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Abstract. An automated solver that works on adaptive Cartesian grids is developed to 
simulate inviscid, compressible flows around simple and complex geometries. In 
generating the Cartesian grid, marching squares and cubes algorithms are used to form 
interfaces of cut cells. Geometry-based cell adaptation, which includes box adaptation 
and cut cell adaptation, is applied in the mesh generation procedure. After obtaining an 
appropriate initial mesh, flow solution is obtained using either Liou’s Advection 
Upstream Splitting Method (AUSM) or Roe’s approximate Riemann solver with a cell-
centered finite volume approach. Least squares reconstruction of flow variables within 
the computational cells is used to determine high gradient regions of flow. Solution 
based grid adaptation is then applied in order to refine high gradient regions. 
Multistage time stepping with local time steps and Fully Approximation Storage (FAS) 
multigrid technique is used in order to increase the convergence rate.  
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1 INTRODUCTION 
Cartesian grids are a special form of the unstructured grids. They consist of squares 

in two-dimensions and cubes in three-dimensions that are oriented parallel to the 
coordinate axes. Since the elements are perfectly aligned with the coordinate axes, there 
is no need for any complex formulation of velocity vectors for flux calculations in order 
to get their normal and tangential components. To store connectivity information, it is 
possible to use quadtree and octree data structures for two- and three-dimensional 
problems, respectively. An important advantage of using Cartesian grids is easy 
handling of complex geometries. Also, multigrid scheme can easily be applied to a 
Cartesian flow solver. Finally, geometric and solution based adaptations can be 
implemented without any user intervention.  

The most important difficulty for creating a Cartesian mesh arises from contact 
surfaces. Computational (leaf) cells, which have intersections with boundaries, are 
called cut or split cells. Split cells are irregular cells, which violate the simplicity of 
implementation of marching squares algorithm. But both cut and split cells play an 
important role in working with curved geometries. In the very former studies of 
Cartesian grids, curved boundaries were represented as stair-step boundaries. This 
method was very simple, however; it produced unacceptable errors. Therefore, it is 
decided to use cut and split cells as the most accurate method to define the curved 
boundaries even though sizes of some cut cells are extremely small and as a result, they 
may put severe restrictions on the convergence rate. In 1993, De Zeeuw [1] solved two-
dimensional Euler equations using a Cartesian grid based on quadtree data structure. He 
implemented a multigrid scheme to increase the convergence rate of the solution. In 
1994, Coirier [2] solved two-dimensional Euler and Navier Stokes equations using 
Cartesian grids. He preferred binary tree data structure and performed solution based 
grid refinement and coarsening. In 1995, Aftosmis [3] developed techniques for 
meshing geometries with complex surfaces and the code CART3D solved three-
dimensional Euler equations using Cartesian grids accurately. In 2004, Hunt [4] 
developed a code to solve the three-dimensional Euler equations by using parallel, block 
adaptive Cartesian grid approach. Data structure and handling the geometry were very 
similar to studies of Aftosmis. In 2005 and 2008, Bulgok [5] and Siyahhan [6] 
developed two-dimensional Euler solvers for Cartesian grids. These references are the 
milestones of the work presented in this paper. 

2 QUADTREE DATA STRUCTURE AND TWO-DIMENSIONAL GRID 
GENERATION 

2.1 Quadtree data structure  
Dynamic data structures are used in this work to enable the variation of total number 

of cells during the execution of the program. In addition, quadtree data structure enables 
to store connectivity information between cells such as parental and neighboring 
information. They are important for flux calculations, reconstruction and multigrid.  

Quadtree data structure can be thought as a family tree which demonstrates the 
relationships beginning from the oldest individual followed by his children, 
grandchildren, etc. The oldest individual of the family tree becomes the root of the 
quadtree [7]. Since each cell in a quadtree has a parent and four children, connectivity 
information can be extracted using parent-children relations. Figure 1 illustrates a three 
level quadtree data structure. 
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Figure 1: Numeration of cells in a three level quadtree data structure 

In the developed code for two-dimensional problems, all cells are identified with 
their parents, four edge neighbors and four children. There are two types of neighbors 
for two-dimensional problems. One is edge neighbor which is stored for each cell and 
the other is vertex neighbor which is determined when it is required [7]. Since vertex 
neighbors are not used as many times as edge neighbors and also they are easily 
determined by the edge neighboring information, storage of them would be inefficient 
in terms of memory usage.  Moreover, level of a cell, center and corner coordinates are 
stored for each cell, although the last two can also be computed when they are required 
in case of memory shortage. 

