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Abstract. We deal with the numerical solution of the system of the compressible Navier-
Stokes equations with the aid of the interior penalty Galerkin method. We employ a semi-
implicit time discretization which leads to the solution of a sequence of linear algebraic
systems. We present an efficient solution strategy of these systems with a focus on steady-
state problems. Our approach is based on a simple adaptive technique for the choice
of the time step and a relatively weak stopping criterion for iterative linear algebraic
solvers. The presented numerical experiments show that the proposed strategy is efficient
for steady-state problems using various grids, polynomial degrees of approximations and
flow regimes. Particularly we show that the computational time for the solution of these
systems is smaller than the computational time for their preparation. Finally, we apply
this strategy with a minor modification to an unsteady flow.
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1 Introduction

Our aim is to develop a sufficiently robust, efficient and accurate numerical scheme for
the simulation of steady as well as unsteady viscous compressible flows. The discontinuous
Galerkin (DG) methods have become very popular numerical technique for the solution
of the compressible Navier-Stokes equations. DG space discretization uses (higher order)
piecewise polynomial discontinuous approximation on arbitrary meshes. DG methods
were employed in many papers for the discretization of compressible fluid flow problems,
see, e.g., [1], [2], [3], [6], [8], [9], [12], [15], [16], [17], [18], and the references cited therein.
The recent progress of the use of DG method for compressible flow simulations can be
found in [19].

The time discretization can be carried out also by a discontinuous approximation (e.g.,
[18], [20]) but the most usual approach is an application of the method of lines. In this
case, the Runge-Kutta methods are very popular for their simplicity and a high order of
accuracy, see [1], [3], [4], [8]. Their drawback is a strong restriction to the size of the
time step. To avoid this disadvantage, it is suitable to use an implicit time discretization,
e.g., [2], [17]. However, a full implicit scheme leads to a necessity to solve a nonlinear
system of algebraic equations at each time level which is rather expensive. Therefore, in
[9], [11], we developed the semi-implicit method which is based on a suitable linearization
of the inviscid and viscous fluxes. The linear terms are treated implicitly (by a multistep
BDF formula) whereas the nonlinear ones by an explicit extrapolation which leads to a
linear algebraic system at each time level. We called this approach the backward difference
formula – discontinuous Galerkin finite element (BDF-DGFE) method.

The sequence of these linear algebraic systems should be solved by a suitable solver.
It is advantageous to use an iterative method (e.g., GMRES method [22] with a suitable
preconditioner) since the solution of the previous system can be used as an initial guess
of the solution of the next system. Moreover, it is not necessary to solve the systems
too precisely since they arise from a discretization of partial differential equations and
therefore the systems already contain discretization errors. Numerical experiments pre-
sented in [9] showed that BDF-DGFE method is efficient for unsteady flow problems but
its efficiency for steady-state flow regimes is very low. The solution of the linear algebraic
systems consumes more than 95% of the total computational time.

We present a new solution strategy which significantly reduce the computational time
for steady state flows in comparison with [9]. We were inspired by the idea of the inexact
Newton method [5] where also a sequence of linear algebraic systems has to be solved.
The key is to define a relatively weak stopping criterion which guarantees a convergence
to the steady state solution but requires only a few GMRES steps at each time level.

Although we focus in this paper on steady-state flows, we employ the “unsteady”
formulation since our aim is to solve also unsteady flows with the same method. This
approach is practical in situations when it is not known a priori if the flow regime is steady
or unsteady. Therefore, we develop a simple technique for the adaptive choice of the size
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of the time step. In this paper, we consider only one step BDF method (= backward
Euler method) for simplicity. An extension to n-step BDF (n ≥ 2) is straightforward.

The content of the rest of the paper is the following. In Section 2, we introduce the
system of the compressible Navier-Stokes equations. In Section 3, we recall the BDF-
DGFE discretization of the Navier-Stokes equations from [9]. In Section 4, we discuss
numerical solution of the arising linear algebraic systems. Particularly, we deal with the
choice of preconditioner of the GMRES method, stopping criteria and the size of the time
step. Section 5 contains a set of numerical experiments demonstrating the efficiency and
accuracy of the proposed strategy and also its robustness. The concluding remarks are
given in Section 6.

2 Compressible flow problem

Let Ω ⊂ IRd, d = 2, 3, be a bounded domain with a Lipschitz piecewise polynomial
boundary and T > 0. We set QT = Ω× (0, T ) and by ∂Ω denote the boundary of Ω which
consists of several disjoint parts. We distinguish inlet ∂Ωi, outlet ∂Ωo and impermeable
walls ∂Ωw, i.e. ∂Ω = ∂Ωi ∪ ∂Ωo ∪ ∂Ωw. The system of the Navier-Stokes equations
describing a motion of non-stationary viscous compressible flow can be written in the
dimensionless form

∂w

∂t
+

d∑

s=1

∂f s(w)

∂xs

=
d∑

s=1

∂

∂xs

(
d∑

k=1

Ksk(w)
∂w

∂xk

)

in QT , (1)

where
w = w(x, t) : QT → IRd+2 the state vector,
f s : IRd+2 → IRd+2, s = 1, . . . , d, the inviscid fluxes,
Ksk : IRd+2 → IR(d+2)×(d+2), s, k = 1, . . . , d, the viscous terms.

