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Abstract. This paper presents results on a verification test of a Direct Numerical Sim-
ulation code of mixed high-order of accuracy using the Method of Manufactured Solutions
(MMS). The present numerical code was aimed at simulating the temporal evolution of
instability waves in a plane Poiseuille flow. The governing equations were solved in a
vorticity-velocity formulation for a two-dimensional incompressible flow. For the flow
normal direction, the code employed mixed high-order compact and non-compact finite-
differences from fourth-order to sixth-order of accuracy. Pseudospectral methods were
used for the streamwise direction, which was periodic. Attention was paid to the bound-
ary conditions of the physical problem of interest. Therefore, a manufactured solution
that satisfied such boundary conditions was generated. The current manufactured solution
also evaluated the nonlinear terms. In this work, special attention was paid to the possi-
ble influence of the order of accuracy of the boundary condition numerical errors on the
accuracy of the other points of the domain.
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1 INTRODUCTION

Verification test using the Method of Manufactured Solutions (MMS) is very useful
to reach confidence that the code is free of programming errors. In fact, the MMS is
generally considered more complete than other tests discussed in the literature. One of
the reasons is that this methods allows the verification all the terms of the equations,
including the nonlinear terms. Also, it allows studying the code without modifications of
the boundary conditions used for the physical problem being studied. This test is based
on the formulation of an exact solution for the Navier-Stokes equations modified by the
addition of a source term [1,2]. A mesh refinement test gives the order of accuracy of the
calculations.

The current verification test using MMS was performed on a Direct Numerical Simu-
lation code of mixed high-order of accuracy. In general, simulations of laminar-turbulent
transition, turbulence and aeroacustics require the use of numerical methods of high-order
of accuracy. This is necessary because the simulation of small spatial and temporal scales
at small amplitudes is of fundamental importance for the reproduction of this physical
problems. When nonperiodic boundary conditions are implemented, such as wall bounded
flow, the use of mixed high-order approximations is often required near or at the bound-
ary. In fact at these points an asymmetric stencil is often used. It is a good practice
to ensure that the error at the boundaries is of diffusive nature, which for asymmetric
stencils require an odd order of accuracy, while the symmetric schemes used far from the
boundaries are even.

For codes of mixed high order of accuracy, much care must be exercised both in choosing
the manufactured solutions and in interpreting the results. However, it was possible to
verify the numerical error in a grid refinement test and the complete behavior of the order
of accuracy of the calculations was reached [3]. The results in [3] also showed that, for
high-order codes, it can be very difficult to reach the asymptotic range of accuracy. In
fact, for some manufactured solutions, even when the numerical error was reduced to the
level of the round off error the asymptotic range was not reached. On the other hand,
by judiciously modifying the manufactured solution, the asymptotic order of accuracy
asymptotic was reached. The width of the asymptotic range also depended on the test
case. Moreover, for the results that were outside the asymptotic range, the observed order
was found to be consistent with the other discretization order of accuracy employed in
the code.

Another interesting fact that deserves to be explored is that, depending on the region
of the domain and on the variable, the numerical error can be very different in magnitude
and order. This was indicated by the analysis of the local discretization error for the
vorticity at different points at the domain. The results indicated a dominant numerical
error from the calculation of the vorticity at the wall. This occurred because in the
vorticity-velocity formulation it is necessary to calculate the wall boundary condition
rather than specify it directly. This calculation used approximation less accurate than
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those used at other regions of the domain. Nevertheless, little contamination from this
dominant error was observed in other regions. The results indicated that the local order
of accuracy at other points was not affected by wall vorticity calculation. At the moment
the analysis is restricted to steady state simulation, but it is expected that this analysis
will be extended to unsteady conditions. The code was developed for three-dimensional
simulations, but for the current discussion two-dimensional simulations are enough and
make the analysis clearer.

2 GEOMETRY AND EQUATIONS

The current numerical code is aimed at simulating the temporal evolution of instability
waves in a plane Poiseuille flow [3]. Figure 1 shows the geometry of the problem. In a

Figure 1: Schematic Illustration of the domain.

two-dimensional vorticity-velocity formulation the governing equations are
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where ω indicates the vorticity, u and v, the velocity components and Re, the Reynolds
number UmaxH

ν
. ν denotes the kinematic viscosity, Umax, the velocity at the centerline of

the channel and, H, half the channel height.
In the current test, particular attention was paid to both the boundary conditions of

the physical problem of interest and the nonlinear calculations. Therefore the following
exact solution was manufactured that imitated a Tollmien-Schlichting instability wave in
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a nonlinear stage:

u(x, y) = Aeyy(y + 1−
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5)(y + 1 +
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5)(y − 2)cos(αx), (4)

v(x, y) = Asin(αx)αeyy2(y2 − 4y + 4), (5)

ω(x, y) = −Aeycos(αx)(8y2 − 8 + 4α2y2 + α2y4 − 4α2y3 − 4y3 + 8y − y4). (6)

The manufactured solution described above is the analytical solution of the following
fictitious problem:
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where F (x, y) indicates the forcing term that corresponds to the manufactured solution.
More details of F , choose numerical schemes and procedures using the MMS, can be found
in [4].

3 RESULTS AND FINAL REMARKS

Figure 2 shows the behavior of the local discretization error for vorticity. The results
show that while asymptotic error at interior points is of 6th order, the error at the wall
was the largest and of 5th. Note that it was necessary to use quadruple precision to avoid
the influence of the round off error. In fact, the discretization error on the fourth mesh
was around 10−12 which prevented the use double precision on the calculations. Note
also that the numerical error at the wall is very large as compared to other points of the
domain. However, no contamination of the lower accuracy at the wall was observed for
points at the interior of the domain.

Lele [5] verified that using numerical methods with reduced order near and at the
boundary conditions did not affect the results of a compressible Navier/Stokes simulation.
Nevertheless, his boundary conditions were placed in the free-stream, where the derivatives
tend to zero. Via a different route, Gustaffson [6] shows that for hyperbolic equations the
overall accuracy is not affected by the lower order of accuracy at the boundaries. However,
in the current test the equations are not hyperbolic. In fact, the whole system is coupled
via a elliptical Poisson equation. Moreover, the low accurate boundary condition was
placed at the wall, where the derivatives are high.

The perhaps unexpected but interesting result requires as yet further investigation.
This maybe be a feature that is restricted to steady state solutions. It may also be that
the manufactured solution is somewhat biased and prevents the solution from reaching
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Figure 2: Behavior of the local discretization error for the vorticity with α = 5. It was extracted from
[3].

the asymptotic regime. Yet, the result does not mean that the same features would hold
for a channel flow instability calculation because the phenomenon there is governed by
the vorticity shed from the wall, and it would be expected that, in this situation, the
overall accuracy of the phenomenon should be affected by the accuracy at the wall.

Other tests, including the analysis of unsteady calculations will be performed in the
current initiative. Further, the theoretical study on the peculiarity of mathematical model
also will be discussed. It is expected that these results will be available for presentation
at the conference.
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