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Abstract. Discontinuous Galerkin (DG) methods have proven to be perfectly suited for the con-
struction of very high-order accurate numerical schemes on arbitrary unstructured and possibly
non conforming grids for a wide variety of applications, but are rather demanding in terms of
computational resources. In the last years, in order to improve the computational efficiency of
DG methods, multigrid solution strategies, both in the h- and p- variants, have been considered.
This work will focus on the solution of the Reynolds averaged Navier-Stokes and k-ω turbulence
model equations using a p-multigrid algorithm, which is based on a semi-implicit Runge-Kutta
smoother for high-order polynomial approximations and the implicit Backward Euler scheme
for piecewise constant approximations. The effectiveness of the proposed approach is demon-
strated for two 3D test cases.
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1 INTRODUCTION

During the last two decades, the considerable advances in algorithm development and the
huge increase of computer power have made CFD a key discipline for the industry. However
the numerical technology used in standard industrial codes is still mainly based on formally
second-order accurate finite volume or finite element schemes. In practice the accuracy pro-
vided by these methods is inadequate in applications such as large eddy simulation, direct nu-
merical simulation, computational aeroacoustic, unless using prohibitively large computational
resources, that are beyond the available capabilities. Higher-order accurate methods, such as
discontinuous Galerkin (DG) methods, are therefore needed to cope with this class of flow
simulations.

The DG method was first introduced by Reed and Hill1 for the numerical solution of the
neutron transport equation. A major step forward in the development of this class of meth-
ods is however due to the work of Cockburn, Shu and several collaborators who, in a series of
paper starting from the late 80’s,2–5 developed total variation stable DG schemes for the nu-
merical solution of nonlinear conservation laws. DG methods have been successively extended
to advection-diffusion6–8 and to purely elliptic problems,9, 10 and are nowadays adopted for the
numerical solution of a wide variety of applications.

DG methods are finite element methods (FEM) in which the solution of the weak or varia-
tional form of a problem is approximated by means of piecewise continuous functions inside
elements which are in general discontinuous at the interface between neighbouring elements.
The lack of a global continuity constraint opens the way to the treatment of the solution at el-
ement interfaces by the technique developed in the context of upwind finite volume method,
which is in fact a very effective manner to introduce the stabilization required by any FEM
for the solution of purely advective or advection dominated problems. DG methods are very
popular for their great geometrical flexibility, providing higher-order accurate approximations
on general unstructured hybrid grids also in the presence of strongly distorted elements and
for grids characterized by a very irregular variation in element size. They are also compact
schemes, which is an advantageous feature for implicit time integration and for the parallel
implementation.

The price to pay for the robustness, accuracy and flexibility offered by DG methods is their
relatively high computational cost and storage requirement. In order to improve the compu-
tational efficiency of DG methods, a considerable research effort has been recently devoted to
devise more efficient computational strategies, both for the construction of DG space discretiza-
tion operators and for the integration in time of the space discretized DG equations.

The most commonly considered time integration schemes used with DG space discretization
are the explicit multistage Runge-Kutta (RK) methods and the implicit schemes.11 The former
shows extremely slow convergence rate for large scale simulations and/or for high-order poly-
nomial approximations. The latter, even reducing the number of iterations needed to reach the
steady state solution, is characterized by an high computational demand, both in terms of the
CPU time and of the memory required to store the Jacobian matrix, which may be prohibitive
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for a large scale problem and high-order solutions.
In the last years, in order to improve the computational efficiency of DG methods, multigrid

(MG) solution strategies,13–16 both in the h- and p- variants, have been considered. Multigrid
methods offer an alternative and efficient approach to steady state solution. For high-order
accurate approximations, h- and p-MG solution strategies (or a combination of both) can be
considered. While in the classical h-MG method the discrete equations are solved on a series of
recursively coarsened grids, in the p-MG algorithm the equations are solved by considering a
series of progressively lower order approximations on the same grid. Several p-MG algorithms
for DG space approximations have been recently proposed in the literature for both inviscid17, 18

and viscous flows,16, 19 showing that this solution approach is perfectly suited to the DG method.
This work will focus on the solution of the Reynolds averaged Navier-Stokes and k-ω turbu-

lence model equations using p-MG algorithm. We propose an improvement of the p-multigrid
scheme originally introduced in,18 which employs a semi-implicit RK smoother for Pk poly-
nomial approximation if k > 0, and the implicit backward Euler smoother for P0 polynomial
approximation. This strategy allows a significant saving in computer memory, storing only the
diagonal part of the Jacobian with respect to the implicit approach. The effectiveness of the
proposed approach is demonstrated by computing two 3D test cases.

