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Abstract. A numerical method for generic barotropic flows is presented, together with its
application to the simulation of cavitating flows. A homogeneous-flow cavitation model is
indeed considered, which leads to a barotropic state equation. The continuity and momen-
tum equations for compressible flows are discretized through a mixed finite-element/finite-
volume approach, applicable to unstructured grids. P1 finite elements are used for the
viscous terms, while finite volumes for the convective ones. The numerical fluxes are
computed by shock-capturing schemes and ad-hoc preconditioning is used to avoid accuracy
problems in the low-Mach regime. A HLL flux function for barotropic flows is proposed,
in which an anti-diffusive term is introduced to counteract accuracy problems for contact
discontinuities and viscous flows typical of this class of schemes, while maintaining its
simplicity. Second-order accuracy in space is obtained through MUSCL reconstruction.
Time advancing is carried out by an implicit linearized scheme. For this HLL-like flux
function two different time linearizations are considered; in the first one the upwind part
of the flux function is frozen in time, while in the second one its time variation is taken
into account. The low-diffusivity characteristics of the LD-HLL scheme are first assessed
for the classical case of Blasius boundary-layer. The Roe flux function is also considered
for comparison. It is shown that the anti-diffusive term introduced in the HLL scheme is
actually effective to obtain good accuracy (similar to the one of the Roe scheme) for vis-
cous flows. Then, the results of the simulations of the flow around a hydrofoil mounted in
a tunnel are shown, both in cavitating and non-cavitating conditions. It is shown that the
more complete time linearization is a key ingredient to largely improve numerical stability
and efficiency in cavitating conditions.
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1 INTRODUCTION

The prediction and characterization of cavitating flows, which occur in several en-
gineering devices (e.g. turbomachinery, hydrofoils, marine propellers, etc), is of great
importance, since cavitation has strong effects on performance and life of such devices.

From a physical view point, cavitating flows are characterized by different phenomena
interacting each other, such as change of phase, complex interactions between vapor and
liquid, unsteady and not well defined vapor to liquid interfaces, turbulence. All this ren-
ders the modeling of cavitating flows a very complex task. Several models exist in the
literature of different levels of complexity (see [1] for a brief review). Among them are
the so-called one-fluid or equivalent-fluid models, in which the cavitating flow is described
in terms of a single fluid or mixture, whose properties are derived through suitable as-
sumptions, and, more particularly, the barotropic homogeneous fluid models, in which the
density and the pressure are linked each other through an equation of state, both for pure
liquid and for the liquid-vapor mixture (see e.g. [2, 3, 4, 5]). The models of this kind,
although they introduce rather strong simplifications and neglect a fine description of the
local behavior of cavitation, are attracting because of their simplicity and because they
a-priori have the capability of describing the large-scale effects of cavitation, which are
dominating in many applications of interest, such as for instance in the field of rocket
propulsion. In spite of the simplifying assumptions made and the apparent simplicity of
such models, strong difficulties arise for numerical simulation, which are mainly due to
the fact that the cavitating mixture is described as a highly compressible fluid, character-
ized by speed of sound values of several orders of magnitude lower that those of the pure
liquid. Moreover, an abrupt transition from the wetted (incompressible) to the cavitating
(highly supersonic) regimes occurs.

In this context, the present work is part of a research activity aimed at developing a
numerical set-up for the simulation of flows characterized by a generic barotropic equation
of state [1, 6, 7]. For the particular application to cavitating flows, a homogeneous-flow
model explicitly accounting for thermal cavitation effects and for the concentration of
the active cavitation nuclei in the pure liquid proposed in [3] was adopted. For cavitat-
ing flow simulation, it is clear that the numerical schemes must be designed in order to
cope with nearly incompressible and highly-compressible regions coexisting in the flow.
Two opposite approaches can be found in the literature: adaptation to compressible flows
of methods developed for incompressible flows or adaptation to the incompressible limit,
usually through ad-hoc preconditioning, of compressible flow solvers. The latter approach
was used in our previous works and a preconditioned linearized implicit numerical method
for the simulation of compressible barotropic flows on unstructured grids was developed,
in which the spatial discretization of the convective terms is carried out through a finite-
volume approach. The Roe numerical flux function [8] was adapted to barotropic flows
while a Turkel-like preconditioning was considered to deal with low Mach number regime
[1, 6]. Second-order spatial accuracy is obtained through the MUSCL reconstruction tech-
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nique [9]. As for time advancing, a linearized implicit algorithm was defined by considering
a Jacobian-free linearization of fluxes only relying on the properties of the Roe matrix
[1, 6]. This linearized implicit formulation was then associated to a defect-correction tech-
nique to obtain second-order accuracy (both in time and space) at limited computational
costs [7]. The set-up numerical tool was tested for different types of barotropic equations
of state and flow regimes, and this validated most of the used ingredients, as, for instance,
the accuracy and efficiency in the low Mach regime [1] or 2nd-order accuracy in time
and space [7]. In [6], an application to the simulation of the inviscid flow in a realistic
configuration of a rocket turbopump inducer in non-cavitating conditions is described.
However, for cavitating flows, the stability properties of the scheme were found to dete-
riorate dramatically and only very small time steps are allowed. This clearly increases
the computational costs and, thus, makes difficult to afford the simulation of complex
cavitating flows, as occur in many aerospace and industrial applications. A rather strong
reduction of the CFL number allowed by numerical stability was also recently observed
in [10] for a linearized implicit time-advancing scheme, when passing from non-cavitating
to cavitating conditions.