Cells that do not have any children are called computational cells and there are four 
types of them. These are inside, outside, cut and split cells. All calculations are 
performed using computational cells except the inside ones. Additional parameters are 
stored for these special cells such as conservative variables, square index of a cell, 
gradient and curl of velocity vector, etc. Finally, additional parameters such as 
coordinates of centroid and cut locations are stored for only cut and split cells. Detailed 
information can be found in Cakmak [7]. 

Grid refinement and coarsening is performed according to the one level rule, which 
states that the level differences between two edge or vertex neighbors cannot exceed 
one. This rule enables grid smoothness and facilitates the flux calculation and 
application of reconstruction schemes. In addition, neighbor cells through the vertices of 
a cell can easily be determined by means of this restriction.  

2.2 Initial grid generation and geometry adaptation 
After the specification of input geometry in the form of line segments, first the root 

cell is created, followed by a uniform grid generation in which the root cell is divided 
into squares successively until the initial desired resolution is obtained. A sample grid 
obtained after uniform grid generation is shown in Figure 2.a. 

The next step is inside-outside testing of corners of each computational cell, which is 
necessary for determination of cut cells. In this study, ray-casting method is used for 
this purpose since it is easily implemented in both two- and three-dimensional 
problems. Detailed information about ray-casting method can be found in Cakmak [7]. 

After the testing of all four corners of a cell, cell type has to be determined. Each 
corner of a computational cell has a parameter denoted by φ. This parameter is set as 1 
or -1 for outside or inside corners, respectively. If all corners of a cell are outside or 
inside of the geometry, the cell type is set as outside or inside, respectively. Types of 
other remaining cells are set as cut cells. However, as demonstrated in Figure 3, 
exceptional cases should be handled carefully. Although four corners of two sample 
cells given in this figure are outside, the cells are actually cut by the given geometry. 
These cells are set as split cells and they require special treatment. 
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Figure 2: Sample grids for flow around a multi-element airfoil. (a) uniform grid, (b) box adaptation, 

(c) cut and split cell adaptation, (d) curvature adaptation  

 
Figure 3: These two split cells are exceptional cases for inside-outside check 

After the determination of cell types, it is time to make geometric adaptations around 
the given geometry to obtain the desired grid resolution around the geometry. 
Geometric adaptations can be divided into three groups for two-dimensional code: box 
adaptation, cut and split cell adaptation and curvature adaptation. In box adaptation cells 
located in an imaginary rectangular box that encloses the input geometry are refined. 
Size of this box is determined by the user of the program. A sample grid obtained after 
box adaptation is shown in Figure 2.b. 

Cut and split cell adaptation is to refine the cut and split cells and also their 
neighbors. A sample grid obtained after this adaptation is shown in Figure 2.c. Finally, 
curvature adaptation is applied for cut and split cells. In curvature adaptation, angle 
between the normal vectors of neighboring faces that are cut by a solid body is 
calculated. If the angle is higher than a pre-specified threshold angle, these cells are 
refined. Detailed information regarding this adaptation can be found in Siyahhan [6]. A 
sample grid obtained after curvature adaptation is shown in Figure 2.d.  

In this work, locations of cut points of cut cells are determined using marching 
squares and cubes algorithms for two- and three-dimensional problems, respectively. In 
marching squares algorithm, cut edges are automatically determined by the table given 
in Figure 4; hence, cut locations are found and stored easily. Marching squares 
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algorithm starts by indexing each corner and edge of a cell from 0 to 3 as seen in Figure 
4. Square indices of corners of a cell are determined by using their φ values.  These 
values are summed to calculate a total square index. By using this total square index and 
the given table, cut edges are determined. For example, total square index of the cell 
shown in Figure 4 is nine and cut edges are found as zeroth (edge0) and second (edge2) 
edges. After determining the cut edges, exact points at which these edges are cut are 
found. These points are labeled as p0 and p1 in Figure 4. By locating these points it is 
possible to determine the exact shape of the computational cut cell given by region 
defined by points p0, cr1, cr2, p1.  