The organization of this paper is as follows: in Section 2 the DG space discretization is
briefly presented, Section 3 describes the p-multigrid algorithm, and in Section 4 the computed
results for the subsonic turbulent flow around the ADIGMA20 BTC0 three dimensional body
and DLR F621 aeronautical configuration are presented.

2 DG DISCRETIZATION OF RANS AND k-ω EQUATIONS

We will first briefly present the DG space discretization of the RANS and k-ω turbulence
model equations. The governing equations can be written as
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where the pressure, the turbulent and total stress tensors, the heat flux vector and the eddy
viscosity are given by:

p = (γ−1)ρ (e0−ukuk/2) , (6)
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3

∂uk

∂xk
δi j

]
− 2

3
ρkδi j, (7)
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µ t = α
∗
ρke−ω̃r , k = max(0,k) . (10)

Here γ is the ratio of gas specific heats, Pr and Prt are the molecular and turbulent Prandtl
numbers and

Si j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
is the mean strain-rate tensor. The closure parameters α , α∗, β , β ∗, σ , σ∗ are those of the high-
or low-Reynolds number k-ω model of Wilcox.23

Notice that the RANS and k-ω equations here employed are not in standard form,8 since the
variable ω̃ = logω , instead of ω itself, is used in eqs. (3), (4), (5). The variable ω̃r in the source
terms of eqs. (3), (4), (5) and in the eddy viscosity defined by eq. (10) is introduced to indicate
that ω̃r fulfills suitably defined “realizability” conditions, which in practice put a lower limit
on ω̃ in such equations. This limitation substantially improves the stability and robustness of
turbulent flow computations because there is numerical evidence that too small, though positive,
values of ω = eω̃ can lead to sudden breakdown of computations.

Realizability conditions, which guarantee that the turbulence model predicts positive normal
turbulent stresses and satisfies the Schwarz inequality for shear turbulent stresses, lead to the
following constraints
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Denoting with a the maximum value of the unknown eω̃/α∗ corresponding to the zeros of
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eqs. (11) and (12), the lower bound ω̃r0 that guarantees realizable turbulent stresses is given by

eω̃r0

α∗
= a, (13)

and ω̃r in eqs. (3), (4), (5) and (10) is then set as

ω̃r = max(ω̃, ω̃r0) . (14)

ω values set at solid walls are dependent on the degree of polynomial approximation. For
this purpose we define ∫

y1

φω̃ dy =
∫

y1

φω̃ex dy, (15)

where ω̃ex is the near-wall analytical behavior of ω̃ , i.e.,

ω̃ex = log
(

6ν

β

)
−2logy, (16)

and φ is the one-dimensional polynomial basis adopted to define ω̃ . From eq. (15) we can then
compute ω̃k

w = ω̃(0) for any desired polynomial degree k.
DG space discretization of the RANS and k-ω turbulence model equations can be written in

compact form as
∂u
∂ t

+∇ ·Fc(u)+∇ ·Fv(u,∇u)+ s(u,∇u) = 0, (17)

where u,s∈RM denote the vectors of the M conservative variables and source terms, Fc,Fv ∈
RM⊗RN denote the inviscid and viscous flux functions, respectively, and N is the space dimen-
sion.

The weak form of the system (17) reads∫
Ω

φ
∂u
∂ t

dx−
∫

Ω

∇φ ·F(u,∇u) dx+
∫

∂Ω

φF(u,∇u) ·n dσ

+
∫

Ω

φs(u,∇u) dx = 0, (18)

for any arbitrary, sufficiently smooth, test function φ (F is the sum of the inviscid and vis-
cous fluxes). The DG discretization of eq. (18) is defined on a triangulation Th = {K} of an
approximation Ωh of Ω and consists of a set of non-overlapping elements K not necessarily
simplexes. The following space setting of discontinuous piecewise polynomial functions for
each component uhi = uh1 , . . . ,uhM of the numerical solution uh is assumed:

uhi ∈Φh
def=
{

φh ∈ L2 (Ω) : φh|K ∈ Pk (K) ∀K ∈Th

}
(19)

for some polynomial degree k ≥ 0, being Pk (K) the space of polynomials of global degree at
most k on the element K.
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The discrete counterpart of the eq. (18) is therefore obtained by replacing φ← φh and u← uh,
for each element K ∈Th,∫