Two new ingredients are introduced and investigated herein, in order to counteract
with these efficiency limitations. First, a different numerical flux function is used for the
convective fluxes. The starting point is the Rusanov numerical flux function (see e.g.
[11]), which is the simplest scheme of the HLL family [12]. This scheme is known to have
excellent robustness properties and is attracting because of its simplicity. A preliminary
study [13] was carried out in this direction showing promising results. However, the
Rusanov flux as well all the HLL schemes are also known for their excessive diffusive
behavior in presence of a contact discontinuity and they are, thus, not well suited for
viscous flow simulations. To avoid this problem, more complex average-state approximate
Riemann solvers have been introduced as, for instance, the HLLC scheme, proposed in
[12], which involves two intermediate states in the approximate solution. Alternatively, an
anti-diffusive term for the contact discontinuity can be directly added in the single-state
HLL formulation as done in the HLLEM [14] and HLLE+ [15] schemes. In the present
work, on the basis of the observation that in the 1D Riemann problem for barotropic flows
density, velocity and pressure are continuous across the contact discontinuity, and thus,
the presence of two different intermediate states is only due to the passive scalar (see [1, 7]
for details on the Riemann problem for barotropic flow), an anti-diffusive term only acting
in the passive scalar equation is introduced. This leads to a low-diffusive HLL (LD-HLL)
scheme, in which the first two equations, which are related to the acoustic waves, are
unchanged with respect to the original Rusanov scheme. Thus, the simple structure of
the Rusanov scheme is maintained in the LD-HLL one. The second point investigated
herein is the linearization in time of the numerical flux function, which is needed in order
to avoid the solution of a non-linear system at each time step of the implicit algorithm. A
classical linearization consists in applying a first-order Taylor expansion in time but with
a complete differentiation only for the centered part of the numerical flux function while
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the matrix in the upwind part is frozen at the previous time (see, e.g., [16]). Even if this
choice of linearization is in general a reasonable one, the time variation of the upwind
part of the flux can be large in presence of huge variations of the flow velocity or when
the speed of sound has a stiff change in magnitude. The latter is a typical situation in
presence of cavitation. Hence, a more complete time linearization of the LD-HLL flux is
proposed herein. Thanks to the simple structure of this scheme, the time variation of the
upwind terms of the flux function is analytically derived while some simplifications are
made on the basis of physical considerations suitable for the cavitating case.

Finally, with respect to our previous works in which only inviscid flows were consid-
ered, the implementation of viscous effects is carried out herein through a mixed finite-
volume/finite-element approach in which P1 finite elements are considered for the dis-
cretization of viscous terms.

Two test-cases are considered to investigate the effects of the previously described new
numerical ingredients; the first one is aimed at investigating the effects of the anti-diffusive
term introduced in the LD-HLL scheme is the classical Blasius boundary layer over a flat
plate. Comparison with exact solutions and with the results given by the Roe scheme
are provided. The second test-case is aimed at investigating the accuracy, robustness and
efficiency properties of the Roe and the LD-HLL schemes in cavitating conditions is the
flow around a NACA0015 hydrofoil mounted in a wind tunnel, for which experimental
data are available [17]. For the LD-HLL scheme, the effects of the more complete time
linearization are investigated. In particular, it is shown that this is a key point to largely
improve the efficiency in cavitating conditions.

2 PHYSICAL MODELING

The 3D Navier-Stokes equations for a barotropic flow are considered as governing
equations. By virtue of the barotropic equation of state (EOS) adopted here (see below),
the energy balance is decoupled from the mass and momentum balances and therefore, it
is possible to consider the following reduced set of governing equations:

∂W

∂t
+ div

(
~F(W ) − µ~V(W,∇W )

)
= 0 (1)

where W = (ρ, ρu, ρv, ρw)T , ρ being the fluid density and u, v and w the velocity com-

ponents in the x, y and z directions. The vector ~F(W ) = (Fx, Fy, Fz)
T contains the

classical convective flux functions for mass and momentum balances, while ~V(W,∇W ) =
(Vx, Vy, Vz)

T are the corresponding viscous fluxes and µ is the fluid viscosity.
The 1D inviscid case is used as a first step for the definition of the different numerical

approaches, which are then extended and implemented in the 3D viscous case. Thus, the
following 1D flow system is also considered:

∂W

∂t
+

∂F (W )

∂x
= 0 (2)
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where W = (ρ, ρu, ρξ)T and F (W ) = (ρu, ρu2 + p, ρuξ)
T

in which p is the pressure and ξ
denotes a passive scalar.

For the development of the numerical methods a generic barotropic equation of state,
i.e. p = p(ρ), is considered. The derivative dp/dρ is assumed to be strictly positive (a
classical thermodynamic stability requirement for common fluids) and can be regarded as
the square of the fluid sound speed a(ρ).

For cavitating flow simulations, a weakly-compressible liquid at constant temperature
TL is considered as working fluid. The liquid density ρ is allowed to locally fall below
the saturation limit ρLsat = ρLsat (TL) thus originating cavitation phenomena. A regime-
dependent (wetted/cavitating) constitutive relation is therefore adopted.

As for the wetted regime (ρ ≥ ρLsat), the chosen model is of the form:

p = psat +
1

βsL

ln

(
ρ

ρLsat

)
(3)

psat = psat (TL) and βsL = βsL (TL) being the saturation pressure and the liquid isentropic
compressibility, respectively.

Concerning the cavitating regime (ρ < ρLsat), a homogeneous-flow model explicitly
accounting for thermal cavitation effects and for the concentration of the active cavitation
nuclei in the pure liquid has been adopted [3]:

p

ρ

dρ

dp
= (1− α)

[
(1− εL)

p

ρLsata2
Lsat

+ εLg
?