 
Figure 4: Line table for marching squares algorithm and a sample cut cell 

As it is mentioned previously, split cells require special attention. They may contain 
only a single or multiple fluid regions. Flux calculation of split cells, which have only 
one fluid region, is the same as cut cells. On the other hand, for split cells that have two 
or more fluid regions, separate flux calculations are performed for each fluid region [7]. 
Although split cells make the data structure more complicated, they are required for the 
implementation of multigrid method. Besides their complexity, split cells increase the 
computational time and decrease the efficiency of the memory usage. For these reasons, 
in some previous studies, multiple fluid regions inside split cells are combined into a 
single fluid region [1, 5].  

General method to determine and classify the split cells is to count the number of cut 
points on the edges of a cell. It is obvious that inside and outside cells should not have 
any cut points. If they have, they are set as split cells. Moreover, cut cells should have 
only two cut points. If they have more than two cut points, they are also set as split 
cells. After identifying split cells they need to be classified. A cell, labeled as inside cell 
initially, can have two or four cut points on its edges. Another possibility is that a cell 
that is labeled as outside cell initially can have two or four cut points on its edges. These 
cells are assigned special total square index values. A final type of split cell forms when 
a cell initially labeled as a cut cell has three, four or more than four cut points. If these 
cells have three or four cut points their total square index remains the same. Otherwise, 
if they have more than four cut points they are assigned a special total square index 
value. These final types of split cells are rarely encountered and the flux formulations 
for these cells are really difficult. Hence, in this work they are recursively refined until 
their children become other defined types. Generally, they disappear after one or two 
refinement processes.  
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Classification of split cells is important because their specially assigned total square 
indices are used in many processes such as determining the sequence of cut points, flux, 
centroid and area calculations. Classified split cells can be found in Appendix A of 
reference [7].  Flux calculations of split cells which have two separate fluid regions are 
performed by considering them as two cut cells. 

3 OCTREE DATA STRUCTURE AND THREE-DIMENSIONAL GRID 
GENERATION 

3.1 Octree data structure  
Like the quadtree data structure, the octree data structure starts with the root cell at 

the top followed by its children, grandchildren, etc. Any cell in the data structure uses 
fifteen pointers to other cells in the mesh. One is for its parent; eight of them are for its 
children and the rest of them are for its surface neighbors which are east, north, west, 
south, top and bottom surface neighbors, respectively. Twelve edge and eight corner 
neighbors are not stored but determined when they are necessary.  

In the three-dimensional code, there are three types of computational cells: inside, 
outside and cut cells. Since the three-dimensional grid generation is more complicated 
compared to two-dimensional one, split cells are not treated specially. Instead, these 
irregular cells which are not inside, outside or cut cells are recursively refined until their 
children become one of these three regular types. Consequently, the data structure is not 
as complicated as the two-dimensional grid generation code. In two-dimensional grid 
generation, centroid and area of cut cells are calculated by triangulation of the outside 
part of cut cells. For three-dimensional case, centroid and volume of cut cells are 
calculated by dividing the outside part into tetrahedrons.  

3.2 Initial grid generation and geometry adaptation 
After providing the solid geometry to the code as a triangulated surface, similar to 

the two-dimensional case uniform refinement of the root cell, box adaptation and cut 
cell adaptation are used to obtain the final grid that can be used by the flow solver. 
Sample grids obtained after box and cut cell adaptations are shown in Figure 5. 

       
Figure 5: Application of box and cut cell adaptations for the flow around a sphere problem 

After geometric adaptations, it is time to calculate the coordinates of cut points and 
create the cut surfaces of cut cells by using total cube indices and the table defined by 
marching cubes algorithm. This table can be found in reference [8]. Numbering of edges 
and corners is presented in Figure 6.a. Cube indices of a cell are calculated by using φ 
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value of each corner. Cube index of an outside corner is zero and cube index of an 
inside corner is equal to two to the power of corner number defined in Figure 6.a. For 
example, if the third corner of a cell is an inside cell, its cube index is two to the power 
three. Total cube index of a cell is calculated by summing up cube indices of all corners. 
Total cube index of the cell given in Figure 6.b is equal to seven, because its zeroth, 
first and second corners are inside the geometry. Cut edges of this cell and triangular cut 
surfaces are found by means of the marching cubes table, which has the following row 
for a cube index value of seven, 

 

According to this information, cut edges are the 2nd, 8th, 3rd, 10th and 9th edges. When 
cut edges are known, cut locations on these edges are found by the line-triangle 
intersection method given in reference [9]. After finding cut locations, three cut-
triangular surfaces which pass through these points can be drawn by following the 
sequence given in the table. It is important to note that normal vectors of each triangular 
surface are pointing to the outside part of the cell. This feature of triangles facilitates the 
flux, volume and centroid calculations.     