(2)

The forms of vectors w, f s, s = 1, . . . , d, and matrices Ksk, s = 1, . . . , d, can be found,
e.g., in [9] or [14, Section 4.3]. We consider the Newtonian type of fluid accompanied by
the state equation for perfect gas and the definition of the total energy. The system (1)
is equipped with a suitable initial and boundary conditions, see [8], [9]. We only mention
that we prescribe several Dirichlet boundary conditions on the inlet and impermeable walls
and on the rest of boundary the Neumann boundary condition is used. The problem to
solve the Navier-Stokes equations (1) equipped with the initial and boundary conditions
will be denoted by (CFP) (compressible flow problem).

If we omit the time derivative term on the left-hand side of (1), we obtain the stationary
Navier-Stokes equations. The problem to solve the stationary Navier-Stokes equations
equipped with the same boundary conditions as in the non-stationary case will be denoted
by (sCFP) (stationary compressible flow problem).
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3 DGFE discretization

3.1 Triangulations

Let Th (h > 0) be a partition of the closure Ω of the domain Ω into a finite number
of closed d-dimensional elements K with mutually disjoint interiors. By Fh we denote
the set of all open (d− 1)-dimensional faces (open edges when d = 2 or open faces when
d = 3) of all elements K ∈ Th. Further, the symbol F I

h stands for the set of all Γ ∈ Fh

that are contained in Ω (inner faces). Moreover, we introduce notations Fw
h , F i

h and
Fo

h for the sets of all Γ ∈ Fh such that Γ ⊂ ∂Ωw, Γ ⊂ ∂Ωi and Γ ⊂ ∂Ωo, respectively.
Furthermore, we denote by FD

h the set of all Γ ∈ Fh where the Dirichlet type of boundary
conditions is prescribed at least for one component of w (i.e., FD

h = Fw
h ∪ F

i
h) and by

FN
h the set of all Γ ∈ Fh where only the Neumann boundary conditions are prescribed

(i.e., FN
h = Fo

h). For a shorter notation we put F io
h = F i

h ∪ F
o
h, F ID

h = F I
h ∪ F

D
h and

FDN
h = FD

h ∪ F
N
h = Fw

h ∪ F
i
h ∪ F

o
h.

Finally, for each Γ ∈ Fh we define a unit normal vector nΓ. We assume that for Γ ∈
FDN

h the vector nΓ has the same orientation as the outer normal of ∂Ω. For nΓ, Γ ∈ F I
h ,

the orientation is arbitrary but fixed for each face.

3.2 Discontinuous finite element spaces

To each K ∈ Th, we assign a positive integer pK (local polynomial degree). Then
we define the vector p = {pK , K ∈ Th}. Over the triangulation Th we define the finite
dimensional space of discontinuous piecewise polynomial functions associated with the
vector p by

Shp = {v; v ∈ L2(Ω), v|K ∈ PpK
(K) ∀K ∈ Th}, (3)

where PpK
(K) denotes the space of all polynomials on K of degree ≤ pK , K ∈ Th. We

seek the approximate solution in the space Shp = Shp × . . .× Shp (d + 2 times).
For each Γ ∈ F I

h there exist two elements Kp, Kn ∈ Th such that Γ ⊂ Kp ∩Kn. We use
a convention that Kn lies in the direction of nΓ and Kp in the opposite direction of nΓ.

Then for v ∈ Shp, we introduce the notation: v|
(p)
Γ is the trace of v|Kp

on Γ, v|
(n)
Γ is the

trace of v|Kn
on Γ, and 〈v〉Γ := 1

2

(

v|
(p)
Γ + v|

(n)
Γ

)

, [v]Γ := v|
(p)
Γ − v|

(n)
Γ .

For Γ ∈ FDN
h there exists element Kp ∈ Th such that Γ ⊂ Kp ∩ ∂Ω. Then for v ∈ Shp,

we denote by v|
(p)
Γ the trace of v|Kp

on Γ and 〈v〉Γ = [v]Γ = v|
(p)
Γ . By v|

(n)
Γ , Γ ∈ FD

h ∪F
N
h ,

we formally denote the trace of v on Γ from the exterior of Ω given either by a boundary
condition or by an extrapolation from the interior of Ω.