(
pc

p

)η]
+
α

γv

(4)

where g?, η, γV and pc are constant parameters depending on the substance considered,
aLsat is the liquid sound speed at saturation, and α is the void fraction defined as:

α =
ρLsat − ρ

ρLsat − ρv

' 1− ρ

ρLsat

(5)

ρv being the vapor density. Finally, εL = εL(ζ, α) is the fraction of the liquid in thermal
equilibrium with the vapor. Its expression depends on ζ a free model parameter accounting
for thermal cavitation effects and, possibly, for the concentration of the active cavitation
nuclei, see [3] for more details. Moreover, the fluid molecular viscosity is also expressed
as a function of the void fraction with µ = αµv + (1 − α)µL in which µv and µL are the
molecular viscosity of the vapor and of the liquid respectively.

Note that despite the model simplifications leading to a unified barotropic EOS, the
transition between wetted and cavitating regimes is extremely abrupt. Indeed, the sound
speed falls from values of order 103 m/s in the pure liquid down to values of order 10−1

m/s or 1 m/s in the mixture [3, 6, 1]. The corresponding Mach number variation makes
this state equation very stiff from a numerical viewpoint.
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3 NUMERICAL DISCRETIZATION

The spatial discretization of the governing equations is based on a mixed finite-element/
finite-volume formulation on unstructured tetrahedral grids. Finite volumes are used for
the convective fluxes, while the viscous terms are discretized through P1 finite elements.
Time advancing is carried out through an implicit linearized algorithm. For sake of
simplicity the main numerical ingredients are presented in details in the 1D inviscid case,
the generalization to 3D viscous flow equations is then briefly discussed.

3.1 Spatial discretization: first-order schemes

The finite-volume spatial discretization of systems of hyperbolic equations as (2) leads
to the following semi-discrete problem:

δxi
dWi

dt
+ Φi(i+1) − Φ(i−1)i = 0 (6)

where δxi is the width of the finite-volume cell i and Φij is a numerical flux function
between the ith cell and the jth one.

3.1.1 Approximate Riemann solvers for barotropic flows

The numerical flux functions considered herein are constructed through an approxi-
mation of the Riemann problem, by considering a linearized problem (Roe scheme) or
an average-state approximation (HLL schemes). The solution for the Riemann problem
with a generic convex barotropic equation of state has been described in [1] and it is com-
posed by three waves: the intermediate one is always a contact discontinuity, the others
can be shock or rarefaction waves. This simple three-waves configuration is obtained in
particular for the barotropic EOS described in Sec. 2, i.e. Eqs. (3) and (4).

The Roe scheme One of the most popular choices of numerical flux function is obtained
by considering the linearized approximate Riemann solver proposed by Roe [8]. In this
case, Φij can be expressed as follows:

Φi,j =
F (Wi) + F (Wj)

2
− 1

2
|J̃(Wi,Wj)|(Wj −Wi) (7)

in which the so-called Roe matrix J̃ is a diagonalizable matrix satisfying suitable specific
properties (see [8]). For the case of a generic barotropic state equation and the 1D
hyperbolic system (2), the Roe matrix has been derived in [1, 7]. The eigenvalues of
this matrix are found to be λ̃1 = ũij + ãij , λ̃2 = ũij − ãij and λ̃3 = ũij where ũij

corresponds to the well-known “Roe average” for the states Wi and Wj of u whereas
ãij, which can be considered as a Roe average for the sound speed, is defined as ãij =

(p(ρj)− p(ρi))
1
2 (ρj − ρi)

− 1
2 for ρj 6= ρi.
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A simple HLL scheme The HLL schemes [18], which assume one intermediate wave
state between two acoustic waves in the approximate Riemann problem, are widely used
due to their simplicity, reliability and robustness. The choice of sL and sR, the acoustic
wave speed estimates, fully determines each particular scheme. The Rusanov scheme
furnishes the simplest choice by considering sL = −sR, and thus, can be expressed as:

Φi,j =
F (Wi) + F (Wj)

2
− λij

2
(Wj −Wi) (8)

where λij = sR is an upper bound for the fastest wave speed. A classical choice for λij is
the largest absolute value of the Roe matrix eigenvalues.

The HLL schemes are trivially generalizable to the case of barotropic EOS. Indeed,
both the acoustic wave speeds of the exact Riemann problem and the corresponding Roe
matrix eigenvalues are formally identical in the barotropic and non-barotropic cases even
if the definition of the sound speed is different. Thus, a Rusanov scheme for barotropic
EOS is proposed, here, considering the numerical flux function (8) associated with the
approximate wave speed λij = maxp(|λ̃p|) = |ũij|+ ãij.

