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Abstract. The effect of a vertically imposed magnetic field on the thermal convection
between rigid plates heated from below under the influence of gravity is numerically simu-
lated in a computational domain with periodic horizontal extent. The numerical technique
is based on solenoidal basis functions satisfying the boundary conditions for both veloc-
ity and induced magnetic field. Thus, the divergence-free conditions for both velocity and
magnetic field are satisfied exactly. The expansion bases for the thermal field are also con-
structed to satisfy the boundary conditions. The governing partial differential equations
are reduced to a system of ordinary differential equations under Galerkin projection and
subsequently integrated in time numerically. The projection is performed by using a dual
solenoidal bases set so that the pressure term is eliminated in the process. The quasi-steady
relationship between the velocity and the induced magnetic field corresponding to the liquid
metals or melts is used to generate the solenoidal bases for the magnetic field from those
for the velocity field. The technique is validated first in the linear case by reproducing the
marginal stability curves for varying Chandrasekhar number. Some numerical tests are
performed in the nonlinear regime.
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1 INTRODUCTION

In modeling incompressible flow, the flow field is restricted to satisfy the divergence-free
condition or the continuity equation. This is an important hurdle to be overcome in the
numerical simulation studies. For this purpose, various techniques have been employed
in literature such as the fractional step1, the influence matrix2 and the staggered grid3

methods. The common focus in these techniques is to numerically treat the pressure
variable which usually comes without any boundary conditions and whose role is to enforce
the divergence-free condition on the flow. On the other hand, these techniques help to
enforce the divergence-free condition only to a certain limited degree of accuracy. Accurate
handling of the divergence-free condition is important in numerical hydrodynamic stability
studies where the flow is perturbed to identify the critical parameter values between the
transitiory regimes. Furthermore, the numerical simulation studies of flow under the
influence of a magnetic field encounter an additional divergence-free condition on the
magnetic field variable. Various numerical approaches4,5 have been used for this purpose
and the effects of the poor handling of the divergence-free condition6 and some remedies7

are presented in literature.
In this work, we present some preliminary results on the use of solenoidal (divergence-

free) bases expansion in the numerical simulation of thermal convection under the influ-
ence of a magnetic field in the vertical direction. By introducing an expansion in terms
of solenoidal bases functions for the velocity and the magnetic field into the model equa-
tions in a Galerkin projection, both divergence-free criteria are exactly satisfied and the
pressure variable is completely eliminated, thus the number of equations and the number
of flow variables are reduced. This reduces the burden on the numerical technique and
increases the accuracy with which the divergence-free condition is satisfied. While the ve-
locity solenoidal basis functions are generated independently, a quasi-steady relationship
between the velocity and the magnetic field variables is used to generate the corresponding
magnetic solenoidal basis functions. This relationship arises in the case of liquid metals
or melts as the convective fluid. Some studies that use solenoidal bases in literature are
Busse & Clever4, Leonard & Wray8, Moser, Moin & Leonard9, Mhuiris10, Pasquarelli,
Quarteroni & Sacchi11, Kessler12, Noack & Eckelmann13, Meseguer & Trefethen14 and
Tarman15.

2 GOVERNING EQUATIONS

Thermal convective motions of a perfectly conducting fluid is considered in a horizontal
layer of thickness d between conducting plates that are heated from below under the
influence of a uniform magnetic field B0 applied externally in the vertical direction. The
dimensionless form of the governing equations are

∇ · u = 0, (1)

∂u

∂t
+ (u · ∇)u = −∇p + PrRahΘez + Pr∇2u + QhPr(ez · ∇)b, (2)
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∂Θ

∂t
+ (u · ∇)Θ =

1

2
ez · u +∇2Θ, (3)

∇2b = −(ez · ∇)u, (4)

∇ · b = 0 (5)

where ez is the direction vector opposite to gravity, p the pressure, u = (u, v, w) the
velocity vector, b = (bx, by, bz) the induced magnetic vector field and Θ is the deviation
from the linear conductive temperature profile. The nondimensionalization is performed
in accordance with Chandrasekhar16 except for the length scale which is based on the
half depth dh = 1

2
d for computational convenience. The resulting dimensionless numbers

are the Rayleigh number Ra (= 8Rah), Chandrasekhar number Q (= 4Qh) and Prandtl
number Pr where

Ra =
g4 Td3α

κν
, Q =

B2
0d

2

ρµνλ
, Pr =

ν

κ
. (6)

Magnetic field in the dimensionless form becomes

B = ez +
κ

λ
b (7)

which indicates that the induced magnetic field b is weak compared to the externally
imposed uniform magnetic field B0 applied in the direction of ez in a conducting fluid
having the limit κ � λ with κ and λ being thermal and magnetic diffusivities, respec-
tively. Thus b can be viewed as a slaved variable prescribed by the velocity field as stated
by the quasi-steady relationship (4). Liquid metals or melts are characterized by this limit.