K
φh

∂uh

∂ t
dx−

∫
K

∇hφh ·F(uh,∇huh) dx+
∫

∂K
φhF(uh|K,∇huh|K) ·n dσ

+
∫

K
φhs(uh,∇uh) dx = 0. (20)

The discontinuous approximation of the numerical solution requires introducing a special treat-
ment of the inviscid interface flux and of the viscous flux. For the former it is common practice
to use suitably defined numerical flux functions (the exact Godunov flux function has been
used) which ensure conservation and account for wave propagation. For the latter we employ
the BR2 scheme12, 22 to obtain a consistent, stable and accurate discretization of the viscous
flux. Summing eq. (20) over the elements and accounting for these aspects, the DG formulation
of problem (18) then requires to find uh1, . . . ,uhM ∈Φh such that∫

Ωh

φh
∂uh

∂ t
dx−

∫
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+
∫
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±) dσ

+
∫

Ωh
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for all φh ∈Φh. In eq. (21) we have introduced the following jump and average trace operators

[[q]] def= q+n+ +q−n−, {·} def=
(·)+ +(·)−

2
, (22)

where q denotes a generic scalar quantity and the average operator applies to scalars and vector
quantities. These definitions can be suitably extended to faces intersecting ∂Ω accounting for
the weak imposition of boundary conditions. The lifting operator re, which is assumed to act
on the jumps of uh componentwise, is defined as the solution of the following problem:∫

Ωh

φ h · re (v) dx =−
∫

e
{φ h} ·v dσ ,∀φ h ∈ [Φh]

N , v ∈
[
L1 (e)

]N
, (23)

and the function r is related to re by the equation:

r(v) def= ∑
e∈Th

re(v). (24)

ηe is the penalty factor and must be greater than the number of faces of the elements.
By assembling together all the elemental contributions, the system of ordinary differential

equations governing the evolution in time of the discrete solution can be written as

M
dU
dt

+R(U) = 0, (25)
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where U is the global vector of unknown degrees of freedom, M is the global block diagonal
mass matrix and R the residual vector.

In this work modal expansion bases defined in the physical space have been used and all
integrals appearing in eq. (21) are computed by means of Gauss quadrature formulae with a
number of points consistent with the accuracy required.

3 THE p-MULTIGRID SOLUTION STRATEGY

The standard iterative solvers are very effective at eliminating the high-frequency or oscilla-
tory components of the error, while leaving the low-frequency or smooth components relatively
unchanged. In order to remove all the error components, in the h-MG method a sequence of
progressively coarsened grids is adopted. This procedure greatly increases the scheme con-
vergence rate, since a smooth error mode that is hard to remove on a given grid becomes an
oscillatory mode that is easy to remove on a coarser grid. In the p-MG method, the same idea
is applied on a sequence of progressively lower order approximations.

The p-MG algorithm is particularly attractive for DG approximations because the restriction
and prolongation operators required to transfer the solution and the error between the various
approximation levels are simply L2 projection operators. This means that the transfer operators
are block diagonal matrices, and that the transfer operations can be performed in a very efficient
manner.

The various levels can be visited following different paths. In the commonly considered V-
cycle and W-cycle, the algorithm visits the various levels, as depicted in Figure 1. At each level,
a number ν1 of pre-smoothing iterations is performed prior to restricting the solution to the next
coarser level (bullets), while, on the way back to “finer” levels, a number ν2 of post-smoothing
iterations is performed after prolongation (circles).

As a further improvement of the method, in the full multigrid (FMG) algorithm the coarser
level solutions are exploited to obtain good initial guess to initialize the computation of the
finer grids, as depicted in Figure 3. Notice that it is not necessary to compute a fully converged
solution on each level before passing to the next finer level, since the discretization error on
coarser levels can be relatively large and there is no point in achieving a convergence tolerance
that is better than the approximation error. In the proposed algorithm this issue is addressed by
deciding to prolongate the solution at the current iterate to the next finer level if a residual-based
criterion is met, as described in.16