A modified HLL scheme with an anti-diffusive term The HLL schemes are known
for their excessive diffusive behavior in presence of a contact discontinuity. To avoid this
problem, an anti-diffusive term for the contact discontinuity can be added as done with the
HLLEM scheme [14] or with successive improved schemes (e.g. the HLLE+ one [15]). In
this context, the following unified expression of the flux function can be used to represent
HLL (taking δ̄ = 0), HLLEM, HLLE+ as well as Roe fluxes:

Φ(Wl,Wr) =
b+F (Wl)− b−F (Wr)

b+ − b−
+

b+b−

b+ − b−

(
(Wr −Wl)−

∑
p∈Scd

δ̄αprp

)
(9)

in which b+, b− and δ̄ are parameters depending on the states Wl and Wr, while rp are the
right eigenvectors of the Jacobian matrix of the flux function F evaluated at a particular
intermediate state and αp the components of Wr −Wl in the right-eigenvector basis. Scd

is the set of indexes for which rp is associated with the eigenvalue u of the flux Jacobian
matrix, i.e. related to the contact discontinuity. Thus, the last term in the right hand
side of (9) represents an anti-diffusive term for the contact discontinuity. However, for
the classical case of an ideal-gas EOS, any modification of this term acts on the whole
system of equations, and consequently, the choice of an adequate parameter δ̄ is rather
critical (see [15]). The situation is different for the barotropic case since density, velocity
and pressure are continuous across the contact discontinuity, and thus, the presence of
two different intermediate states is only due to the passive scalar (see [1, 7]). Moreover,
only one eigenvalue is associated with the contact discontinuity while the corresponding
eigenvector r3 can be always chosen to be (0 0 1)T whatever is the particular intermediate
state. Consequently, the anti-diffusive term in (9) affects only the third equation of the
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system. Due to this decoupling from mass and momentum equations, there are less
restrictions on the choice of δ̄ in the barotropic case. Clearly, it should correspond to an
anti-diffusive term in order to avoid the smearing of the contact discontinuity of the HLL
scheme, and on the other hand, the estimate of the wave speeds should remain as close
as possible to the real ones. The simplicity of the scheme is privileged here for the choice
of the modified term in view of its incorporation in the complete formulation including
preconditioning for low Mach number and linearized implicit approach (see sections 3.2
and 3.3). Consequently, starting from the simplest HLL scheme, i.e. the Rusanov one,
the following scheme, called in the following LD-HLL (Low-Diffusive HLL), is proposed:

Φi,j =
F (Wi) + F (Wj)

2
− 1

2

 λij 0 0
0 λij 0
0 0 |ũij|

 (Wj −Wi) (10)

With respect to the original Rusanov scheme, the first two equations, which are related
to the acoustic waves, are unchanged, while for the third equation, i.e. the one directly
related to the contact discontinuity, the diffusive part of the scheme has been reduced.
Furthermore, this scheme can also be expressed in terms of the unified Godunov-type
formulation (9) by considering the following parameters:

b− = −λij, b
+ = λij and δ̄ =

ãij

ãij + |ũij|

(
1 +

ξ̃ij(ρj − ρi)

ρ̃ij(ξj − ξi)

)
(11)

in which we have chosen to express Wj −Wi in the basis of the Roe matrix eigenvectors.
Note that the Rusanov, Roe and LD-HLL schemes are Q-schemes, i.e. the numerical

flux function can be expressed as:

Φij =
F (Wi) + F (Wj)

2
− 1

2
Qij (Wj −Wi) (12)

The various schemes differ for the definition of the matrix Qij which can be directly
obtained from eqs. (7), (8) and (10) respectively.

3.2 Preconditioning for low Mach number flows

For the cavitating flow problem, a large part of the flow is characterized by very low
Mach numbers since we have to deal with a weakly-compressible liquid. Compressible
solvers encounter accuracy problems when dealing with nearly-incompressible flows [19].
In order to counteract this difficulty, some preconditioning must be applied.

A Turkel-like preconditioning has been proposed in [1, 6] for the Roe flux function
associated with a barotropic EOS using a similar formulation as proposed in [19] for a
perfect-gas state equation. This preconditioning is acting only on the upwind part of the
numerical flux function; more precisely, Qij = |J̃(Wi,Wj)| is replaced by:

Qij = P−1
ij |PijJ̃(Wi,Wj)| with Pij =

∂Wp

∂W

∣∣∣∣
ij

Λp
∂W

∂Wp

∣∣∣∣
ij
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where Wp is the vector of the primitive variables and Λp = diag(β2, 1, 1), the parameter β
being proportional to a reference Mach number. It has been shown that the preconditioned
formulation with this choice of Pij does not present accuracy problems for low Mach
number flows, this both from a theoretical and a numerical point of view [1, 6].

By carrying out an asymptotic analysis it has been found that the Rusanov scheme also
encounters accuracy problems in the low Mach number limit [13]. However, the correct
asymptotic behavior of the analytical solution can be recovered acting directly on the
acoustic diagonal terms of the matrix Qij. More precisely, it is possible to consider the
following “preconditioned” matrix:

Qij = λij

θ−1 0 0
0 θ 0
0 0 1

 with θ =


10−6 if M ≤ 10−6

min(M, 1) otherwise
(13)

in which M represents a local Mach number expressed with respect to the Roe average
values, i.e. M = |ũ|/ã. With this simple preconditioning procedure, the correct asymp-
totic behavior of the analytical solution is recovered (for details see [13]).
Note that since the preconditioning affects only the mass and momentum balances and
not the passive scalar field, the analysis in [13] is also valid for the LD-HLL scheme (10)
and thus, the “preconditioned matrix” for this scheme is:

Qij =

 λijθ
−1 0 0

0 λijθ 0
0 0 |ũij|

 (14)

3.3 Linearized implicit time advancing

Let us consider an implicit backward Euler method applied to the semi-discrete problem
(6):

δxi

∆t
∆nWi + ∆nΦi,i+1 −∆nΦi−1,i = −

(
Φn

i,i+1 − Φn
i−1,i

)
(15)

where ∆n(·) = (·)n+1 − (·)n. To avoid the solution of a non-linear system at each time
step, a linearization of ∆nΦij is usually adopted. A way to obtain such a linearization is
to find two matrices D1 and D2 such that

∆nΦij ' D1(W
n
i ,W

n
j ) ∆nWi +D2(W

n
i ,W

n
j ) ∆nWj (16)

In this case (15) reduces to a block tridiagonal linear system.
A Jacobian-free linearization for the Roe scheme was previously derived in [1, 6, 7],

which only exploits the algebraic properties of the Roe matrix and, therefore, does not
depend on the specific equation of state. This approach is characterized by:

D1(W
n
i ,W

n
j ) = J̃+(W n

i ,W
n
j )

D2(W
n
i ,W

n
j ) = J̃−(W n

i ,W
n
j )

with J̃± =
1

2

(
J̃ ± |J̃ |

)
(17)

9
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However, due to its particular construction, this approach can be used only for the Roe
scheme.