          

Figure 6: Details of marching cubes algorithm for a 3D case. (a) Numbering of edgesand vertices, (b) 
Cut surfaces obtained by using the marching cubes table 

4 FLOW SOLVER 

Finite-volume formulation of the three-dimensional conservative Euler equations is 
achieved by using a cell-centered approach. Flow variables are stored at the centroids of 
cells and it is assumed that they do not vary inside of the control volume. As a result, 
spatial discretized form of three-dimensional Euler equations can be written as  

1

1 ( )∂
= − Φ = −

∂ Ω Ω∑
nFaces

i i
i=

q Res qA
t

               (1) 

where Ai and Ω are the area of the ith surface and the volume of a cell, respectively. 
Vector of conserved variables q and vector of fluxes passing through the cell faces Ф 
are defined as follows 



Mehtap Cakmak, M. Haluk Aksel and Cuneyt Sert 
 

 8

ρ
ρ
ρ
ρ
ρ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

u
q v

w
E

  

ρ
ρ
ρ

ρ
ρ

⎛ ⎞
⎜ ⎟

+⎜ ⎟
⎜ ⎟Φ = +
⎜ ⎟
⎜ ⎟+
⎜ ⎟⎜ ⎟
⎝ ⎠

n

n x

n y

n z

n

V
uV pn
vV pn

wV pn
V H

                             (2) 

where Vn= unx +vny +wnz is the velocity along the unit outward normal of a surface of a 
cell, ρ is the density of the fluid. H is the specific total enthalpy and p is the fluid static 
pressure. 

4.1 Multistage time stepping  
In the explicit multistage time stepping method used, discretized Euler equations are 

solved starting from a known initial solution. In this work, three-stage time stepping as 
defined is used 

=0 nq q  
1

0 ( )α
υ

−Δ
= −

Ω

m
m m tRes qq q                (3) 

1 =m+ mq q  

where αm denotes the stage coefficients and Δt is the time step. CFL numbers (υ) and 
stage coefficients are used as defined in reference [10].  

For steady flows that are solved in the current work, local time stepping can be used. 
In three-dimensional problems, local time step of each cell is defined as 

1

1

( )

Δ
=

Ω +∑
nFaces

cell
cell n i i

i=

t

c V A
                    (4) 

where ccell is the local speed of sound which is calculated by using the flow variables 
stored at the cell centroid. 

4.2 Flux computation 

Two different methods, which are approximate Riemann solver of Roe [4, 7, 11, and 
12] and Liou’s Advection Upstream Splitting Method (AUSM) [6, 7, 11, and 13] are 
used for the calculation of fluxes, Фi, through each face.  

In AUSM method, Mach number and pressure appearing in the convection flux terms 
are split. Split Mach number M½, and split pressure vector p½ are the average of Mach 
numbers and pressure vectors on the left and right sides of a face. The cell, whose flux 
values will be calculated, is denoted as left side and the neighboring cell is represented 
as right side. 

( ) ( )( ) ( ) ( )( )1 1 1
2 2 2

1( )
2
⎡ ⎤′ ′ ′ ′Φ = + − − +⎢ ⎥⎣ ⎦L R L R R Lq ,q M F q F q M F q F q p        (5) 

where 
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4.3 Initial guess and boundary conditions 
Far-field conditions are set as the initial guess for all computation cells and two 

different boundary conditions are implemented into the code. First one is the solid 
boundary condition that size, density, pressure, specific enthalpy and tangential 
components of the velocity vector for the ghost cells are taken the same as the cut cells. 
On the other hand, normal velocity vector of a ghost cell is taken as the opposite 
direction of the normal velocity vector of the cut cell. The other boundary condition is 
far-field condition in which flow variables of ghost cells are equated to those of the far-
field. 

