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Abstract. The turbulent flow is investigated numerically using the in-house computa-
tional code based on the Finite-Element Method with pressure-stabilized Petrov-Galerkin
and Streamline Upwind Petrov-Galerkin schemes. The flow problem is represented by
a three-dimensional unsteady turbulent flow past a circular cylinder at Reynolds number
3.900 and 140.000, respectively. The turbulent flow behavior is captured numerically using
the hybrid URANS/LES turbulent model group, particularly, represented by the Delayed-
Detached-Eddy Simulation (DDES) approach. The performed grid study reveals signifi-
cant feature of the grid resolution effect in the spanwise dimension on the time-averaged
flow behavior and statistical flow results. Finally, obtained numerical results calculated
by DDES are generally in good agreement with experimental data and other numerical
results in respect to the time-averaged velocity field, Strouhal number, drag coefficient and
partially Reynolds shear stress distribution even for relatively coarse computational grid
used for numerical calculation.
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1 INTRODUCTION

Turbulent flows is characterized by complex three-dimensional flow phenomena consist-
ing effects such as flow separations, quasi-periodic vortex shedding, multiple recirculation
zones, wake structures etc.. Recently, various numerical turbulent methods have been
more or less successfully applied for turbulent flow calculations, particularly based on the
steady or unsteady Reynolds-averaged Navier-Stokes (RANS or URANS) approach, Large
Eddy Simulation (LES), blended RANS-LES models or even Direct Numerical Simulation
(DNS). The significant progress has been reached especially in hybrid RANS-LES mod-
els commonly applied for higher Reynolds number massively separated flows. The most
popular approach of this group is Detached-Eddy Simulation (DES) originally proposed
by Spalart et. al.5 hereafter referred to as DES97 or easily DES. An advantage of DES is
the easy of programming and applications for a complex-geometry. The brief summary
about DES applications in various flow problems can be found in publication17.
A general feature of this particular approach is that the whole a major part of the attached
boundary layer is treated by RANS or URANS as a quasi-steady, while LES concept is
applied only in the separated flow regions. By consensus, the sooner this takes place,
then better. Unfortunately, standard DES formulation on typical grids does not achieve
this switch very fast all3,17. The space between two areas treated by LES or RANS is
known as the grey area and therefore the grey area effects is mostly used for a switch
procedure between LES and RANS calculation and it will be discussed later in details.
In practice, DES approach is based on the one-equation Spalart-Allmaras eddy viscos-
ity model and it has been successfully applied e.g. to resolve rich dynamics of coherent
structures over complex geometrical configurations at practical Reynolds numbers16. In
spite of the promise of this stable and accurately acceptable approach, however, at least
two weakness of this model are well known and already discussed extensively. Firstly,
the strong dependence of the DES approach on the grid structure has been recognized
even by Spalart and discussed in details later e.g. by Paik16.The second deficiency of
DES is caused by the fact that the subgrid eddy viscosity decreases with both decreasing
grid spacing and local flow Reynolds number. Consequently, the fast nonlinear drop of
turbulent viscosity gives rise to a premature switch between LES and URANS especially
in the region of the flow, where the local Reynolds number is sufficiently low. This prob-
lem is called as modeled-stress depletion (MSD) and a consequence of that is called as
grid-induced separation (GIS)17. This situation illuminated above can typically occur, for
instance, in the downstream region of surface-mounted obstacles. The concept study of
the switch between LES and URANS approach called as grey area effect in dependence
of the grid construction has been presented and discussed in Travin et al.4 and Spalart
et. al.3 etc.. Because of the fact that the classical DES approach suffers from various
deficiencies e.g. early separation etc., the new standard version of DES so called Delayed-
Detached-Eddy Simulation has been proposed. In this new concept, the limiter for the
switch between LES and RANS depends not only on the grid size but as well on the
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K. Fraňa and V. Honzejk