In case that [·]Γ and 〈 · 〉Γ are arguments of
∫

Γ
. . . dS, Γ ∈ Fh we omit the subscript Γ

and write simply [·] and 〈 · 〉, respectively.
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3.3 Discretization of the Navier-Stokes equations

In this section, we recall the backward difference formula – discontinuous Galerkin
finite element (BDF-DGFE) method for the solution of the Navier-Stokes equations (1)
presented in [9]. For wh, w̄h,ϕh ∈ Shp, we define the forms, which represent the interior
penalty Galerkin (IPG) discretization of (1), namely

ch(w̄h,wh,ϕh) := −
∑

K∈Th

∫

K

d∑

s=1

As(w̄h)wh ·
∂ϕh

∂xs

dx (4)

+
∑

Γ∈FI
h

∫

Γ

(

P+ (〈w̄h〉,n)wh|
(p)
Γ + P− (〈w̄h〉,n)wh|

(n)
Γ

)

· [ϕh]dS

+
∑

Γ∈F io
h

∫

Γ

(

P+ (〈w̄h〉,n)wh|
(p)
Γ

)

· [ϕh] dS +
∑

Γ∈Fw
h

∫

Γ

FW (w̄h,wh,n) ·ϕh dS,

+
∑

K∈Th

∫

K

d∑

s,k=1

(

Ks,k(w̄h)
∂wh

∂xk

)

·
∂ϕh

∂xs

dx

−
∑

Γ∈FID
h

∫

Γ

d∑

s=1

〈
d∑

k=1

Ks,k(w̄h)
∂wh

∂xk

〉

ns · [ϕh] dS

−θ
∑

Γ∈FID
h

∫

Γ

d∑

s=1

〈
d∑

k=1

KT
s,k(w̄h)

∂ϕh

∂xk

〉

ns · [wh] dS +
∑

Γ∈FID
h

∫

Γ

σ[wh] · [ϕh] dS

and

b̃h(w̄h,ϕh) := −
∑

Γ∈F io
h

∫

Γ

(

P− (〈w̄h〉,n) w̄h|
(n)
Γ

)

· [ϕh] dS, (5)

−θ
∑

Γ∈FD
h

∫

Γ

d∑

s,k=1

KT
s,k(w̄h)

∂ϕh

∂xk

ns ·wB dS +
∑

Γ∈FD
h

∫

Γ

σwB ·ϕh dS,

where As(·) are the Jacobi matrices of the mappings f s, s = 1, . . . , d, P± are the positive
and negative parts of the matrix P (w,n) :=

∑d
s=1As(w)ns, which define the Vijayasun-

daram numerical flux [23] used for the approximation of inviscid fluxes trough Γ ∈ Fh.
Moreover,

FW (w̄h,wh,n) = (γ − 1)DFW (w̄h,n)wh, (6)

where DFW (w,n) is a (d + 2) × (d + 2) Jacobi matrix of (0, pn1, . . . , pnd, 0)T, where p

is pressure, see [8], [9] or [11]. Furthermore, w̄|
(n)
Γ = LRP (w̄|

(p)
Γ ,wD,nΓ), Γ ∈ F io

h where
LRP (·, ·, ·) represents a solution of the local Riemann problem considered on edge Γ ∈ F io

h

and wD is a given state vector (e.g. from far-field boundary conditions), see [10]. The
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state vector wB prescribed on ∂Ωi ∪ ∂Ωw is given by the boundary conditions, see [8] or
[9].

The value of θ appearing in (4) – (5) is equal to 1, −1 or 0 depending on the vari-
ant of interior penalty method, namely θ = 1 for symmetric interior penalty Galerkin
(SIPG), θ = −1 for non-symmetric interior penalty Galerkin (NIPG), θ = 0 for incom-
plete interior penalty Galerkin (IIPG). Finally, the penalty parameter σ is chosen by
σ|Γ = CW /(diam(Γ) Re), Γ ∈ F ID

h , where Re is the Reynolds number of the flow and
CW > 0 is a suitable constant whose choice depends on the used variant of the DGFE
method (NIPG, IIPG or SIPG) and the degree of polynomial approximation, see [9].

The forms ch and c̃h make sense not only for piecewise polynomial functions but
also for functions from H2(Ω, Th) := {ϕ;ϕ|K ∈ (H2(K))d+2 ∀K ∈ Th} where H2(K)
is the standard Sobolev space over K. It is possible to show (see, e.g., [8], [9]) that if
w : Ω × (0, T ) → IRd+2 is a sufficiently regular function satisfying the Navier-Stokes
equations (1) and the corresponding initial and boundary conditions then

d

dt
(w,ϕ) + ch (w,w,ϕ) = c̃h (w,ϕ) ∀ϕ ∈ Shp, (7)

where (·, ·) denotes L2-scalar product over Ω.
Similarly, if w : Ω → IRd+2 is a sufficiently regular function satisfying the stationary

Navier-Stokes equations and the corresponding boundary conditions then

ch (w,w,ϕ) = c̃h (w,ϕ) ∀ϕ ∈ Shp. (8)

Now, we introduce the space semi-discretization of (CFP). Let C1([0, T ];Shp) denote
the space of continuously differentiable mappings of the interval [0, T ] into Shp.

