0.5
C V (15)

τ ρ= ∇ ∇ Ω2 0.5
EW p - c (16)

Then, the standard deviations of these three criteria are found for the whole mesh by
the following equation

()
1

α

α

τ
σ =

∑
nCells

2

i
i=

nCells
 (17)

After the calculations of standard deviations of three criteria, cells that need to be
refined and coarsened can be determined. A cell is selected for refinement if (τα)i > σα
for any α and selected for coarsening if (τα)i < 0.1σα for all three criteria.

Mehtap Cakmak, M. Haluk Aksel and Cuneyt Sert

 12

5 RESULTS AND DISCUSSIONS

5.1 Transonic flow about RAE 2822 airfoil
The inviscid, steady-state flow is computed around RAE 2822 airfoil at a Mach

number of 0.75 and an angle of attack of 3°. Transonic flow is selected to demonstrate
that shock location and surface pressure coefficients can be obtained accurately and
effectively by using Cartesian mesh. Importance of solution adaptation and multigrid
application are depicted by comparing different test cases for this flow. Table 1 presents
lift and drag coefficients, and convergence histories of 8 cases, which differ by the
number of adaptive refinement cycles used. As seen from the table, accuracy of
computed lift and drag coefficients of the test cases are directly proportional to the
number of refinement cycles. It is important to note that when the number of refinement
cycles is increased too much, very slight improvement of the accuracy is observed for
the drag and lift coefficients but the increment of refinement cycle number has a drastic
influence on the convergence time.

of cases # of adaptive
ref. cycles

CL CD # of cells Time

Case 1 None 0.745 0.070 2308 36 s
Case 2* None 0.745 0.070 2308 89 s
Case 3 1 0.857 0.055 4848 52 s
Case 4 2 0.921 0.048 10029 163s
Case 5 3 0.958 0.046 18492 428 s
Case 6 4 0.973 0.045 32268 1477 s
Case 7 5 0.988 0.044 54254 3478 s
Case 8* 5 0.988 0.044 54254 22087 s
Case 9 Reference [21] 1.104 0.045 20480 -

(*Multigrid is not applied to these cases)
Table 1: Comparison of results for transonic flow around RAE 2822

The far-field boundary is approximately located 10 chords ahead the airfoil. For the
computed solutions with multigrid application, six levels of grids are used. As seen in
Table 1 and Figure 8, the best results are the 6th and 7th cases where numbers of adaptive
refinement cycles are four and five, respectively. Mach contours of the 7th case are
given in Figure 9. As seen in this figure, Mach number just before the upper shock
reaches to 1.5. In addition, the shock and the wake are resolved well. The grid used for
7th case is shown in Figure 10. Finer meshes around the shock are easily seen in this
figure. As it is seen in Figure 8, results for the lower surface pressure coefficients are
quite successful. However, the upper surface pressure coefficients around the leading
edge region for the 7th case are underestimated. The reason of this condition may be the
omission of the viscous effects. Finally, the effect of multigrid is seen in Table 1. It is
obvious that solution accuracy is not affected by the multigrid application; however, the
convergence time is significantly reduced. According to the values given in the table,
the convergence time of 1st case with multigrid application is about 40% of the 2nd case,
which is the solution without multigrid application. On the other hand, the convergence
time of 7th case with multigrid application is about 16% of the 8th case, which is the
solution without multigrid application. It is concluded that multigrid application
decreases the convergence time effectively when the grid is relatively fine.

Mehtap Cakmak, M. Haluk Aksel and Cuneyt Sert

 13

Figure 8: Pressure coefficients on RAE 2822 airfoil at M∞ = 0.75 and α = 3°

Figure 9: Mach contours of 7th case

Mehtap Cakmak, M. Haluk Aksel and Cuneyt Sert

 14

Figure 10: Finest grid obtained after the 5th refinement cycle for 7 case

5.2 Subsonic flow about a two-element airfoil
For this case, flow is around NLR7301 airfoil and flap at a Mach number of 0.185

and angle of attack of 6°. The far-field boundary is approximately located 15 chords
ahead of the airfoil. The mesh is adaptively refined three times based on the solution
and six levels of grids are used for multigrid application. The lift and drag coefficients
computed for the flow are Cl=1.49 and Cd=0.148, respectively. The comparison
between the calculated and experimental [22] pressure coefficients are given in Figure
11. It is clearly seen from the figure that the peak of the pressure coefficient on the
upper surface of the airfoil is not captured correctly. The reason is that the flow regime
of this problem is not suitable for the developed code, which is designed to work better
for compressible flows. As a result of the underestimation of pressure coefficient, lower
lift coefficient is obtained for this case.

Mehtap Cakmak, M. Haluk Aksel and Cuneyt Sert

 15

Figure 11: Pressure coefficients on two-element airfoil at M∞ = 0.185 and α = 6°

5.3 Three-dimensional transonic flow about a projectile
The inviscid, steady-state flow around a secant-ogive-cylinder-boat tail projectile

(SOCBT) with a boat tail angle of 7° is tested at a Mach number of 0.95 and zero angle
of attack. The far-field boundary is located 10 times the maximum length of the
projectile ahead of the tail. The developed flow solver is iterated until the average
density residual reaches 10-7. Only one refinement cycle is applied to the geometric-
adapted grid due to the limits of the available computational resources.

Figure 12 shows pressure coefficients compared with experimental results extracted
from [23]. Mach contours on the symmetry plane passing through the centerline of the
projectile are given in Figure 13.