We assume that the flow takes place in a doubly periodic three-dimensional rectangu-
lar region Ω in Fig. 1 with aspect ratio sx × sy × 2 or Γ

[
1
2
sx : 1

2
sy

]
such that

0 ≤ x ≤ sx, 0 ≤ y ≤ sy, − 1 ≤ z ≤ 1, (8)

where sx = Lx/dh and sy = Ly/dh are the dimensionless periods in the horizontal x
and y directions, respectively. While periodic boundary conditions are used for all the
dependent variables in the horizontal directions, the boundary conditions at the perfectly
conducting plates in the vertical that are maintained at constant temperature take the
form

u = 0 and
∂bx

∂z
=

∂by

∂z
= bz = Θ = 0 at z = ±1. (9)
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Figure 1: The geometry of the periodic convective domain

3 SOLENOIDAL BASIS

At the outset, the solenoidal basis functions Vp(x) are required to satisfy

∇ ·Vp = 0, Vp(x) |z=±1 = 0. (10)

The assumption of periodicity in the horizontal directions allows the use of Fourier rep-
resentation

Vp(x) = Vp(z)exp(ikxx + ikyy) (11)

and reduces the continuity equation to the form

ikxU + ikyV + DW = 0 (12)

where V(z) = (U, V,W ) and D = d
dz

is the differentiation operator. It turns out that the

basis functions come in pairs V(j)
p (x), j = 1, 2 because the continuity equation reduces the

degree of freedom in selecting the components of Vp(x) to two by connecting the three
components together. A typical set of solenoidal basis functions are then:

V(1)
p (z) =

 −kyg
kxg
0

 , V(2)
p (z) =

 ikxDh
ikyDh
k2h

 (13)

with

V(1)
p (z) =

 g
0
0

 , V(2)
p (z) =

 0
h
0

 (14)
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for kx = ky = 0. Here, k2 = k2
x+k2

y, g = (1−z2)Lp(z), h = (1−z2)2Lp(z) and Lp(z) denotes

Legendre polynomials. For the subsequent projection procedure, dual bases V
(j)

p (x) need
to be constructed to satisfy

∇ ·V(j)

p = 0, V
(j)

p · ez |z=±1 = 0. (15)

It can be shown that these requirements on the dual basis causes the elimination of the
pressure term < V,∇p > in the projection procedure under the inner product

< f,g >=
∫
Ω

f∗(x) · g(x) dx. (16)

A typical set of the dual bases can be constructed as in (13 − 14) with g = Lp(z),
h = (1− z2)Lp(z).

Since the induced magnetic field b is prescribed by the velocity field as stated by the
quasi-steady relationship (4), a solenoidal basis

B(x) = B(z)exp(ikxx + ikyy) (17)

for the magnetic field is constructed by solving

D2B− k2B = −DV, (18)

for B(z) subject to the boundary conditions

DBx = DBy = Bz = 0 at z = ±1. (19)

for each V = V(j)
p (z) where B(z) = (Bx, By, Bz).

4 NUMERICAL EXPERIMENTS

The assumption of periodicity in the horizontal directions allows the use of Fourier
series expansions of the dependent flow variables, u

Θ
b

 (x, y, z, t) =
∑
m

∑
n

 û

Θ̂

b̂

 (m, n, z, t)exp[i(ξmx + ηny)] (20)

where ξm = 2πm
sx

and ηn = 2πn
sy

are the wavenumbers with the ranges 1− 1
2
Nx ≤ m ≤ 1

2
Nx

and 1 − 1
2
Ny ≤ n ≤ 1

2
Ny for the indices m and n. The vertical profiles for velocity and

the magnetic fields are further expanded in terms of the solenoidal bases

û(m, n, z, t) = exp(iξmx + iηny)
M∑

p=0

a(1)
p (t)V(1)

p (z) + a(2)
p (t)V(2)

p (z), (21)

b̂(m,n, z, t) = exp(iξmx + iηny)
M∑

p=0

a(1)
p (t)B(1)

p (z) + a(2)
p (t)B(2)

p (z). (22)

(23)
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The expansion for the thermal field is

Θ̂(m, n, z, t) = exp(iξmx + iηny)
M∑

p=0

bp(t)Tp(z), (24)

where Tp(z) = (1 − z2)Lp(z) with its dual T p(z) = Lp(z). The evolution of the time
dependent expansion coefficients a(j)

p (t) and bp(t) is determined by numerically integrat-
ing the projected governing equations in time. The velocity and magnetic fields share
the same time evolution as dictated by the quasi-steady link stated in (4). For the
numerical evaluation of the inner product integrals arising in the projection procedure,
Gauss-Legendre-Lobatto (GLL) quadrature is used

< f,g >=

1∫
−1

f∗(z) · g(z) dz ≈
Nz∑
j=0

wqf
∗(zq) · g(zq) (25)

where (wq, zq) are GLL quadrature weights and nodes, respectively. It can be shown that
associated with the GLL quadrature rules, the number of quadrature nodes Nz and the
number of solenoidal basis M should be related in the least by Nz = M + 4 in order to
render the numerical quadrature exact.