Definition 1 Function wh ∈ C1([0, T ];Shp) is called the semi-discrete solution of (CFP),
if

a)

(
∂wh(t)

∂t
,ϕh

)

+ ch(wh(t),wh(t),ϕh) = c̃h(wh(t),ϕh) ∀ϕh ∈ Shp ∀ t ∈ (0, T ),

b) wh(0) = w0
h, (9)

where w0
h ∈ Shp denotes an Shp-approximation of the initial condition.

The problem (9), a) – b) represents a system of ordinary differential equations (ODEs)
for wh(t) which has to be discretized in time by a suitable method. Since these ODEs
represent a stiff system, a use of a (semi-)implicit method is advantageous. Therefore, we
employ the semi-implicit technique developed in [9] and [11] which is based on the linearity
of the form ch(·, ·, ·) with respect to its second argument following from expressions (4)
– (5). Hence, for the first order scheme with respect to time, we approximate the time
derivative term in (9), a) by backward Euler method, the second argument of ch(·, ·, ·) is
treated implicitly and the first one explicitly.

6
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Let 0 = t0 < t1 < t2 < . . . tr = T be a partition of the time interval (0, T ), τk :=
tk − tk−1, and wk

h ∈ Shp denotes a piecewise polynomial approximation of wh(tk), k =
0, 1, . . . , r. We define the following scheme.

Definition 2 The approximate solution of (CFP) by the semi-implicit DGFE scheme is
defined as functions wh,k, k = 1, . . . , r, satisfying the conditions

a) wh,k ∈ Shp, (10)

b)
1

τk

(wh,k −wh,k−1, ϕh) + ch (wh,k−1, wh,k, ϕh) = c̃h (wh,k−1, ϕh) ∀ϕh ∈ Shp,

c) wh,0 ∈ Shp is an approximation of w0.

The method (10) is a first order scheme with respect to the time which is sufficient
for steady-state problems. Otherwise, it is possible to use multi-step backward difference
formulae for the time discretization, see [9]. Then all considerations presented in this
paper have to be slightly modified.

The problem (10), a) – c) represents a linear algebraic system for each k = 1, . . . , r,
whose solution is discussed in Section 4. Numerical experiments show that the resulting
semi-implicit DGFE method is practically unconditionally stable, i.e., the size of the time
step can be chosen very large, see [9].

Finally, we introduce the discrete problem for the stationary Navier-Stokes equations.

Definition 3 Function wh ∈ Shp is called the discrete solution of (sCFP), if

ch(wh,wh,ϕh) = c̃h(wh,ϕh) ∀ϕh ∈ Shp. (11)

We already mentioned in Introduction, the non-stationary formulation (9) will be used
for the solution of (sCFP).

4 Solution strategy

In this section, we present an efficient solution strategy of the (stationary) discrete
problem (11). However, its direct solution causes some troubles mentioned bellow. Hence
we employ the non-stationary formulation (10) for its solution.

4.1 Linear algebra representation

4.1.1 Basis of Shp

Let us introduce an index set I ⊂ ZZ+(=set of all positive integers) numbering elements
K ∈ Th, i.e., Th = {Kµ, µ ∈ I}. By pµ = pKµ

we denote the degree of polynomial
approximation on element Kµ, µ ∈ I. Since Shp is a space of discontinuous piecewise

7
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polynomial functions, it is possible to consider a set of linearly independent polynomial
functions on Kµ for each Kµ ∈ Th. Then we define the basis of Shp by

B =
{

ψµ,j; ψµ,j ∈ Shp, supp(ψµ,j) ⊆ Kµ, (12)

ψµ,j are linearly independent for j = 1, . . . , dofµ, µ ∈ I
}

,

where dofµ = (d+2)/d! Πd
j=1(pµ +j), µ ∈ I denotes the number of local degrees of freedom

for each element Kµ ∈ Th. By dof, we denote the dimension of Shp (=number of elements
of the basis B) which is equal to dof =

∑

µ∈I dofµ.
Therefore, a function wh,k ∈ Shp can be written in the form

wh,k(x) =
∑

µ∈I

dofµ∑

j=1

ξk,µ,jψµ,j(x), x ∈ Ω, k = 0, 1, . . . , r, (13)

where ξk,µ,j ∈ IR, j = 1, . . . , dofµ, µ ∈ I, k = 0, . . . , r. Moreover, for wh,k ∈ Shp, we

define a vector of its basis coefficients by ξk = {ξk,µ,j}
µ∈I
j=1,...,dofµ

∈ IRdof , k = 0, 1, . . . , r.