4.4 Multigrid method 
Formulation of multigrid method is different for linear [14, 15, and 16] and nonlinear 

[1 and 17] problems.  
Multigrid method is used to accelerate the convergence rate of iterative solutions. It 

is based on error smoothing and coarse grid principles, in which high and low frequency 
errors are eliminated, respectively. Transformation from fine to coarse grid is called 
restriction and retransformation from coarse to fine grid is called prolongation.  
Implementation of multigrid is achieved in four steps known as fine grid iteration, 
restriction, prolongation and correction as explained below. 

(i) Fine grid iterations: Initially, a number of iterations are performed on the finest 
grid which is denoted by h-level by using multistage time stepping method. However, in 
multigrid method, formulation of multistage time stepping scheme is different. An 
additional parameter called forcing function (FFh), which is set as zero for all 
computational cells of the finest grid, is added to the equation and the new multistage 
time stepping scheme becomes 

( )0 1
α

υ −

Δ ⎡ ⎤= − +⎣ ⎦Ω
h h h hm
m m

tq q Res q FF           (10) 

(ii) Restriction: In this step, grid is coarsened to start eliminating low frequency 
errors. Transfer of h-level grid to 2h-level grid is summarized to explain the coarsening 
algorithm for Cartesian meshes. First of all, parent cells, whose children are all 
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computational cells, are flagged [18]. If the flagged parent cells do not violate the one 
level rule when they are coarsened, they are set as new computational cells. If they 
violate the rule, their flags are removed and they remain as parent cells. When 2h-level 
grid is obtained, initial approximate solutions and forcing functions of new 
computational cells are required. These are defined as 

( )

( )
1

2 2
0

1

          

                      

=

=

⎧
Ω⎪

⎪⎪= = ⎨ Ω⎪
⎪
⎪⎩

∑

∑

nChildren
h
m i

i
h h h nChildren

h m
i

i
h
m

q
for parent cells in h level grid

q qI q

q for leaf  cells in h level grid

             (11) 

( )( ) ( )
( ) ( )

2
02

1

2
0

     

             
=

⎧
+⎪

= ⎨
⎪ +⎩

∑
nChildren

h h h
mh ii

h h h
m

Res q FF - Res q for parent cells in h level grid
FF

Res q FF - Res q for leaf  cells in h level grid
  (12) 

After the determination of approximate solutions and forcing functions for 
computational cells for the coarse level, new approximate solutions are found by using 
the modified multistage time stepping scheme defined in the previous section. 

(iii) Prolongation: Approximate solution obtained using coarse grid is interpolated 
to fine grid which become new initial solution of the fine grid. For the interpolation 
operation, injection operator is used. The following equation exemplifies this process, 
which shows the interpolation of approximate solution from 4h level grid to 2h level 
grid. 

( ) ( ) ( )( )2 42 2 2
4 2= + −h new h newh h 4h h

m h h mq q I q I q           (13) 

where injection operator is defined as ( )2 4 4
4 =h h h

hI q q . In this work, the saw-tooth cycle 
is used and therefore, no iteration is performed in the prolongation step. 

(iv) Correction and final iterations: After the improved approximation solutions, 
qh(new), of the finest mesh are obtained in the prolongation step. These values are 
substituted into the modified multistage time stepping scheme given previously and a 
number of iterations are performed. 

In previous Cartesian studies, split cells are recursively refined and newly formed 
cells are treated as an outside, inside or cut cells. However, this procedure harms the 
effectiveness of the multigrid technique and it is not used in this two-dimensional study. 
For example, the grid given in Figure 7.a is generated around a multi-element airfoil. A 
few of split cells remain in the grid after recursive refinements and their sizes are very 
small. Therefore, their types can be transferred from split to outside, inside or cut cells 
by modifying the geometry. However, if the grid in Figure 7.a is taken as the first level 
(h level) of multigrid, three level (8h level) coarsening results in the grid given in Figure 
7.b. As seen number of split cells increase in the coarsened grid and the elimination of 
these cells by modifying their types causes solution errors. In the extreme case, all the 
cells around the flap become split cells at 32h level grid and modifying the geometry at 
this level will result in a completely deleted flap. This of course degrades the solution 
accuracy. Generated grid around the geometry for the coarsest grid when split cells are 
not eliminated is shown in Figure 7.d and it is clearly seen that only the leading edge 
part of the flap is eliminated instead of eliminating the whole flap. 