Alternatively, a classical linearization of type (16) consists in applying a first-order
Taylor expansion in time but with a complete differentiation only for the centered part of
the numerical flux function while the matrix Qij in the upwind part is frozen at time tn

(see, e.g., [16]). This results in the following approximation:

∆nΦij '
1

2

(
A(W n

i )∆nWi + A(W n
j )∆nWj

)
− 1

2
Qn

ij (∆nWj −∆nWi) (18)

in which A is the Jacobian matrix of F . Note that this approach can be used for any
upwind scheme of type (12), independently of the differentiability or of the complexity
in the differentiation of Qij. Let us reinterpret this linearization by rewriting the time
variation of the upwind term of Φij as follows:

∆nΦij,u = −
Qn

ij

2
(∆nWj −∆nWi)−

∆nQij

2
(W n+1

j −W n+1
i ) (19)

The previous linearization is obtained just by neglecting the last term in the upwind part
of Φij, i.e. the second term in the right hand side of (19). It is worth noting that this term,
denoted herein Γn,n+1

ij , can be neglected as long as that the solution is regular enough to
satisfy:

W n+1
j −W n+1

i ∝ O(∆x) and ∆nQij ∝ O(∆t) (20)

Even if the assumption (20) is in general a reasonable one, there are situations of practical
interest in which it is not satisfied. Indeed, if a discontinuity is present the magnitude of
the term W n+1

j −W n+1
i can be large independently of the size of ∆x. Moreover, the term

∆nQij can also be large. This can happen, in particular, in presence of huge variations of
the flow velocity or when the speed of sound has a stiff change in magnitude. The latter
is a typical situation in presence of cavitation. Thus, a more complete linearization is
proposed here by taking into account, at least in an approximate way, the term Γn,n+1

ij .
This linearization can be applied for any Q-scheme as defined by (12) where Qij is a
diagonal matrix such that any of its diagonal coefficient can be written as a composite
function of two variables, ā and ū, as follows:

qk = qk (ū (Wi(t),Wj(t)) , ā (Wi(t),Wj(t))) (21)

Here, Qij could be the one of the original Rusanov scheme or alternatively the LD-HLL
one, but it can also include the case with preconditioning, i.e. Qij given by (13) or (14).

Then, through differentiation of (21), by neglecting terms of higher order and after
some mathematical developments (see [13]), the following approximation of the previously
neglected term is obtained:

Γn,n+1
ij ' 1

2
Kij ∆nWi −

1

2
Kji ∆

nWj (22)

10
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in which the generic element of Kij is defined by the following expression:(
Kij

)
km

=

(
∂qk
∂ū

∂ū

∂Wi,m

+
∂qk
∂ā

∂ā

∂Wi,m

)(
W n

j,k −W n
i,k

)
(23)

where Wi,m denotes the m-th element of the vector Wi. Finally, considering Γn,n+1
ij from

(22)-(23) in the evaluation of the upwind part of the numerical flux time variation, i.e. in
(19), the following more complete approximation is obtained instead of (18):

∆nΦij '
1

2

(
A(W n

i ) +Qn
ij −Kij

)
∆nWi +

1

2

(
A(W n

j )−Qn
ij +Kji

)
∆nWj (24)

Note that some simplifications for the computation of the elements of matrix Kij have
been done through physical considerations related to the particular kind of applications
of interest in this study. Then, the remaining terms are numerically computed through
centered finite differences. We refer to [13] for more details.

3.4 Second-order formulation

A space and time second-order accurate approach is obtained considering a classical
MUSCL reconstruction for space (see [9]) and a second-order backward differentiation
formula for time advancing. Then, the following implicit formulation is considered instead
of (15):

δxi
3W n+1

i − 4W n
i +W n−1

i

2∆t
+ ∆nΦi+ 1

2
−∆nΦi− 1

2
= −

(
Φn

i+ 1
2
− Φn

i− 1
2

)
(25)

where Φi± 1
2

= Φ(W−
i± 1

2

,W+
i± 1

2

) are the second-order accurate numerical fluxes computed

by using extrapolated variable values at the cell interface. Similarly to the 1st-order case,
a linearization of ∆nΦi± 1

2
must be carried out in order to avoid the solution of a non linear

system at each time step. However, the linearization for the second-order accurate fluxes
and the solution of the resulting linear system implies significant computational costs and
memory requirements. Thus, a defect-correction technique (see e.g. [20]) is used here,
which consists in iteratively solving simpler problems obtained by considering the same
linearization as used for the 1st-order scheme (for more details see [7]).

3.5 Extension to 3D

In 3D, starting from an unstructured tetrahedral grid, a dual finite-volume tessellation
is obtained by the rule of medians: a cell Ci is built around each vertex i, and boundaries
between cells are made of triangular interface facets. Each of these facets has a mid-edge,
a face centroid, and a tetrahedron centroid as vertexes.