3.1 The p-Multigrid algorithm

The entire multigrid strategy is based on a recursive application of the so called two-level
algorithm, in which the “exact” solution on the coarser grid is used to accelerate the solution
on the finer grid. To avoid the prohibitively expensive exact solution on the coarse grid, the
two-level algorithm is recursively applied to progressively coarser grids thus arriving at the
previously described V-cycle, W-cycle, and full multigrid algorithm. The two level scheme
suited for nonlinear problems is called Full Approximation Storage scheme (FAS).
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p = 0

p = 1

p = 2

p = 3

Figure 1: V-cycle and W-cycle for p = 3 (•: pre-smoothing; ◦: post-smoothing)

p = 2

p = 1

p = 3

p = 0

Figure 2: V cycle full multigrid for p = 3 (•: pre-smoothing; ◦: post-smoothing)

In order to illustrate the FAS scheme, let

Ap(up) = fp (26)

denote a generic nonlinear problem, where up ∈ Pp is the discrete solution and Ap(up) is the
associated non linear algebraic operator. Notice that the superscript p indicates both the level
in the p-MG algorithm and the degree of the polynomial approximation employed in the DG
approximation. Let vp be the approximate solution of problem (26) during the iterative solution
process, and let

rp(vp) = fp−Ap(vp)

denote the residual vector.
In the basic two-level multigrid method, the exact solution on the coarse level is used to

correct the solution on the fine level. The correction is performed according to the following
steps:

• restrict the solution and the residual to the coarse level,

vp−1
0 = Ĩp−1

p vp, rp−1 = Ip−1
p rp(vp), (27)
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where Ĩp−1
p and Ip−1

p are the solution and the residual restriction operators from level p to
level p−1, respectively;

• compute the forcing term for the coarse level:

sp−1 = Ap−1(vp−1
0 )− rp−1; (28)

• solve the coarse level problem:

Ap−1(vp−1) = fp−1 + sp−1; (29)

• calculate the coarse grid error:

ep−1 = vp−1−vp−1
0 ; (30)

• prolongate the coarse grid error and correct the fine level approximation:

vp = vp + Ĩp
p−1ep−1 (31)

where Ĩp
p−1 is the error prolongation operator.

The solution restriction and prolongation operators, Ĩp−1
p and Ĩp

p−1, are simply L2 projections
onto the low-order and high-order spaces. An explicit expression of the residual restriction
operator Ip−1

p can be obtained following the approach proposed by Fidkowski, see e.g.,16 which
shows that in fact Ip−1

p = (̃Ip
p−1)

T .

3.2 Smoothers

At all the levels p with the exception of the coarsest level pmin, i.e. for pmin +1≤ p≤ pmax,
the smoother used in the p-MG scheme is the m-stage semi-implicit RK scheme introduced
in,15, 18 which can be written as

u0 = un

DO k = 1, m[
M+αk∆tD(u0)

]
δuk =−M(uk−1−u0)−αk∆tr(uk−1)

uk = uk−1 +δuk

END DO

un+1 = um.

(32)

D(u0) is the block diagonal part of the full Jacobian matrix, which is computed only for the first
stage.
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At the coarsest level p = pmin, an implicit iterative smoother based on the linearized Back-
ward Euler scheme is instead used. With reference to Eq. (25), the smoother can be written
as (

Mpmin

∆t
+

∂r(upmin)
∂u

)
∆upmin + r(upmin) = 0, (33)

where Mpmin denotes the mass matrix, upmin the vector of the unknowns and r(upmin) the residual
vector at level p = pmin. The fully coupled linear system is solved by means of the PGMRES11

method with the incomplete LU factorization as preconditioner.

4 NUMERICAL RESULTS

This section presents the results for two shockless testcases, the turbulent flows around BTC0
three dimensional body and around the DLR F6 aeronautical configuration. These tests have
been computed with the FMG V-cycle and the solution is prolongated to the finer level when a
residual-based criterion is met (see Seciton 3).

The following smoothing strategy has been considered:

• the five stage semi-implicit Runge-Kutta (SIRK5) smoother described in Section 3.2 with
the coefficients values α1 = 0.2, α2 = 0.25, α3 = 0.3333, α4 = 0.5 and α5 = 1.0 for all
levels pmin < p≤ pmax;

• the implicit Backward Euler (BE) smoother for the coarsest level pmin.

Table 1 presents the number of pre and post iterations adopted at each level. ν0 represents the
number of iteration at the coarsest level pmin, ν1 and ν2 the number of pre/post iteration at level
p > pmin. These values have been empirically determined in order to minimize the CPU time
needed to reach a converged solution. .