Mehtap Cakmak, M. Haluk Aksel and Cuneyt Sert 
 

 11

     
     (a) h multigrid level                                        (b) 8h multigrid level 

     
              (c) 32h multigrid level                                 (d) The coarsest mesh obtained by using split cells 

Figure 7: Multigrid levels for Cartesian mesh around multi-element airfoil  

4.5 Reconstruction and solution adaptation 
Reconstruction is required for determination of cells to be refined or coarsened. 

Least squares reconstruction is used in this work to calculate gradients of flow variables 
in a cell and estimate the value of these variables at a certain point inside the cell. In 
addition, a limiting procedure is used so that flow variables obtained inside a cell do not 
exceed the limits of variables defined for that cell and the neighboring cells. The 
derivation and detailed information regarding least squares reconstruction method and 
limiting can be found in references [7, 19, and 20].   

Solution adaptation is to put more grid points in the high gradient regions and 
remove grid points from the regions where the gradients are low. The criteria used in 
this work are the gradient and curl of the velocity vectors and the strength of the entropy 
wave [4]. These criteria for each cell are calculated by 

τ = ∇ ⋅ Ω0.5
G V              (14) 

τ = ∇× Ω0.5
C V              (15) 

τ ρ= ∇ ∇ Ω2 0.5
EW p - c                                                                                        (16) 

Then, the standard deviations of these three criteria are found for the whole mesh by 
the following equation 

( )
1

α

α

τ
σ =

∑
nCells

2

i
i=

nCells
             (17) 

After the calculations of standard deviations of three criteria, cells that need to be 
refined and coarsened can be determined. A cell is selected for refinement if (τα)i > σα  
for any α and selected for coarsening if (τα)i < 0.1σα for all three criteria. 
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5 RESULTS AND DISCUSSIONS  

5.1 Transonic flow about RAE 2822 airfoil  
The inviscid, steady-state flow is computed around RAE 2822 airfoil at a Mach 

number of 0.75 and an angle of attack of 3°. Transonic flow is selected to demonstrate 
that shock location and surface pressure coefficients can be obtained accurately and 
effectively by using Cartesian mesh. Importance of solution adaptation and multigrid 
application are depicted by comparing different test cases for this flow. Table 1 presents 
lift and drag coefficients, and convergence histories of 8 cases, which differ by the 
number of adaptive refinement cycles used. As seen from the table, accuracy of 
computed lift and drag coefficients of the test cases are directly proportional to the 
number of refinement cycles. It is important to note that when the number of refinement 
cycles is increased too much, very slight improvement of the accuracy is observed for 
the drag and lift coefficients but the increment of refinement cycle number has a drastic 
influence on the convergence time.  

# of cases # of adaptive 
ref. cycles 

CL CD # of cells Time 

Case 1 None 0.745 0.070 2308 36 s 
Case 2* None 0.745 0.070 2308 89 s 
Case 3 1 0.857 0.055 4848 52 s 
Case 4 2 0.921 0.048 10029 163s 
Case 5 3 0.958 0.046 18492 428 s 
Case 6 4 0.973 0.045 32268 1477 s 
Case 7 5 0.988 0.044 54254 3478 s 
Case 8* 5 0.988 0.044 54254 22087 s 
Case 9 Reference [21] 1.104 0.045 20480 - 

(*Multigrid is not applied to these cases) 
Table 1: Comparison of results for transonic flow around RAE 2822 