The semi-discrete balance applied to cell Ci reads (not accounting for boundary con-
tributions):

dWi

dt
+

1

Vi

∑
j∈K(i)

Φij +
∑
T ∈Si

V (T )(µ~V)|T · ∇ψi|T = 0 (26)
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where Wi is the semi-discrete unknown associated with Ci, Vi is the cell volume, K(i)
represents the set of nodes joined to i through an edge and Φij denotes the numerical flux
crossing the boundary ∂Cij shared by Ci and Cj (positive towards Cj). Once defined ~νij

as the integral over ∂Cij of the outer unit normal to the cell boundary, it is possible to
approximate Φij by exploiting a 1D flux function between Wi and Wj, along the direction
~νij and the extension of the schemes previously presented is straightforward. More details
on the 3D formulation can be found in [6] for the formulation based on the Roe scheme. As
for the viscous terms, T denotes the tetrahedron, Si is the set of tetrahedrons containing
the node i, (µ~V)|T is the P1 finite-element approximation of the viscous fluxes over the
tetrahedron T and ∇ψi|T the gradient of ψi over the tetrahedron T , ψi being the P1 basis
function associated to node i.

4 NUMERICAL APPLICATIONS

4.1 Blasius boundary layer

As previously mentioned, it is well-known that due to their excessive diffusivity in
presence of contact discontinuities, the HLL schemes, as the standard Rusanov one, are not
well-suited for viscous flow simulation. The Blasius boundary layer can thus be considered
an appropriate test to validate the effectiveness of the anti-diffusive term introduced in
the LD-HLL scheme. We consider hence the laminar viscous flow along a flat plate at zero
angle of attack; water at T = 293.16K is used as a working fluid. The considered free-
stream conditions are the following: ρ∞ = 998Kg/m3, p∞ = 105Pa, u∞ = 0.01m/s. Note
that the freestream Mach number is approximately 10−5 and thus compressibility effects
are negligible and comparison with the Blasius solution for incompressible flows can be
made. The Reynolds number, based on the freestream velocity and the flat plate length,
is about 10000 (µ = 0.001Kg/(ms)). We remark that in this test-case no cavitation
phenomena occur in the flow. A square computational domain is considered with −1 ≤
x ≤ 1 and 0 ≤ y ≤ 2 where x is the streamwise direction and y the direction normal to
the flat plate. The flat plate is located at 0 ≤ x ≤ 1 and y = 0. Characteristic based
boundary conditions [1] are used at the inflow (x = −1) and at the outflow (x = 1).
Symmetry is imposed for y = 0 and −1 < x < 0 while no-slip conditions are considered
at the flat-plate. Finally, free-slip conditions are used at y = 2. The independence of the
results to the normal width of the domain has been checked.

The computational grids are generated as follows. Firstly, the square 0 ≤ x ≤ 1 and
0 ≤ y ≤ 1 is considered. The edge along the x direction is divided in a given number of
segments, Nx, with length ∆x varying in geometric progression with the smallest element
(∆xmin) at the leading edge. Analogously the edge along the y direction is divided in
Ny segments, with length ∆y varying in geometric progression with the smallest element
(∆ymin) at the wall. A structured quadrilateral grid is then generated and is reflected
along the axis x = 0. For y > 1 the value of ∆y is constant equal to the maximum value
over the the square 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Finally, each element of this grid is divided
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in 5 tetrahedrons by an English-flag type procedure. By using the previously described
procedure, two grids whose main parameters are given in Tab. 1 were obtained.

Grid Nx qx ∆xmin ∆xmax Ny qy ∆ymin ∆ymax

Grid1 25 1.21 1.8× 10−3 0.18 25 1.44 4.8× 10−5 0.33
Grid2 50 1.1 8.6× 10−4 0.1 50 1.2 2.19× 10−5 0.16

Table 1: Grids used for the flat plate simulations. Nx is the number of divisions of 0 ≤ x ≤ 1, qx is the
ratio of the geometrical progression used for setting the length of the elements in the x direction, ∆xmin

and ∆xmax are the minimum and maximum length of the elements in the x direction. Ny, qy, ∆ymin,
∆ymax are the corresponding quantities in the y direction.

The results of the simulations with three different numerical schemes (Roe, Rusanov
and LD-HLL) on grids Grid1 and Grid2 are compared and validated against the Blasius
solution. Figs. 1a and 1b show the comparison of the velocity profile at section x/c = 0.6
while Figs. 1c and 1d show the comparison of the wall shear stress along the flat plate.
Note that the velocity profile has been plotted only at one section (x/c = 0.6), but the
same behavior is observed for any section over the plate, this in terms of grid refinement
as well as for the comparison between the different numerical schemes. While the results
obtained with the standard Rusanov scheme lack in accuracy even with the more refined
grid and confirm its over-diffusive character, the LD-HLL scheme gives very similar results
to the Roe one and in good agreement with the Blasius solution. The small discrepancies
with respect to the Blasius solution tend to vanish with grid refinement for the LD-HLL
and Roe approaches.

This test-case thus confirms that the anti-diffusive term introduced in the LD-HLL
scheme actually counteracts the accuracy problems encountered by the standard Rusanov
scheme in viscous flow simulations.

4.2 Flow around a NACA0015 hydrofoil

Test-case U∞ (m/s) p∞ (Pa) T (K) M∞ σ∞ =
p∞ − psat

1/2ρU2
∞

TC1 3.115 59050 298.15 2.2× 10−3 11.71
TC2 3.46 12000 298.15 2.4× 10−3 1.49
TC3 3.46 11400 298.15 2.4× 10−3 1.38

Table 2: Inlet conditions for the flow around a NACA0015 hydrofoil.