Therefore, using (13), we have an isomorphism

wh,k ∈ Shp ←→ ξk ∈ IRdof . (14)

4.1.2 Linear algebraic systems

Using isomorphism (14), problem (10) can be written in the matrix form
(

1

τk

M +C(ξk−1)

)

︸ ︷︷ ︸

=:Ak

ξk =
1

τk

m(ξk−1) + q(ξk−1)
︸ ︷︷ ︸

=:dk

, k = 1, . . . , r, (15)

where the matrix M is a block-diagonal mass matrix given by

M = {(ψµ,i,ψµ,j)}
i=1,...,dofµ,j=1,...,dofν
µ,ν∈I , µ, ν ∈ I, (16)

the matrix C is the “flux” matrix corresponding to form ch defined by

C(ξk−1)) = {ch

(
wh,k−1, ψν,j, ψµ,i

)
}

i=1,...,dofµ,j=1,...,dofν
µ,ν∈I , (17)

m ∈ IRdof represents the “explicit” part of the approximation of the time derivative in
(10), b) defined by

m(ξk−1) = Mξk−1 = {
(
wh,k−1, ψµ,i

)
}

i=1,...,dofµ
µ∈I , (18)

and q ∈ IRdof represents form c̃h in (10), b) given by

q(ξk−1) = {c̃h

(
wh,k−1, ψµ,i

)
}

i=1,...,dofµ
µ∈I . (19)

In virtue of the local character of basis B matrix C has a block structure. The matrix
element C(µ,i),(ν,j) is non-vanishing if µ = ν or if elements Kµ and Kν share an face.

8
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4.2 Abstract solution strategy

In virtue of (15), the stationary discrete problem (11) reads: find ξ ∈ IRdof such that

C(ξ)ξ = q(ξ). (20)

The problem (20) represents a system of nonlinear algebraic equations. It is possible to
define an iterative method for solving (20) by: find ξk ∈ IRdof , k = 1, 2, . . . such that

C(ξk−1)ξk = q(ξk−1), k = 1, 2, . . . , (21)

and put ξ := limk→∞ ξk. However, this simple method works only if the initial guess
ξ0 is very close to solution ξ of (20). Otherwise, the iterative process (21) fails since
nonphysical solutions appear.

One possibility how to avoid this principle obstacle is a use of the unsteady formulation
(15). The idea is natural. We start with a small time step for small k when the approxi-
mation ξk is far from ξ. Then, when ξk is approaching to the limit vector ξ for increasing
k, we successively increase the size of the time step τk. Consequently, the problems (15)
lead to (21) for τk → ∞. On the other hand, the non-stationary discretization (15)
can be considered as a “relaxation” of method (21) and the ratio 1/τk as the relaxation
parameter.

It is suitable to employ an iterative solver for the solution of the linear algebraic systems
(15) since the solution ξk, k = 1, 2, . . . obtained in kth-iteration can be used as initial guess
for ξk+1. We employ the GMRES method [22] with the block ILU(0) preconditioner
which represents a widely used technique for the solution of non-symmetric sparse linear
algebraic systems. The based ILU(0) preconditioner uses the incomplete LU factorization
by performing block Gaussian elimination but ignoring blocks which would result in any
additional fill of the matrix. Therefore, no additional memory is required.

Now, we are ready to introduce
Abstract algorithm (AA)

1. let ξ0 ←→ w0
h be given

2. for k = 1 to r

(a) set τk

(b) from ξk−1 evaluate Ak(ξk−1) and dk(ξk−1)

(c) solve Ak(ξk−1)ξk = dk(ξk−1) by:

i. ξ0
k := ξk−1

ii. ξl+1
k := GMRES iter(ξl

k), l = 1, . . . , sk

iii. ξk := ξsk

k

3. ξ := ξr.

9
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Here, GMRES iter(·) formally denotes a performance of one GMRES step with the block
ILU(0) preconditioner.

In the abstract algorithm (AA), there are still open questions how to choose the total
number of time levels r, the size of τk, k = 1, . . . , r and the number of GMRES steps sk

at each time level. Therefore, in order to define a real algorithm we have to specify the
algorithm settings, namely

• stopping steady-state criterion, i.e., when to stop the global iterative loop,

• GMRES stopping criterion, i.e., how many GMRES steps have to be employed at
each time level,

• choice of the time step τk.

Our goal is to define the previous algorithm settings in order to achieve the final limit
vector ξ as soon as possible (measured in terms of the computational time). In the
following, we discuss these aspects separately.