solution17. Consequently, DDES has demonstrated a potentiality to resolve grid-induced
separation, without impending LES function after separation.
The objective of this paper is the implementation of the turbulent model (DDES) into
the in-house computation code, the appropriate code testing and application for a com-
plex three- dimensional turbulent flow simulation. The code testing is carried out on the
benchmark represented by the turbulent flow over a circular-cylinder. This particular flow
problem has been studied numerically e.g. using the Large-Eddy Simulation (LES) by
Breuer1,2 for Reynolds numbers 3.900. The found results were in good agreement with ex-
periments in sense of predictions of the drag and pressure coefficients, mean velocity field
distribution, Strouhal number and resolved Reynolds shear stress. The study of the flow
with the turbulent-separation region at Reynolds number 140.000 has been documented
in Breuer2. In the frame of this study, the influence of the subgrid scale modeling and
grid resolution on the quality of the predicted results were investigated. In general, the
found LES results were in satisfactory agreement with experimental data, however, the
big computation effort was simultaneously required to resolve accurately the flow in the
near-wall region. As a practical solution, the DES used for higher Reynolds number flow
is getting a powerful alternative approach. Travin4 performed a numerical study using
DES for flow around a circular cylinder in a uniform cross-flow and the Reynolds number
varied from 50.000 up to 3× 106. The results were in good agreement with experimental
results for drag, shedding frequency, pressure and skin friction, however, disagreement
up to 30% to experiment was found in the prediction of the bubble length and in the
Reynolds stress distribution. The brief of the existing experimental and numerical results
of the flow past a circular cylinder for Re = 3.900 and Re = 140.000 is summarized in
Fureby14.
The paper is organized as follows: In Section 2, the objective of the flow study including
the basic equation system represented by Navier-Stokes equation and by turbulent ap-
proach is introduced. Details about numerical method and its application in the in-house
computational code are presented in Section 3. Section 4 summarizes important numeri-
cal results and the comparison with experimental data and with other previous numerical
results. Finally, in Section 5, significant conclusions are reported.

2 PROBLEM FORMULATION

An incompressible turbulent flow with the constant material properties such as molec-
ular kinematic viscosity ν and density ρ is considered. The unsteady flow behavior is
governed by Navier-Stokes and continuity equations taking the form

∂u

∂t
+∇ · uu = −∇p+∇ (ν + νt)∇u (1)

∇ · u = 0 (2)
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with Dirichlet and Neumann type boundary conditions

u = g at Γg (3)

n · [p+ (ν + νt)∇u] = h at Γh (4)

where u is the velocity, t time, p pressure divided by density ρ, and νt is a turbulent eddy
viscosity, respectively. The effect of turbulence in flows is represented by a turbulent
eddy viscosity. Particularly, in the DDES approach the calculation of the turbulent eddy
viscosity is based on a modified eddy viscosity calculated by the transport equation defined
in the Spalart-Allmaras model5 as follows

Dν̃

Dt
= cb1S̃ν̃ +

1

σ

[
∇ · ((ν + ν̃)∇ν̃) + cb2(∇ν̃)2

]
− cw1fw

[
ν̃

d

]2

(5)

where the right-hand side includes the production term, the diffusion term and the de-
struction term for the reduction of the stresses in the vicinity near the solid walls. The
production term includes further the scalar quantity S̃ which is expressed by a magni-
tude of vorticity S plus a near-wall correction and it can be modeled as in the original
Spalart-Allmaras model5 leading to the form

S̃ ≡ S +
(

ν̃

κ2d2

)
fv2 (6)

Equation 5 must be closed with the auxiliary relations and constants that can be found
e.g. in publication5. The desired turbulent eddy viscosity νt is calculated by the modified
turbulent viscosity using the relation taking the form of

νt = ν̃fv1 (7)

In the DES approach, the wall distance is replaced by a characteristic length scale d̃
proportional to ∆ so that

d̃ ≡ min(d, CDES∆), ∆ ≡ max(∆x,∆y,∆z) (8)