The liquid flow over a NACA0015 hydrofoil in cavitating and non-cavitating conditions
is considered. The hydrofoil of chord length c equal to 115 mm is mounted in a water
tunnel at 4◦ incidence angle and spans the entire width of the rectangular test chamber
section. The test section, which is obtained by cutting the chamber along its symmetry
plane has a width of 1.28c. This configuration has been considered in an experimental
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(a) (Grid1) (b) (Grid2)

(c) (Grid1) (d) (Grid2)

Figure 1: Velocity profiles at x/c = 0.6 (frames a and b) and wall shear stress (frames c and d) over the
flat plate obtained on different grids.

study in [17] for which the pressure coefficient distribution on the symmetry plane of the
hydrofoil is available. Three different sets of inlet conditions are considered as summarized
in Tab. 2; the first conditions (TC1) correspond to a non-cavitating case while the second
and the third ones (TC2 and TC3) generate a cavitating flow. The inlet conditions TC1
and TC2 correspond to those of the reference experiments. The equations of state (3)-
(4) for cavitating flows are used by taking TL equal the temperature T given by Tab. 2
and ζ = 0.01. The dimensions of the computational domain in the lateral direction are
the same of the experimental test section, while in the streamwise direction the inlet is
at a distance of 3c from the leading edge and the outflow at a distance of 4c from the
trailing edge. Finally, in the spanwise direction the domain thickness is 0.1c, i.e. only a
slice of the actual chamber width is considered. In [21] it was shown that this has not
significant effects on the numerical pressure distribution over the hydrofoil, except for
slight differences near the trailing edge. Characteristic based boundary conditions [1] are
used at the inflow and outflow, while free slip is imposed at the remaining boundaries.
Three different unstructured grids are considered, the first one GR1, made of 115728
nodes, is used for the non-cavitating test TC1, the second (GR2) and third (GR3) grids
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are used for the cavitating cases and have 263832 and 502234 nodes respectively.

4.2.1 Results of the non-cavitating simulations

Figure 2: Cp distribution over the hydrofoil for the TC1 test-case (non-cavitating flow).

For all the considered schemes large CFL values can be used for non-cavitating flows;
here, a CFL value of 200 has been chosen for the different simulations. Since this already
led to very reduced computational times on the considered grid GR1, a systematic analysis
of the actual stability limit has not been carried out for these simulations.

The pressure coefficient distributions obtained on the hydrofoil in the simulations with
the 1st- and 2nd-order versions of the Roe and LD-HLL schemes on GR1 are shown in Fig.
2, together with the experimental data. As expected, both schemes introduce a larger
dissipation at 1st order than in their 2nd-order version, as can be seen in particular from
the lower predicted values of the suction peak. Note how at 1st order the LD-HLL scheme
appears to be more dissipative than the Roe one, as also shown by the overestimation of
Cp at the stagnation point. However at 2nd order the results obtained by the two different
schemes are almost identical. As for accuracy, although there are no measurement points
at the suction peak, a previously carried out potential flow simulation gave a suction peak
value of approximately −1.7, in well agreement with simulations carried out with schemes
of high-order of accuracy [21]. Thus, the predictions obtained with the 2nd-order versions
of both considered schemes can definitely be considered as more accurate than those of
the 1st-order ones. The small discrepancies observed near the trailing edge are due to the
fact that the present simulations are inviscid and almost 2D; indeed, a similar behavior
was observed in a 2D potential flow solution and in other Euler calculations in [21].
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4.2.2 Results for cavitating conditions

A first important result of the cavitating test-cases is that the more complete time
linearization is a key point to significantly increase numerical efficiency in presence of
cavitation. Indeed, a CFL coefficient limitation of about 0.01 has been found for the
Roe scheme and the LD-HLL one with the classical time linearization, while the more
complete linearization permits to reach CFL 100 for the LD-HLL flux, both at first order
and 2nd order of accuracy.

Therefore, only the simulations carried out with the most efficient approach, i.e. the
LD-HLL one with the more complete time linearization, have been advanced in time
sufficiently to obtain meaningful results. Note that an accurate prediction of the pressure
near the leading edge and, in particular, of the suction peak is very important to correctly
capture the cavitating region, which starts near the leading edge. The 1st-order version of
the scheme, indeed, due to the underprediction of the suction peak, is not able to capture
the cavitating region and gives no phase transition for the TC2 case. Consequently,
also in accordance with the analysis carried in Sec. 4.2.1 for non-cavitating conditions,
only 2nd-order accurate results are shown in the following (Figs. 3 and 4). Finally, two
different grids are considered (GR2 and GR3), both more refined that the one used for
the non-cavitating simulations. Fig. 3 shows the Cp distribution on the upper side of the
hydrofoil obtained through numerical simulations (averaged values over 5000 time steps
are shown) together with the relevant experimental data. The cavitation region is clearly
visible and coincides with the Cp plateau near the leading edge. This behavior of pressure
is typical of the adopted barotropic homogeneous-flow cavitation model, in which large
density variations at almost constant pressure characterize the vapor regions (see, e.g., [1]
or [3]). Note also the sharp pressure gradient at the vapor to liquid transition occurring at
the end of the cavitation region, which also characterizes this type of cavitation models.
Conversely, the wiggle observed at that location seems to be due to numerics and is
indeed largely reduced by grid refinement, as can be seen from the comparison between
the solutions obtained on GR2 and GR3 in Fig. 3a. This figure also shows that, except
for this wiggle, grid independence of the results has been reached. To better highlight
the behavior of the solution in the cavitation region predicted by the adopted barotropic
homogeneous-flow model, Fig. 3b shows the evolution of the Cp curve with the cavitation
number value obtained on the most refined grid, i.e. GR3. As expected, a decrease of the
cavitation number corresponds to a larger cavitation region. Note also that in all cases
the pressure is characterized by a plateau in this region, with a value increasing as the
cavitation number decreases, and that a sharp gradient is always present at the vapor to
liquid transition. The agreement with the experiments for the TC2 solution (the same
inlet conditions as in the experiments) appears to be reasonable, although there are no
experimental points in the plateau region and some discrepancy is present at the end of
the cavitating region. However, based on the previous analysis, this discrepancy seems to
be due more to modeling than to numerics.
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Finally, in order to give an idea of the numerical stiffness, the iso-contours of the local
cavitation number and of the Mach number obtained on grid GR3 for the TC3 case are