4.3 Algorithm settings

4.3.1 Stopping steady-state criterion

In virtue of (20), it is possible to employ the steady-state residual criterion

‖C(ξk)ξk − q(ξk)‖ℓ2 ≤ TOL, (22)

which is independent of τk and measures the residuum of the nonlinear algebraic system
(20). However, the residuum (22) depends on the size of the computational domain Ω, on
the magnitude of components of wh, etc. Therefore, from the practical reasons, we use
the relative residuum steady-state criterion

SSres(k) :=
‖C(ξk)ξk − q(ξk)‖ℓ2

‖C(ξ0)ξ0 − q(ξ0)‖ℓ2
≤ TOL, (23)

which already does not suffer from the mentioned drawbacks.
Moreover, we employ the stopping criteria which follow from the physical background

of the considered problem. Many often, we are interested in the aerodynamic coefficients
of the considered flow, namely coefficients of drag (cD), lift (cL) and momentum (cM).
Then the natural choice is to stop global iterative loops when these coefficients achieve a
given tolerance, e.g.,

∆cx(k) ≤ tol, ∆cx(k) := max
l=0.9k,...,k

cx(l)− min
l=0.9k,...,k

cx(l), (24)

where tol is a given tolerance, subscript x takes the values D, L and M (drag, lift,
momentum), cx(k) is the value of the corresponding aerodynamic coefficient at kth-time
level and the minimum and maximum in (24) are taken over the last 10% of the number
of time levels.

10
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4.3.2 GMRES stopping criterion

In this section we deal with the stopping criterion of the inner loops in (AA), i.e., when
to stop the GMRES iterative process at each time level k = 1, . . . , r. Since our aim is
to obtain the final steady-state solution ξ from (AA) as fast as possible it does not make
sense to solve the linear algebraic systems (15) too precisely.

In [5], the so-called inexact Newton method was proposed for the solution of a system of
nonlinear algebraic equations. The main idea is that the linear algebraic systems (arising
from the Newton method) are solved by an iterative solver till the residuum is only a
few times smaller than the residuum of the initial guess of the solution (taken from the
previous level). Using this idea, we use the following stopping criterion for the GMRES
method at each time level:

‖Ak(ξk−1)ξk − dk(ξk−1)‖ ≤ δk‖Ak(ξk−1)ξk−1 − dk(ξk−1)‖, k = 1, . . . , r, (25)

where δk ∈ (0, 1) is a given value, the left-hand side is the residuum and the term on the
right-hand side can be considered either as the consistency residuum from the previous
time level or the initial residuum since the solution of the previous time level is taken as
an initial solution on the next time level. Therefore, the iterative process is stopped if
the residuum is 1/δk-times smaller than the initial one.

However, in order to save the computational time, we employ the stopping criterion in
the form

‖P̂ (Ak(ξk−1)ξk − dk(ξk−1))‖ ≤ δk‖P̂ (Ak(ξk−1)ξk−1 − dk(ξk−1))‖, k = 1, . . . , r, (26)

since the norm on the left-hand side of (26) is available at each GMRES step and thus we
need not to evaluate the residuum at the left-hand-side of (25). Numerical experiments
show that both stopping criteria (25) and (26) have very similar behavior.

In [13], there were presented two choices of δk and the corresponding orders of conver-
gence of the inexact Newton method were proved. However, our numerical experiments
show that the efficiency of the method only weakly depends on value δk chosen around
1/2. Therefore, we put δk = δ = 1/2, k = 1, . . . , r in our algorithm.

4.3.3 Choice of the time step

The strategy of the choice of the time step has a great influence to the efficiency of the
discussed method. We already mentioned that the semi-implicit time discretization allows
to choose the time step many times larger than an explicit scheme. On the other hand, at
the beginning of the computation, we usually start from an unphysical initial condition
and then too large time step can cause a fail of the computational process. Therefore, our
aim is to construct sufficiently robust algorithm which automatically increase the time
step from small values at the beginning of the computation to the larger ones.

11
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We use a strategy which is based on an very low cost estimation of the local discretiza-
tion error. Let us consider ODE y′ = f(y), where y : [0, T ] → IR and f : IR → IR. We
denote by yk ≈ y(tk) an approximation of the solution y at tk, k = 1, . . . , r. The local
discretization error Lk of the backward Euler method is given by

Lk := y(tk)− yk ≈
1

2
τ 2
ky′′(θk), θk ∈ (tk−1, tk), (27)

where y′′ denotes the second order derivative of y. Now, we define a quadratic function
ỹ : (tk−2, tk)→ IR such that ỹ(tk−l) = yk−l, l = 0, 1, 2. The second order derivative of ỹ
is constant on (tk−2, tk) and hence we put

Lk ≈ Lapp
k :=

1

2
τ 2
k ỹ′′. (28)