The recommended value for the adjustable parameter is CDES=0.656. The weakness of
the classical DES formulation is an unphysical behavior in the attached boundary layers
relating to so called grey zone. To suppress the negative effect, various modifications of
the DES formulation were proposed, for instance, the DDES model. Particularly, a new
function fd was additionally used for the definition of the characteristic length scale so
that the dissipation length scale is now in the form

d̃ = d− fdmax (0; d− CDES∆) (9)

where
fd = 1− tanh

[
(8rd)

3
]

(10)
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and

rd =
ν + νt√

∂xjui∂xjujκ2d2
=

ν̃

Sκ2d2
(11)

From the practical point of view, the main objective of this modification is to prevent
earlier switch from URANS approach to LES model occurring in the attached boundary
layer as it has been reported in the previous section.

3 NUMERICAL METHODS

The finite element discretization space of Ω with the boundary Γ is consisted of Ωe ,
where e = 1, 2, nel and nel is the number of elements. The weighting function in Eq. 12
is expressed as wh and qh, respectively. Equations 1 and 2 can be formally integrated in
time and written in form as follows∫

Ω
wh

(
un+1 − un

∆t
+∇ · ūū +∇p̄

)
dΩ +

∫
Ω

(
∇wh

)T
: (νc)∇ūdΩ−∫

Γ
wh · (νc) ∂nudΓ +

∫
dΩ
qh∇ · un+1dΩ +

∑
e=1

nel

∫
dΩe

(
τSUPGū · ∇wh

)
· (r̄) dΩ +

∑
e=1

nel

∫
dΩe

(
τPSPG∇qh

)
· (r̄) dΩ = 0 (12)

where the residual r̄ is defined as

r̄ = ∂tū +∇ · ūū−∇ [(ν + νt)∇ū] +∇p̄ (13)

The overbar denotes the time averaged over the time interval given by tn and tn+1. Because
of the equal-order interpolation function used for velocity and pressure, the stabilization
approach based on the pressure-stabilized Petrov-Galerkin scheme is applied. Moreover,
for higher Reynolds number flows, the additional streamline upwind Petrov-Galerkin sta-
bilization approach is adopted. Appropriate choice of the stabilization constant τSUPG
and τPSPG is given in publication10. The momentum equation integrated in Eq. 12 can
be split into a velocity (predictor) and a pressure (corrector) step. The velocity predictor
term is formulated symbolically as follows

U ∗ = Un − dtML
−1 [A ·UU + (Lνc + LΓ

νc) U ] + T SUPG (14)

where U ∗ is preliminary estimation of the velocity, ML
−1 is lumped mass matrix, A is

a gradient matrix, Lνc is a Laplace matrix and related boundary matrix LΓ
νc . The last

term TSUPG is an additional term representing the SUPG stabilization. The corrector
step consists pressure equation and correction step of the velocity field calculation. The
both equations are in the form[

(1− δ) AML
−1A + δL

]
P = −AU ∗/dt (15)

Un+1 = U ∗ − dtML
−1AP (16)

5
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In practice, the predictor step in Eq. 14 is solved explicitly using the Jacobi iterative
method, the corrector step involving the pressure equation Eq. 15 is solved implicitly by
the Conjugated gradient method. The time-dependent term is discretized by means of
the Adam-Bashforth schema. The calculated values e.g. velocity, pressure or turbulent
kinetic viscosity are saved at the end of each time step and used as an initial value in
the following time step. Taking into account the Neumann boundary type condition
(open boundary type condition), the equations of the corrector step are modified and the
complete calculation scheme is defined as follows

U ∗ = Un − dtML
−1 [A ·UU + (Lνc + LΓ

νc) U ] + T SUPG (17)[(
AT −GN

)
ML

−1
(
AT −GN

)
+ δAML

−1
(
AT −GN

)
− δL

]
P =[(

AT −GN
)
U ∗ + GDUn+1

]
/dt (18)