Level ν0 ν1 ν2
p = pmin 1 - -

pmin < p < pmax - 2 1
p = pmax - 1 1

Table 1: Number of pre/post iterations at each level p

4.1 BTC0

In the first test case the turbulent flow around the BTC0 three dimensional body is com-
puted for a farfield Mach number M∞ = 0.5, an angle of attack α = 5◦ and a Reynolds num-
ber Re = 107. The geometry has been represented with bi-quadratic faces and two grids have
been considered. The coarse grid is composed of 832 hexahedral elements with a maximum
stretching factor value equal to 8850, while the fine grid has 6656 hexahedral elements with a
maximum stretching factor value equal to 20000. P0 has been considered as coarsest level.
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Figure 3: Turbulent BTC0: 6656 hexahedral elements mesh

Figure 4: Turbulent BTC0: turbulence intensity (left) and pressure (right) contours of P3 solution on the fine mesh
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Figure 3 shows details of the fine grid, while Figure 4 illustrates the corresponding pressure
(right) and turbulence intensity (left) contours for P3 spatial discretization.

Figure 5 (left) illustrates the log(ω) residual L2 norm convergence history as a function of
the MG iterations of the SIRK5+BE scheme for different solution approximation Pk (k=1,. . . ,3)
on the coarse grid, while Table 2 presents the number of MG cycles needed to converge and the
convergence curve slope σ for every level. Notice that the polynomial order independent prop-
erty is not satisfied for P3 solution approximation, due to a deterioration of the convergence
rate. It is also shown that the memory requirement of the p-MG algorithm is ≈ 50% of that
needed by an implicit scheme. Figure 5 (right) shows, instead, the residuals L2 norm conver-
gence history in term of CPU time for P3 solution approximation, computed on the coarse grid.

Figure 5: Turbulent BTC0: log(ω) residual L2 norm convergence history of the SIRK5+BE as a function of MG
cycles on the coarse mesh for different solution approximation Pk (left). Residuals L2 norm convergence history
versus CPU time on the coarse mesh for P3 solution approximation (right)

Pk 1 2 3
NMG 23 23 248

σ -0.215 -0.214 -0.012
MemMG[Gb] 0.48 0.96 2.72
MemIMP[Gb] 0.64 1.92 6.08

Table 2: Turbulent BTC0: convergence summary and memory requirement for each polynomial approximation Pk.
NMG is the number of MG cycles needed to converge, σ is the slope of the convergence curve, MemMG[Gb] the
p-MG algorithm memory requirement, MemIMP[Gb] the memory requirement of an implicit scheme.
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4.2 DLR-F6

The DLR-F6 aircraft has been the focus of several wind-tunnel tests and computational stud-
ies.21, 24 The design cruise Mach number is M∞ = 0.75, the lift coefficient is CL = 0.5 and the
chord Reynolds is Re = 5×106. Since the associated flow regime past the aircraft is transonic ,
the free stream Mach number has been reduced to 0.5 in order to avoid the presence of shocks.
The computation has been carried out on a mesh of 50618 elements (Figure 6), consisting of
hexahedral elements with a third order representation of the boundary. Computation has been
performed up to P3 solution approximation and the coarsest level is taken equal to P0. Figure 7
show the pressure (left) and Mach (right) contours.

Figure 6: DLR-F6: 50618 hexahedral elements mesh

The convergence rate behaviour is similar to that observed for the BTC0 test case and the
polynomial order independent property is not fulfilled. The memory saving with respect to
implicit schemes is about 50%.

5 CONCLUSIONS

A p-multigrid discontinuous Galerkin algorithm for the solution of the steady state Reynolds
averaged Navier-Stokes and k-ω turbulence model equations has been proposed. The perfor-
mance of the proposed approach has been assessed by computing two different shockless turbu-
lent test cases. The approach is characterized by a strong reduction of the memory requirement
with respect to implicit solvers (≈ 50%). At this time, however, the numerical results indi-
cate that the proposed p-MG strategy displays a convergence rate that degrades for the highest
degrees of the polynomial approximation here considered.

Future work will focus on the investigation of the proposed p-MG algorithm to enhance the
convergence rate at all polynomial levels, and also on the implementation within this strategy
of a robust shock-capturing technique, already developed for implicit schemes.
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Figure 7: DLR-F6: pressure (left) and Mach (right) contours of P3 solution
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