Let ω > 0 be a given tolerance for the local discretization error. Our aim is to choose the
time step as large as possible but Lk ≤ ω, k = 1, . . . , r. Using (28), we obtain a relation
for the optimal size of τk by

τ opt
k := τk

(
ω

Lapp
k

)1/2

. (29)

Hence, if Lk ≤ ω we put τk+1 := τ opt
k and proceed to the next time level. Otherwise,

we repeat kth-time step with τk := τ opt
k . From practical reasons, we restrict the increase

of the time step by the condition τk+1 ≤ 2.5τk. Finally, the first two time steps are
chosen in this way that τ0 and τ1 correspond to the time steps used for the explicit time
discretization with CFL = 0.5, see [14]. This approach can be simply extend to a system
of ODEs component-wise.

4.4 New solution strategy

We summarize the solution strategy for the solution of (10). We use the algorithm
(AA) where

i) the global loop is stopped if the steady state conditions (23) and (24) are satisfied,

ii) the size of the time step is chosen by the algorithm presented in Section 4.3.3,

iii) the GMRES iterations are performed till the stopping criterion (26) is satisfied.

5 Numerical experiments

In this section, we present a set of numerical experiments in order to demonstrate the
efficiency of the method, namely the relative computational times necessary for the setting
and the solution of the linear algebraic systems. Moreover, we present two additional
numerical examples demonstrating the robustness of the solution strategy with respect to
the flow regime.
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Pk #Th dof preparing solving CPU(s) CPU(s) Σ

Ak,dk Akξk = dk dof
P1 1 666 19 992 56% 43% 55.8 2.79E-03 4
P1 2 394 28 728 57% 42% 81.1 2.82E-03 4
P1 3 530 42 360 61% 38% 188.7 4.45E-03 6
P1 4 214 50 568 65% 34% 224.0 4.43E-03 7
P2 1 666 39 984 56% 43% 139.4 3.49E-03 3
P2 2 394 57 456 58% 41% 243.3 4.23E-03 3
P2 3 530 84 720 56% 43% 424.2 5.01E-03 3
P2 4 214 101 136 62% 37% 571.3 5.65E-03 5
P3 1 666 66 640 58% 41% 442.2 6.64E-03 3
P3 2 394 95 760 56% 43% 602.4 6.29E-03 3
P3 3 530 141 200 59% 40% 1 274.9 9.03E-03 3
P3 4 214 168 560 63% 36% 2 158.4 1.28E-02 5

Table 1: Relative computational times for the preparing of the linear algebraic systems and their solution
by the new solution strategy, Σ denotes an average number of GMRES steps per each time level

5.1 Efficiency of the algorithm

We consider a laminar viscous subsonic flow around the NACA 0012 profile with in-
let Mach number Minlet = 0.5, the angle of attack α = 2◦ and the Reynolds number
Re = 5 000. We employ the IIPG variant of DGFE method with the penalty parameter
CW = 200 and numerical experiments were carried out by P1, P2 and P3 polynomial
approximations on four triangular unstructured grids having 1 666, 2 394, 3 530 and 4 214
elements. These meshes were generated by the ANGENER code [7], similarly as the grid
from Figure 1. We employ the stopping criteria (23) with TOL = 10−4 and (24) with
tol = 10−4.

In order to demonstrate the efficiency of the new solution strategy, we compare the
relative computational times necessary for the preparing of the linear algebraic systems
(i.e., the evaluations of the matrices Ak and the right-hand side dk, k = 1, . . . , r using
(15) – (19) ) and themselves solutions with the aid of this strategy. We employ the values
δ = 0.5 in (26) and ω = 0.5 in (29). Table 1 shows the relative computational times
for the preparing of the linear algebraic systems and their solution by the new solution
strategy for all grids and all degrees of polynomial approximations. We observe that the
solution of the sequence of the linear algebraic systems (15) requires less than 50% of
the computational time. Therefore, our strategy is in fact optimal since any additional
increase of the efficiency of the solution of (15) does not cause any essential increase
of the efficiency of the global scheme (10). An additional acceleration the scheme (10)
would require also an acceleration of the setting of matrices Ak, k = 1, . . . , r , e.g., by
a matrix-free implementation. Last three columns show the total computational times
in seconds, the computational time per one degree of freedom (dof) in seconds and the
average number of GMRES steps performed at each time level.

