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Abstract. Streamlines of the incompressible vortical flows in three-dimensional  
rectangular cavities are numerically studied for several Reynolds numbers by using a 
combined compact finite difference(CCD) scheme with high accuracy and high 
resolution. The flow is driven by a lid  moving tangentially  with constant speed. Non-
dimensional geometrical parameters of the cavity are the depth-to-width aspect ratio Γ 
and the span-to-width aspect ratio Λ. The flow parameter is the Reynolds number Re. 
We study the flow structure in the square cavity(Γ=1) with the spanwise aspect ratio 
Λ=6.55 for Re from 100 to 400. Streamlines are obtained from the velocity field of the 
steady incompressible flow. Several streamlines show chaotic behaviour, and in certain 
cases there is a closed streamline on a torus. In order to examine the features of 
particle paths we plot the Poincaré sections. 
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1 INTRODUCTION 
Flows in a lid-driven cavity display a lot of interesting physical phenomena in fluid 

mechanics. There have been many studies1 of the internal flows in the closed system 
with the simplest geometry because they are of fundamental importance as well as of 
practical importance.  

The sketch of the coordinate system of a three-dimensional lid-driven cavity, which 
has width H,  depth D and span L, is presented in Fig.1. The upper wall(y=1) moves in 
x-direction with constant speed U. Non-dimensional geometrical parameters of the 
cavity are the aspect ratio Γ=D/H and the spanwise aspect ratio Λ=L/H. The flow 
parameter is the Reynolds number Re=U/Hν where ν is the kinematic viscosity. 

A lot of papers have been published on three-dimensional cavity flows. Almost all 
the work are for a square cavity(Γ=1), and among them papers for long-span cavities are 
not many. Albensoeder et al. studied the flow in a cavity with Γ=1 and Λ=6.55 both 
experimentally and computationaly. For Re=850 Albensoeder et al.2 found that Taylor-
Görtler vortices can exist in the middle of the cavity around the center plane and that the 
Taylor-Görtler vortices are suppressed in the near-wall regions. Albensoeder and 
Kuhlmann3 later presented the numerical results which agree qualitatively with the 
experimental ones. The Taylor-Görtler vortices breaks down at Re=835±5 when the 
Reynolds number is reduced quasi-statically. This Reynolds number is about 6% larger 
than the critical Reynolds number obtained by a linear stability analysis for an infinitely 
long-span system with periodic boundary conditions. 

 Streamlines and Poincaré sections help us to examine characteristic features of 
three-dimensional cavity flows. Ishii et al.4 studied the streameline structure in the 
steady flow fields in a cubic cavity(Γ=Λ=1) for Re from 100 to 400. They showed that 
Poincaré sections of the streamlines present various structures of invariant curves, 
resonant islands and chaotic distribution. In the previous numerical study5 of the steady 
flows in a square cavity with Λ=6.55 at Re=850, we also found a cell structure in the 
center region. The present work is intended to study the three-dimensional features in 
the center region and in the near-wall regions of cavities with a long span for Re from 
100 to 850, and to investigate the difference between the regions with the cell structure 
and other regions. In the present paper we report the results of numerical simulations for 
the incompressible steady flows in a square cavity with Λ=6.55 for Re from 100 to 400. 
Streamlines and Poincaré sections are presented and they are compared with those 
obtained from the previous study of the flow in a cubic cavity by Ishii et al.  

The problem is formulated in Sect.2, and numerical methods are described in Sect.3. 
After the results are presented in Sect.4, conclusions are given in the last section. 

 

 

Figure 1: Coordinate system. 
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2 FORMULATION 

We consider the flow of an incompressible fluid with constant density ρ in a three-
dimensional lid-driven cavity. We study the flow structure in a square cavity(Γ=1) with 
a spanwise aspect ratio Λ=6.55 at Re = 100 and 300.  