Un+1 = U ∗ − dtML
−1
(
AT −GN

)
P (19)

where GN is a boundary integral of the Neumann boundary condition and GD is a bound-
ary integral of the Dirichlet boundary condition, respectively. Figure 1 shows stable results
of the streamwise velocity field at the outflow boundary. Because of the numerically stable

Figure 1: Snapshot of the velocity vector field and velocity lines at the outflow type boundary

form of the Eq. 5, the turbulent model represented by transport equation 5 with aux-
iliary relations summarized in 6 - 11 is implemented into code without any stabilization
approach. This transport equation is solved explicitly using Jacobi method and approxi-
mately 9 iterative steps are required to achieve negligible residuals in comparison to the
flow solver accuracy. The whole numerical model was implemented on top of the MG
grid library7, which provides data structures, the handling of the unstructured grids and
methods for grid adaptations. The parallelization was based on a grid partitioning pro-
viding the decomposition of the computational grid into a specific number of partitions.
The test of the parallel efficiency was carried out on the cylindrical cavity flow driven by
a rotating magnetic field and results were discussed in publication8. The code was vali-
dated on several tests including a transient channel flow or a flow driven by the rotating
magnetic field18 in the laminar Stokes flow regime. The convergence study proved the
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second order accuracy in time and space8. In the transient flow regime, the code was
validated using the linear stability analysis carried out in the flow driven by the traveling
magnetic field9 and satisfactory results were found in comparison to results provided by
calculations based on the high accuracy numerical methods e.g. spectral methods with
higher order discretization schemes.

4 RESULTS AND DISCUSSION

The complex three-dimensional flow simulation is carried out at Reynolds number
3.900 (denoted as case LRE) and 140.000 (case HRE) and results are compared with
available experimental and numerical results. The computational grids are consisted of
the tetrahedral elements with the same grid resolution for all considered test cases. By
reason of grid effect study a number of elements in the spanwise dimension of the flow
domain varies from 4 up to 32 elements (L/HRE-4, L/HRE-8, L/HRE-16 and L/HRE-32).

4.1 The three-dimensional flow effects

Table 1 reports important physical quantities such as the drag coefficient cD based
on the freestream velocity Uinlet nd D, Strouhal number St, bubble length LR/D (the
length of the recirculation bubble, from the base to the zero-mean-velocity point on the
centerline) and r.m.s. value of the lift coefficient c′l calculated on the different spanwise
grid resolutions.

The examination of the spanwise grid resolution on the physical quantity points out
that the elongation of the computational domain has caused reduction of the pressure
coefficient value, Strouhal number and r.m.s. value of the lift coefficient and this obser-
vation is fully consistent with Breuer1,2. Note, in accordance with Breuer1 study, the size
elongation of the computational domain in the streamwise and crossflow dimension may
evoke the similar effect as that described above. The found drag coefficient cD = 1.02 at

Figure 2: Pressure coefficient cp in comparison with experimental data12,13 for (a) Re=3.900, (b)
Re=140.000

Reynolds number 3.900 corresponds well to values from Breuer1 (cD = 1.01−1.1) and it is
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Case points cD LR/D St c′l
LRE-4 67133 1.57 0.88 0.23 1.17
LRE-8 125641 1.37 1.00 0.23 0.86

LRE-16 232707 1.25 1.05 0.22 0.73

LRE-32 448304 1.02 1.53 0.21 0.37

Breuer1-LES 165x165x32 1.01/1.1 0.99/1.4 - -

Breuer1-LES 165x165x1 1.625 - - -

Son et al.1 experiment 0.97/0.99 1.1/1.53 - -

Dong12-DNS 902(8)x(64-192) - 1.0/1.18 0.203/0.21 -

HRE-4 67133 1.52 1.02 0.25 1.01
HRE-8 125641 1.4 1.09 0.24 0.77

HRE-16 232707 1.38 1.09 0.24 0.68

HRE-32 448304 1.24 1.4 0.22 0.40

Breuer2-LES 325x325x64 1.22/1.45 0.3/0.38 0.20/0.22 -

Travin4-DES 118x109x30 0.87/1.08 1.1/1.5 0.21/0.23 0.1/0.3

Cantwell et al.13 experiment 1.237 0.44 0.18 -

Table 1: Summarization of the physical quantities for DES,LES and DDES studies, experiments and for
Reynolds numbers 3.900 (LRE) and 140.000 (HRE).