The far-field boundary is approximately located 10 chords ahead the airfoil. For the 
computed solutions with multigrid application, six levels of grids are used. As seen in 
Table 1 and Figure 8, the best results are the 6th and 7th cases where numbers of adaptive 
refinement cycles are four and five, respectively. Mach contours of the 7th case are 
given in Figure 9. As seen in this figure, Mach number just before the upper shock 
reaches to 1.5. In addition, the shock and the wake are resolved well. The grid used for 
7th case is shown in Figure 10. Finer meshes around the shock are easily seen in this 
figure. As it is seen in Figure 8, results for the lower surface pressure coefficients are 
quite successful. However, the upper surface pressure coefficients around the leading 
edge region for the 7th case are underestimated. The reason of this condition may be the 
omission of the viscous effects. Finally, the effect of multigrid is seen in Table 1. It is 
obvious that solution accuracy is not affected by the multigrid application; however, the 
convergence time is significantly reduced. According to the values given in the table, 
the convergence time of  1st case with multigrid application is about 40% of the 2nd case, 
which is the solution without multigrid application. On the other hand, the convergence 
time of  7th case with multigrid application is about 16% of the 8th case, which is the 
solution without multigrid application. It is concluded that multigrid application 
decreases the convergence time effectively when the grid is relatively fine.  
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Figure 8: Pressure coefficients on RAE 2822 airfoil at M∞ = 0.75 and α = 3° 

 
Figure 9: Mach contours of 7th case  
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Figure 10: Finest grid obtained after the 5th refinement cycle for 7 case 

5.2 Subsonic flow about a two-element airfoil 
For this case, flow is around NLR7301 airfoil and flap at a Mach number of 0.185 

and angle of attack of 6°. The far-field boundary is approximately located 15 chords 
ahead of the airfoil. The mesh is adaptively refined three times based on the solution 
and six levels of grids are used for multigrid application. The lift and drag coefficients 
computed for the flow are Cl=1.49 and Cd=0.148, respectively. The comparison 
between the calculated and experimental [22] pressure coefficients are given in Figure 
11. It is clearly seen from the figure that the peak of the pressure coefficient on the 
upper surface of the airfoil is not captured correctly. The reason is that the flow regime 
of this problem is not suitable for the developed code, which is designed to work better 
for compressible flows.  As a result of the underestimation of pressure coefficient, lower 
lift coefficient is obtained for this case.  
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Figure 11: Pressure coefficients on two-element airfoil at M∞ = 0.185 and α = 6° 

5.3 Three-dimensional transonic flow about a projectile 
The inviscid, steady-state flow around a secant-ogive-cylinder-boat tail projectile 

(SOCBT) with a boat tail angle of 7° is tested at a Mach number of 0.95 and zero angle 
of attack. The far-field boundary is located 10 times the maximum length of the 
projectile ahead of the tail. The developed flow solver is iterated until the average 
density residual reaches 10-7. Only one refinement cycle is applied to the geometric-
adapted grid due to the limits of the available computational resources. 

Figure 12 shows pressure coefficients compared with experimental results extracted 
from [23]. Mach contours on the symmetry plane passing through the centerline of the 
projectile are given in Figure 13. 

As it is seen in Figures 12 and 13.b, there are two shock waves, one is at the 
midpoint of the chord and the other is at the boat tail. The computed and experimental 
results are in good agreement. Using more adaptive refinements is expected to obtain 
more accurate solutions.  
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Figure 12: Pressure coefficients on the projectile at M∞ = 0.95, α = 0° and β=7° 

  
                             (a)                                                                                   (b) 

Figure 13:  (a) A slice of the mesh in xz plane at y=0, (b)Mach contours in xz plane at y=0  

6 CONCLUSION  
A solver based on finite volume formulation using adaptive Cartesian grids is 

developed for the simulation of steady, inviscid and compressible flows. Quadtree and 
octree data structures are applied successfully and connectivity information is extracted 
from these trees effectively. Automated grid generation and solution adaptation are 
easily implemented and their benefits are validated by the results.  

The solver is verified with the experimental and previous computational results. The 
ability of capturing shock waves and wakes, advantages of solution based refinement 
and multigrid application are presented in this work. It is important to note that domain 
size selection and determination of refinement cycles affect the ability of capturing 
shock waves. Therefore, the distance between far field and the geometry is generally at 
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least 10 times the maximum length of the geometry and the number of adaptive 
refinement cycles is taken at least three for two-dimensional test cases. Multigrid 
application is used for almost all solutions and its contribution to the convergence rate 
can be easily detected as given in Table 1.  

Main future work is to enhance the code so that it can perform parallel, block 
adaptive Cartesian grid solutions of three-dimensional problems. Oscillations of 
pressure coefficients seen for some cases are due to the existence of very small cut cells. 
Advanced treatment for small cut cells can be considered to increase the accuracy and 
run time efficiency of the code. 
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