The governing equations are the three-dimensional incompressible Navier-Stokes 
equations 

uuuu 21 
∇+−∇=∇⋅+

∂
∂

Re
p

t
,                        (1) 

      0=⋅∇ u ,            (2) 
where lengths, time, velocities and pressure are made dimensionless using H,U and ρ . 
The boundary conditions are 

u = (1,0,0)  at y = 1,   
u = 0   at y = 0,   

u = 0   at x = 0 and 1,  
 u = 0   at z = 0 and Λ.   

The boundary condition for the derivative is obtained from the above boundary 
conditions for u and the continuity equation 

0=
∂
∂

wall

n

n
u , 

where n denotes the normal direction to the wall. 

3 NUMERICAL METHODS 
Since the flows in lid-driven cavities have different spatial scales, it is essential to 

use schemes with high accuracy and high resolution in the numerical simulations6.  We 
therefore adopt the the Combined Compact Difference (CCD) method with spectral-like 
resolution which was developed by Nihei and Ishii7,8.  

3.1 A CCD scheme 

Consider a function )(xf  defined on the interval where N grid points are located 
with a uniform spacing h. Let if , '

if , ''
if  and '''

if  be the values of the function and its 
first, second and third derivatives at i-th grid point respectively. The CCD scheme gives 
a linear algebraic system of equations for the function and its first, second and third 
derivatives at three neighboring points  

 )()()()( 11
1'''

1
'''
1

2
1

"
1

"
11

'
1

'
11

'
−+−+−+−+ −=++−+++ iiiiiiiii ff

h
dffhcffhbffaf ,  

)2()()()( 112
2'''

1
'''
12

"
1

"
12

'
1

'
1

2''
−+−+−+−+ +−=−+++−+ iiiiiiiiii fff

h
dffhcffbff

h
af , 

)()()()( 113
3'''

1
'''
13

"
1

"
1

3'
1

'
12

3'''
−+−+−+−+ −=++−+++ iiiiiiiii ff

h
dffcff

h
bff

h
af .  

The coefficients of the linear system of equations are determined so that the CCD 
scheme has high accuracy and high resolution at the same time.  

The present CCD scheme has 8-th order accuracy for the first derivative at inner 
points and 5-th order accuracy for the first derivative at the boundary. When the first 
derivative is given at the boundary, the scheme has 5-th accuracy for the second 
derivative.  

The linear system of equations is written in matrix form  
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We solve this block tridiagonal system of equations to obtain the derivatives.  
Matrices and vectors in the equation are  
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for inner points, and we use the following parameters 
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3.2 A Poisson solver  
The Marker-and-Cell(MAC) method is used in solving the governing equations. In 

the MAC method, the Poisson equation for pressure needs to be solved in place of the 
continuity equation, 

qp =∇2 ,           (3)   
where  

nnn
n

Ret
q uuuu div1:div 2∇+∇∇+

∆
−=  

at the n-th time step for the momentum equation, and the boundary condition on the 
wall is 

n
wall Re

p u21
∇=∇ .  

In order to solve the Poisson equation, we include an artificial term which vanishes 
when the steady-state solution is reached 

qpp
−∇=

∂
∂ 2

τ
,        (4) 

where τ  is a fictitious time. The Crank-Nicolson form of this equation is 
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and this is transformed into 
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where  1+mp  is the value of p at the (m+1)-th step in solving eq.(5). When we apply an 
approximate factorization scheme to eq.(6), we obtain 
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We solve this equation using a three-step scheme given by 

Step1:    ( ){ }qpPP m
zyxx −∂+∂+∂∆=∂

∆
− ∗∗ 2222

2
ττ    and CCD equations in x-direction, 

Step 2:   ∗∗∗∗∗ =∂
∆

− PPP y
2

2
τ   and CCD equations in y-direction, 

Step 3:    ∗∗∗∗∗∗∗∗ =∂
∆

− PPP z
2

2
τ    and CCD equations in z-direction, 

where ∗P  and  ∗∗P  are intermediate values 
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mm ppP −= +∗∗∗ 1 . 