4.1 Linear Stability

In order to test the solenoidal basis and the projection procedure, we consider the
linear stability of the conductive (no-motion) state leading to the critical values when the
convective motion just sets in. The equations linearized around no-motion state

∂u

∂t
= −∇Π + PrRahΘez + Pr∇2u + QhPr(ez · ∇)b (26)

∂Θ

∂t
=

1

2
ez · u +∇2Θ (27)

are projected onto the dual space after the introduction of the expansion in terms of the
solenoidal basis resulting in a system of ordinary differential equations

〈
V

(1)

q ,V(1)
p

〉
0

0
〈
V

(2)

q ,V(2)
p

〉


[
da(1)

p /dt
da(2)

p /dt

]
= PrRah

 0 0

0
〈
V

(2)

q (z) · ez, Tp

〉  [
bp

bp

]

+Pr


〈
V

(1)

q , (−k2 + D2)V(1)
p + QhDB(1)

p

〉
0

0
〈
V

(2)

q , (−k2 + D2)V(2)
p + QhDB(2)

p

〉


[
a(1)

p

a(2)
p

]
,

〈
T q, Tp

〉
dbp/dt =

1

2

〈
T q,V

(2)
p (z) · ez

〉
a(2)

p +
〈
T q, (−k2 + D2)Tp

〉
bp.
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Figure 2: Rac versus kc

Chandrasekhar16 Present Work Resolution
Q kc Rac Rac Nx ×Ny ×Nz

0 3.12 1707.8 1707.8 4× 4× 9
50 3.68 2802.1 2802.1 4× 4× 11
500 5.16 10110.0 10110.0 8× 8× 15
6000 7.94 78391.0 78391.0 8× 8× 25

Table 1: Rac for various Q and wavenumber kc

The assumption of a time dependence in the form

[a(1); a(2); b] ∝ exp(λt)

reduces the system to a generalized eigenvalue problem for the eigenvalues λ. The critical
wave-number kc and Rayleigh number Rac values for different Q values are listed in Table
1 for the rightmost eigenvalue just crossing the imaginary axis. These are obtained at
the selection of n = 0 and m = 1 in (20). The corresponding marginal stability curve for
increasing Q values is plotted in Figure 2. These are in agreement with the linear analysis
in Chandrasekhar16.

4.2 Nonlinear Regime

Fully nonlinear governing equations
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Figure 3: Nu versus Q for Pr = 0.05 at Γ [3 : 1.5]

∂u

∂t
+ u×w = −∇Π + PrRahΘez + Pr∇2u + QhPr(ez · ∇)b, (28)

∂Θ

∂t
+ (u · ∇)Θ =

1

2
ez · u +∇2Θ (29)

are discretized in time

(Pr∇2 − 2

4t
)un+1 = gn, (30)

(∇2 − 2

4t
)Θn+1 = fn, (31)

where

gn = −3(u×w + PrRahΘez + QhPr(ez · ∇)b)n

+(u×w + PrRahΘez + QhPr(ez · ∇)b)n−1 − (Pr∇2 +
2

4t
)un, (32)

and

fn = −3(
1

2
ez · u− (u · ∇)Θ)n + (

1

2
ez · u− (u · ∇)Θ)n−1 − (∇2 − 2

4t
)Θn (33)
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Figure 4: Temperature counters in the xz plane during the stages t = 0, 30, 60 of restructuring when
initially Q = 2500 is suddenly set to 3000 at Ra = 50000, Pr = 0.05

using a semi-implicit scheme in which the non-linear advection and magnetic terms are
treated explicitly using the second-order Adams Bashforth (AB2) method, and diffusion
terms are discretized using an implicit Crank Nicolson (CN) scheme. This results in a
second-order accurate scheme in time. The resulting weak form of these equations after
the projection procedure is used to obtain the time evolution of the expansion coefficients.

The numerical experiments are performed to study the effects of varying Q (magnetic
field strength) on the convective heat transport efficiency indicated by Nusselt number
(Nu) at selected Ra values. A liquid metal with Pr = 0.05 is selected in a layer with
aspect ratio Γ [3 : 1.5] and subjected to a vertical magnetic field. The computation is
started with the flow field just supercritical obtained using the eigenfunctions of the pre-
vious linear stability study. It is known that application of a vertical magnetic field
suppresses the convective motions as shown in Figure 3 by decreasing Nu values as Q
increases, ultimately approaching to the conductive state with Nu = 1 . In the process,
kinks appear at Q = 1400 for Ra = 30000, at Q = 2500 for Ra = 50000 and at Q = 3600
for Ra = 80000. The kinks coincide with the increase in the number of rolls and thus
decrease in the wavelength. This is also observed and discussed in an earlier numerical
study17. This change in the roll pattern is shown in Figure 4 when Q = 2250 is increased
to Q = 3000 for Ra = 50000 at the transient stages t = 0, 30, 65. All these runs are in
the steady roll motion regime and use a typical dimensionless time step between 10−3 and
10−4.
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