As it is seen in Figures 12 and 13.b, there are two shock waves, one is at the
midpoint of the chord and the other is at the boat tail. The computed and experimental
results are in good agreement. Using more adaptive refinements is expected to obtain
more accurate solutions.

Mehtap Cakmak, M. Haluk Aksel and Cuneyt Sert

 16

Figure 12: Pressure coefficients on the projectile at M∞ = 0.95, α = 0° and β=7°

 (a) (b)

Figure 13: (a) A slice of the mesh in xz plane at y=0, (b)Mach contours in xz plane at y=0

6 CONCLUSION
A solver based on finite volume formulation using adaptive Cartesian grids is

developed for the simulation of steady, inviscid and compressible flows. Quadtree and
octree data structures are applied successfully and connectivity information is extracted
from these trees effectively. Automated grid generation and solution adaptation are
easily implemented and their benefits are validated by the results.

The solver is verified with the experimental and previous computational results. The
ability of capturing shock waves and wakes, advantages of solution based refinement
and multigrid application are presented in this work. It is important to note that domain
size selection and determination of refinement cycles affect the ability of capturing
shock waves. Therefore, the distance between far field and the geometry is generally at

Mehtap Cakmak, M. Haluk Aksel and Cuneyt Sert

 17

least 10 times the maximum length of the geometry and the number of adaptive
refinement cycles is taken at least three for two-dimensional test cases. Multigrid
application is used for almost all solutions and its contribution to the convergence rate
can be easily detected as given in Table 1.

Main future work is to enhance the code so that it can perform parallel, block
adaptive Cartesian grid solutions of three-dimensional problems. Oscillations of
pressure coefficients seen for some cases are due to the existence of very small cut cells.
Advanced treatment for small cut cells can be considered to increase the accuracy and
run time efficiency of the code.

REFERENCES
 [1] D. L. DeZeeuw, A Quad-Tree Based Adaptively-Refined Cartesian-Grid Algorithm
for the Solution of The Euler Equations, PhD Thesis in the University of Michigan
(1993)
[2] W. J. Coirier, An Adaptively Refined, Cartesian, Cell-Based Scheme for the Euler
and Navier Stokes Equations, PhD Thesis in the University of Michigan (1994)
[3] M. J. Aftosmis, Solution Adaptive Cartesian Grid Methods for Aerodynamic Flows
with Complex Geometries, Von Karman Institute for Fluid Dynamics Lecture Series
28th Computational Fluid Dynamics (1997)
[4] J. Hunt, An Adaptive 3D Cartesian Approach for the Parallel Computation of
Inviscid Flow about Static and Dynamic Configurations, PhD Thesis in the University
of Michigan (2004)
[5] M. Bulgök, A Quadtree-based Adaptively-refined Cartesian-grid Algorithm for
Solution of the Euler Equations, MS Thesis in the Middle East Technical University
(2005)
[6] B. Siyahhan, A Two Dimensional Euler Flow Solver on Adaptive Cartesian Grids,
MS Thesis in the Middle East Technical University (2008)
[7] M. Cakmak, Development of Two and Three-dimensional Euler Solvers for
Adaptively-refined Cartesian Grids with Multigrid Applications, MS Thesis in the
Middle East Technical University (2009)
[8] P. Bourke, Polygonising a Scalar Field (1994)
[9] T. Möller and B. Trumbore, Fast, Minimum Storage Ray/Triangle Intersection,
Journal of Graphics, gpu and Game Tools, 2, pp. 21-28 (1997)
[10] J. Blazek, Computational Fluid Dynamics: Principles and Applications (2005)
[11] B. Laney Culbert, Computational Gas Dynamics 1998.
[12] C. Hirsch, Numerical Computation of Internal and External Flows Volume 1 & 2
(1990)
[13] M. S. Liou and C. J. Steffen, A New Flux Splitting Scheme, Journal of
Computational Physics, 107, pp.23-39 (1993)
[14] U. Trottenberg, C. W. Oosterlee and A. Schüller, Multigrid (2001)
[15] W. L. Briggs and S. F. McCormick, Multigrid Tutorial (2000)
[16] H. K. Versteeg and W. Malalasekera, An introduction to Computational Fluid
Dynamics: The Finite Volume Method (2007)
[17] A. Jameson, Solution of the Euler Equations for Two-Dimensional Transonic Flow
by a Multigrid Method, Applied Mathematics and Computation, 13, pp.327-355 (1983)
[18] M. J. Aftosmis, M. J. Berger and G. Adomavicius, A Parallel Multilevel Method
for Adaptively Refined Cartesian Grids with Embedded Boundaries, AIAA Paper AIAA
2000-0808 38th Aerospace Sciences Meeting and Exhibit (2000)

Mehtap Cakmak, M. Haluk Aksel and Cuneyt Sert

 18

[19] T. J. Barth, and P. O. Frederickson, Higher Order Solution of the Euler Equations,
AIAA Paper AIAA-90-0013 (1990)
[20] T. J. Barth and D. C. Jespersen, The design and Application of Upwind Schemes
on Unstructured Meshes, AIAA Paper AIAA-89-0366 (1989)
[21] AGARD Subcommittee C., Test Cases for Inviscid Flow Field Methods, AGARD
Advisory Report 211 (1986)
[22] B. Van den Berg, and J. H. M . Gooden, Low-speed Pressure and Boundary Layer
Measurement Data for the NLR 7301 Airfoil Section with Trailing Edge Flap
[23] Fu Jan-Kaung, and Liang Shen-Min, Drag Reduction for Turbulent Flow over a
Projectile: Part I, Journal of Spacecraft and Rockets, 31, pp. 85-92 (1994)