Moreover, we compare the proposed strategy with the explicit time discretization from
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P1 P3

case method CPU time memory CPU time memory
explicit [8] 6 194 s 6 MB — 41 MB

inviscid semi-implicit [9] 232 s 34 MB 2 283 s 177 MB
new semi-implicit 47 s 30 MB 226 s 168 MB

explicit [8] 11 680 s 5 MB — 38 MB
viscous semi-implicit [9] 362 s 25 MB 2 292 s 172 MB

new semi-implicit 97 s 24 MB 613 s 162 MB

Table 2: Comparison of the computational times and the memory requirements of the explicit, semi-
implicit and new semi-implicit time discretization

[8] and our former semi-implicit time discretization from [9]. We consider the viscous
flow and also the limit inviscid flow (Re → ∞) with the same data setting. Table 2
shows a comparison of the computational times and the memory requirements of these
three approaches for the inviscid and viscous flows using P1 and P3 polynomial approx-
imation. We simply observe a significant decrease of the computational times. On the
other hand, semi-implicit approaches requires more memory since the matrices are stored
in our implementations.

5.2 Additional numerical examples

In order to demonstrate the robustness of the presented approach with respect to the
flow regime, we present two additional examples from [21].

5.2.1 Transonic viscous flow

We consider a transonic flow around the NACA 0012 profile with the inlet Mach number
Minlet = 0.85, angle of attack α = 0◦ and the Reynolds number Re = 2 000. We employ a
triangular grid from Figure 1, P3 polynomial approximation and the algorithm (AA) with
δ = 0.5 in (26) and ω = 0.5 in (29).

We observe that the computational time for the solution of the corresponding lin-
ear algebraic systems (15) is shorter than the computational time for their preparation.
Moreover, approximately 5 GMRES steps is performed at each time level. Therefore, the
efficiency of the solution strategy (AA) is high similarly as for the subsonic flow presented
in Section 5.1. Figure 2 shows the corresponding isolines of the Mach number and the
pressure.

5.2.2 Unsteady viscous flow

Finally, we present a transonic flow around the NACA 0012 profile with the inlet
Mach number Minlet = 0.85, angle of attack α = 0◦ and the Reynolds number Re =
10 000. This problem is more challenging since the flow is unsteady with a periodic
propagation of vortexes behind the profiles, see [21]. As we already mention, our solution
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Figure 1: NACA 0012, Minlet = 0.85, α = 0◦ and Re = 2 000, triangular grid

Figure 2: NACA 0012, Minlet = 0.85, α = 0◦ and Re = 2 000, isolines of Mach number (top) and isolines
of pressure (bottom)

strategy, originally developed for steady flows, can be used without any modification also
for unsteady flows. We employ again the value δ = 0.5 in the stopping criterion (26).

On the other hand, the problem is unsteady then it is necessary to choose the time
step smaller in order to guarantee an accuracy with respect to the time. Obviously, it is
more efficient to use a higher order scheme with respect to time (e.g., BDF formulae as in
[9]). This will be a subject of further research. Here, we only demonstrate the capability
of our approach to solve unsteady problems. Therefore, we use the adaptive (first order)
time step algorithm from Section 4.3.3 and put the tolerance ω = 0.01 in (29).

We employed a grid similar to grid from Figure 1 and P2 polynomial approximation.
We carried out a computation for the physical (dimensionless) time t ∈ (0, 90). Figure 3
(top) shows the dependence of the lift coefficient cL on time for t ∈ (80, 90) (in order to see
better details). We observe a periodic oscillations with the period approximately equal to
∆t = 0.7. Figures 3 and 4 show the Mach number isolines at times ti = 89.4+ i/7∆t, i =
1, 2, . . . 7 demonstrating the periodic propagation of vortexes behind profile. These results
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are in good agreement with the results from [21] and [9] and moreover, the computational
time was shorter in comparison with [9].

It may be surprising that the “weak” stopping condition (26) with δ = 0.5 works
also for unsteady flows, particularly any lost of the accuracy was not observed. This
is caused by the fact that τk is significantly smaller than for steady-state problems and
therefore there is a small difference between ξk−1 and ξk. Hence, the initial residuum at
the right-hand side of (26) is already small. This is a large advantage of our approach.

6 Conclusion

We dealt with the semi-implicit discontinuous Galerkin method for the numerical solu-
tion of viscous compressible flows which leads to the solution of the sequence of linear al-
gebraic systems. We presented the efficient solution strategy for steady-state flow regimes
when the solution of these systems requires shorter computational time than their prepa-
ration. This approach requires a choice of two parameters (tolerance ω and δ). However,
their choice is very simple. We demonstrate the approach robustness with respect to the
mesh size (number of degree of freedom), degree of polynomial approximations and flow
regimes.
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Figure 3: NACA 0012, Minlet = 0.85, α = 0◦ and Re = 10 000, dependence of the lift coefficient cL on
time t during t = (80, 90) and the isolines of Mach number at 1/7, 2/7 and 3/7 of one period
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Figure 4: NACA 0012, Minlet = 0.85, α = 0◦ and Re = 10 000, the isolines of Mach number at 4/7, 5/7,
6/7 and 7/7 of one period
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