also relatively in good agreement to experiment1. At the same Reynolds number level, the
Strouhal number is found to be St=0.21 which is in good agreement to the DNS results12

(St=0.203-0.21). At Re=140.000, the identified Strouhal number is about St=0.22 and
that it is in a good agreement with the numerical study in Breuer2 (St=0.2-0.22) and
Travin4 (St=0.21-0.23). The drag coefficient at the same Re is detected as cD = 1.24
and it is in excellent match to experiment13 (cD = 1.237) and numerical calculation by
Breuer2 (cD = 1.22− 1.45). For LRE case, the bubble length is about 1.53, however, for
coarse spanwise grid resolution it is about 1.05 and less. Therefore, the computation pre-
formed on the coarse spanwise grid resolution provides better results then finer grid. For
HRE case, the found bubble lengths for all here considered spanwise grid resolution are
out of the experimental results and numerical simulation1, but fully consistent to Travin4

(DES). Figures 2 (a) and (b) indicate the distribution of the pressure coefficient cp on the
surface of the circular cylinder. The flow remains to be laminar in this region and it is
solved using URANS approach. The grid refinement in the spanwise dimension has slight
influence on the pressure coefficient distribution only in the reattachment region on the
circular cylinder. The results obtained show good agreement with experimental results13,
however, at the case HRE a slight deviation from the experimental data is clearly iden-
tified in the recirculation region behind a circular cylinder and it was observed in study4

as well. The current numerical study reveals further, that the effect of the spanwise di-
mension can be well examined on the resolved Reynolds shear stress in the region near
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Figure 3: The resolved Reynolds shear stress < u′
xu′

x > compared with experimental11,13 and
numerical14 data: (a) at x/D=1.06 for Re=3.900 and (b) x/D=1 for Re=140.000

wake of the circular cylinder. At this particular place, the Reynolds shear stress distri-
bution is extremely sensitive on the three-dimensional flow effects even for a wide range
of the Reynolds numbers. Figures 3 (a) and (b) show the < u′xu

′
x > component of the

resolved Reynolds shear stress at the place x/D = 1.06 and at Re=3.900 and x/D = 1
at Re=140.000, respectively. Evidently, with increase of the spanwise grid resolution the
order of the Reynolds shear stress is decreasing up to reaching a satisfactory results in
respect to the experimental11,13 and other numerical results14. However, at the higher
Reynolds number, further grid refinement in near wake region is maybe needed, but in
accordance to the study by Travin4, in this study the used higher grid resolution revealed
still inconsistence between numerically resolved and experimentally determined Reynolds
shear stresses.

4.2 Time-averaged velocity field

Figure 4: Time-averaged streamwise velocity along the symmetry line compared with experimental
results11,13 for (a) Re=3.900 and (b) Re=140.000

Figure 4 (a) shows the time-averaged streamwise velocity along the symmetry line for
Reynolds number 3.900, whereas the results for Reynolds number 140.000 are illustrated
in Fig. 4 (b). Calculations performed on the computational grid with 32 elements in the
spanwise dimension provides results with the satisfactory agreement with experimental
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Figure 5: Time averaged streamwise velocity along a constant x-position compared with experimental
results11,13 and numerics14 for (a) Re=3.900, (b) Re=140.000

data11,13. In general, the grid refinement in the spanwise dimension causes an elongation
of the recirculation area in the near wake region. Figures 5 (a) and (b) depict the time-
average streamwise velocity along a constant x-position. The results calculated on the finer
spanwise grid resolution at Reynolds number 3.900 and 140.000 are in good agreement
with the experimental data11,13. Despite slight overestimation of the velocity in near wake
region at Re=140.000, generally, the less time-consuming DDES model provides accurate
flow prediction in contrast to the LES approach from the point of the view of the less
computational effort and less demand on the grid resolution. The time-averaged normal
velocity profiles at constant x-position in the flow wake for Reynolds number 3.900 and
140.000 are plotted in Figure 6 (a) and (b), respectively. The similar results are found in
respect to the experimental results11,13, and especially, in the near wake better results are
achieved by DDES calculation in comparison to LES results15.