shown in Fig. 4. The local cavitation number is defined as σ =
p− psat

1/2ρU2
∞

; hence, negative

values of σ identify the cavitation region (dark grey in Fig. 4). Note how in the cavitation
region the Mach number reaches the value of 10, while the free-stream liquid flow value
is equal to 2.4× 10−3, i.e. an increase of about 4 orders of magnitude.

(a) (b)

Figure 3: Cp distribution for cavitating flow: a) different grid resolutions for TC2 test-case b) grid GR3:
test-cases TC2 (σ∞ = 1.49) and TC3 (σ∞ = 1.38).

(a) (b)

Figure 4: Test-case TC3: time-averaged isocontours of (a) cavitation number and (b) Mach number.
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5 CONCLUDING REMARKS

In the present study, a numerical formulation is proposed for the simulation of 3D
viscous cavitating flows, which combines good properties of accuracy, robustness and effi-
ciency. Since the chosen homogeneous-flow cavitation model leads to a complex barotropic
state equation, the numerical schemes have been developed for generic barotropic flows.
However, the simulation of cavitating flows, in particular for the chosen cavitation model,
in which nearly-incompressible to supersonic regimes with huge variations of flow quan-
tities have to be considered, leads to specific numerical difficulties from a view point of
both accuracy and efficiency. The present approach is based on finite-volume and finite-
element discretizations for convective and viscous terms respectively and relies on several
ingredients introduced in previous works by the authors [6, 7, 13]. Compressible flows are
considered and approximate Riemann solvers are used to compute finite-volume fluxes.
Thus, suitable preconditioning is used to avoid accuracy problems in the low-Mach regime,
while maintaining time consistency. Time advancing is carried out through a linearized
implicit approach. However, in previous works it was found that the use of an implicit
time advancing is not a sufficient guarantee when cavitation occurs; indeed, severe CFL
limitations were observed for a linearized implicit formulation based on the Roe scheme
[1]. Two new ingredients have been introduced here. First, a low-diffusive HLL numerical
flux is proposed, which is obtained by introducing an anti-diffusive term in the Rusanov
flux. Thanks to the particular features of the Riemann problem for cavitating flows, the
simple structure of the Rusanov scheme could be maintained in the LD-HLL one. A
suitable preconditioning for the low-Mach regime has also been defined. Second, two dif-
ferent time linearizations are considered for the LD-HLL flux; a classical one in which the
upwind part of the flux function is partially frozen in the time differentiation, and a more
complete one which takes into account, at least in an approximate way, the neglected
term. Finally, second-order accuracy is obtained through a MUSCL reconstruction for
space accuracy and a second-order backward differentiation formula for time advancing
associated with defect-correction iterations.

The proposed numerical ingredients are validated through test-cases for which analyti-
cal solution or experimental results are available. Three different numerical flux functions
adapted to barotropic flows, the Roe, Rusanov and LD-HLL ones, are compared, by in-
cluding first- and second-order accurate formulations and the two kinds of linearization for
the HLL-like schemes. The capability to obtain accurate solutions for viscous flows has
been investigated considering as test-case the Blasius boundary layer over a flat plate.
The results obtained for this test-case show that the anti-diffusive term introduced in
the LD-HLL scheme is able to counteract the accuracy problem in presence of contact
discontinuity. The suitability of this scheme for viscous flows is verified with a solution be-
havior very similar to the one of the Roe scheme and in good accordance with theoretical
solution.

The simulation of a flow around a hydrofoil mounted in a tunnel has been consid-
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ered in order to assess the accuracy, robustness and efficiency of the different numerical
formulations in cavitating conditions. It clearly follows that the use of the more com-
plete linearization is essential for efficiency in presence of cavitation. Indeed, very strong
stability limitations appear when cavitation occurs, this for the Roe linearized implicit
formulation as well as for the LD-HLL implicit approach using the classical linearization.
An increase of four orders of magnitude is obtained in terms of CFL number, when the
more complete linearization for the LD-HLL scheme is used. On another hand, good im-
provements have been observed by considering the second-order accurate approach with a
behavior largely closer to experiments results and physical expectations. Thus, it emerges
that the second-order preconditioned implicit LD-HLL approach associated to the more
complete linearization appears an adequate formulation for viscous flows in cavitating
conditions. It seems now, that the obtained numerical approach is enough efficient to be
tested on real 3D industrial configurations of cavitating flows. Simulations of the flow
in a realistic configuration of a rocket turbopump inducer in cavitating conditions are
ongoing. Turbulence effects will also be included through RANS turbulence models.
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