The equations for ∗P and its first, second and third derivatives are solved at Step 1. With 
the intermediate value of ∗P  the equations for ∗∗P  and its first, second and third 
derivatives are solved at Step 2. Then using the intermediate value of ∗∗P  the equations 
for ∗∗∗P and its first, second and third derivatives are solved at Step 3. The final value 

1+mp  of the (m+1)-th step is given by  
∗∗∗+ += Ppp mm 1 . 

We stop the iteration for eq. (5) when  
( ) pqqp ε<−∇ /2 , 

where 6101 −×=pε .  
After the Poisson equation for pressure is solved, we evaluate the value of the right 

hand side of the momentum equation (1) for the next step. We use a criterion  
ε<∆∆ tu /  

for the convergence to the steady state, where 5105 −×=ε . 

4 RESULTS  
In the present numerical simulation the 101×101×656 uniform grid system is used 

and the time step for the momentum equation is 3101 −×=∆t .  

4.1 Poincaré section 
Streamlines are obtained from the velocity field of the steady incompressible flow. 

We present Poincaré sections of twenty streamlines at Re = 100, 300 and 400 in Figs. 2, 
3 and 4 respectively. Dots in the map indicate positions where a certain streamline 
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intersects the plane of x=0.5 in the direction of negative x. The left half of the cavity is 
presented in the figures. The left side is the end wall and the right side is the center 
plane z=3.275. 

Figure 2: Poincaré section on x = 0.5 for Re = 100. 

         
Figure 3: Poincaré section on x = 0.5 for Re = 300. 

     
Figure 4: Poincaré section on x = 0.5 for Re = 400. 

In the Poincaré section for Re=100 in Fig. 2, we find many points which form three 
ovals surrounding a fixed point at around z = 0.4. The points on each oval are 
intersections by one closed streamline. This structure of streamlines in the steady flow 
is similar to that at Re=100 of the flow in the cubic cavity. In the Poincaré section for 
Re=300 in Fig. 3, only one closed dotted curve by a streamline can be found at around z 
= 0.3. Other points in the Poincaré sections in Figs. 2 and 3 correspond to chaotic 
motion. In the case of the cubic cavity, any well-defined closed curve cannot be found 
in the Poincaré section at Re > 335. In the Poincaré section for Re=400 in Fig. 4, we 
cannot find any oval near the end wall also in the long-span cavity, and there is an area 
in the lower central region (z=2.5-3.275) where streamlines of chaotic motion do not 
enter. The spanwise velocity component is small in this region. 

4.2 Streamlines 
Typical streamlines for Re=100 are presented in Figs. 5 and 6. The streamline in 

Fig.5 corresponds to one oval surrounding a point at around z = 0.4 in Fig. 2.  
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Figure 5: A localized streamline for Re = 100. 

 

Figure 6: An extending streamline for Re = 100. 

The streamline in Fig. 6 corresponds to points of chaotic motion in the Poincaré 
section in Fig. 2. The streamline starts from the plane presented in the figure, and it 
moves towards the left end wall in a large spiral, then it moves towards the center plane 
along the axis of the primary vortex in a small spiral. Near the center plane it spirals 
outwards. The streamlines of chaotic motion do not enter the torus presented in Fig. 5.    

 

Figure 7: A localized streamline for Re = 300. 

The streamline in Fig. 7 corresponds to a closed dotted curve at around z = 0.3 in 
Fig.3 for Re=300. Figures are not presented for Re=300 but there are streamlines 
corresponding to chaotic motion which are similar to the streamline in Fig. 6. 

5 CONCLUSIONS  
We studied the global flow structure in a square cavity with a spanwise aspect ratio 

Λ=6.55 at Re from 100 to 400. In order to simulate numerically the flows with different 
spatial scales we used a spectral-like combined compact finite difference (CCD) scheme 
with high accuracy and high resolution. A closed streamline on a torus is found at Re = 
100 and 300, and it is not found at Re=400. Several streamlines show chaotic behaviour. 
Those streamlines extend from the center to the end wall of the cavity, which shows that 
the flow is not two-dimesional in the center region of a long cavity with Λ=6.55. Even 
in the relatively low Reynolds number range Re from 100 to 400, the nature of the 
cavity flow is three-dimensional.  
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