4.3 Resolved Reynolds shear stress

Figure 7 (a) and (b) illustrate the resolved streamwise Reynolds shear stress plotted
along a constant x-position for Reynolds numbers 3.900 and 140.000, respectively. For
low Reynolds numbers (LRE), results are in satisfactory agreement with experimental
results11. However, for HRE case, the resolved Reynolds shear stresses are completely
overestimated in the whole wake region. Albeit the finer grid resolution in the spanwise
dimension leaded to the results improvement in the near wake, however, the same grid
effect is not detected in the far wake region at all.
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Figure 6: Time-averaged normal velocity along a constant x-position compared with experimental
results11,13 and numerics15 for (a) Re=3.900 and (b) Re=140.000

Figure 7: The total resolved Reynolds stress < u′
x u′

x > along a constant x-position compared with
experimental results11,13 and numerics14 for (a) Re=3.900 and (b) Re=140.000

4.4 Frequency and wavenumber spectra

Figures 8 (a) and (b) show wavenumber spectra of the streamwise velocity along the
spanwise dimension at the point x/D = 0.16632 and y/D = 0.48 in the region of the shear
layer. For LRE, the power spectra behavior with p = 5

3
appears at higher wavenumbers

(in the inertial subrange or dissipation range), whereas at lower wavenumbers, the spec-
trum decays slowly and the power law of this decay is affected strongly by the size of the
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spanwise dimension of the computational domain. In contrast, in case of the HRE, the en-
ergy spectrum exhibits power law behavior with p = 5

3
in the wide range of wavenumbers,

particularly, covering parts of the dissipation and energy-containing range and complete
inertial subrange. Furthermore, the elongation of the spanwise dimension does not cause
a change of the power law behavior of the energy decay. Figures 9 (a) and (b) illustrate

Figure 8: Wavenumber spectra at the position in the shear layer region for Reynolds number (a) 3.900
and (b) 140.000

Figure 9: Power energy spectra at the position in the shear layer region for Reynolds number (a) 3.900
and (b) 140.000

power energy spectra of the streamwise velocity at the particular point x/D = 0.16632
and y/D = 0.48 in the region of the shear layer. The Strouhal frequency has a sharp spec-
tra peak recognizable for both LRE and HRE cases. Because of the spatial locality of the
shear-layer vortex12, no shear-layer vortex frequency appears in the spectra. The power
law behavior with p = 5

3
is detected only in the dissipation range of the wavenumbers for

both considered cases LRE and HRE, respectively.
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5 CONCLUSION

The presented work is concerning to the isothermal incompressible turbulent flow in-
vestigation calculated using the in-house computational code based on the Finite-Element
Methods with implemented Delayed-Detached-Eddy Simulation approach and extended
recently by open type boundaries. The flow problem represents a turbulent flow past
a circular cylinder at lower and higher Reynolds number. The numerically obtained re-
sults such as time-averaged velocity field, drag coefficients, Strouhal numbers are mostly
in good agreement with experimental data. Despite of the particular overprediction at
higher Reynolds number, the used Delayed-Detached Eddy Simulation approach reaches
mostly satisfactory results with less computational effort. In contrast to LES approach,
the found success results comparison supports the idea to apply this turbulent approach
for turbulent flow investigation of the more complex geometry associated with coarse grid
resolution. From perspectives, after this successful code validation on the turbulent flow,
this model will be used for examination of the turbulent flow driven by a rotating magnetic
field in the non-axisymmetrical containers.
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