
V European Conference on Computational Fluid Dynamics 

ECCOMAS CFD 2010 

J. C. F. Pereira and A. Sequeira (Eds) 

Lisbon, Portugal, 14–17 June 2010 

A RECONSTRUCTED DISCONTINUOUS GALERKIN METHOD 

FOR THE COMPRESSIBLE FLOWS ON ARBITRARY GRIDS 

Hong Luo
*
, Robert Nourgaliev

†
, Vincent A. Mousseau

†
,  Chunpei Cai

†† 

*
North Carolina State University 

Raleigh, NC 27695, USA 

e-mail: hong_luo@ncsu.edu 

†
Idaho National Laboratory 

Idaho Falls, ID 83415, USA 

{Robert.Nourgaliev,Vincent.Mousseau}@inl.gov 

††
New Mexico State University 

Las Cruces, NM 88003, USA 

ccai@nmsu.edu 

 

Key words: Computational Fluid Dynamics, Discontinuous Galerkin Methods, 

Reconstruction Methods, Compressible Flows 

Abstract. A reconstruction-based discontinuous Galerkin method is presented for the 

solution of the compressible Navier-Stokes equations on arbitrary grids. In this method, 

an in-cell reconstruction is used to obtain a higher-order polynomial representation of 

the underlying discontinuous Galerkin polynomial solution and an inter-cell 

reconstruction is used to obtain a continuous polynomial solution on the union of two 

neighboring, interface-sharing cells.  The in-cell reconstruction is designed to enhance 

the accuracy of the discontinuous Galerkin method by increasing the order of the 

underlying polynomial solution. The inter-cell reconstruction is devised to remove an 

interface discontinuity of the solution and its derivatives and thus to provide a simple, 

accurate, consistent, and robust approximation to the viscous and heat fluxes in the 

Navier-Stokes equations. The RDG method is used to compute a variety of compressible 

flow problems on arbitrary meshes to demonstrate its accuracy, efficiency, robustness, 

and versatility. The numerical results demonstrate that this RDG method is third-order 

accurate at a cost slightly higher than its underlying second-order DG method, at the 

same time providing a better performance than the third order DG method, in terms of 

both computing costs and storage requirements.  
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1 INTRODUCTION 

The discontinuous Galerkin methods
1-25

(DGM) have recently become popular for the 

solution of systems of conservation laws. Nowadays, they are widely used in 

computational fluid dynamics, computational acoustics, and computational 

electromagnetics. The discontinuous Galerkin methods combine two advantageous 

features commonly associated to finite element and finite volume methods. As in 

classical finite element methods, accuracy is obtained by means of high-order 

polynomial approximation within an element rather than by wide stencils as in the case 

of finite volume methods. The physics of wave propagation is, however, accounted for 

by solving the Riemann problems that arise from the discontinuous representation of the 

solution at element interfaces. In this respect, the methods are therefore similar to finite 

volume methods. The discontinuous Galerkin methods have many attractive features:1) 

They have several useful mathematical properties with respect to conservation, stability, 

and convergence; 2) The method can be easily extended to higher-order (>2
nd

) 

approximation; 3) The  methods are well suited for complex geometries since they can 

be applied on unstructured grids. In addition, the methods can also handle non-

conforming elements, where the grids are allowed to have hanging nodes; 4) The 

methods are highly parallelizable, as they are compact and each element is independent. 

Since the elements are discontinuous, and the inter-element communications are 

minimal, domain decomposition can be efficiently employed. The compactness also 

allows for structured and simplified coding for the methods; 5) They can easily handle 

adaptive strategies, since refining or coarsening a grid can be achieved without 

considering the continuity restriction commonly associated with the conforming 

elements. The methods allow easy implementation of hp-refinement, for example, the 

order of accuracy, or shape, can vary from element to element; 6) They have the ability 

to compute low Mach number flow problems without recourse to the time-

preconditioning techniques normally required for the finite volume methods. In contrast 

to the enormous advances in the theoretical and numerical analysis of the DGM, the 

development of a viable, attractive, competitive, and ultimately superior DG method 

over the more mature and well-established second order methods is relatively an 

untouched area. This is mainly due to the fact that the DGM have a number of 

weaknesses that have yet to be addressed, before they can be robustly used to flow 

problems of practical interest in a complex configuration environment. In particular, 

there are three most challenging and unresolved issues in the DGM: a) how to 

efficiently discretize diffusion terms required for the Navier-Stokes equations, b) how to 

effectively control spurious oscillations in the presence of strong discontinuities, and c) 

how to develop efficient time integration schemes for time accurate and steady-state 

solutions. Indeed, compared to the finite element methods and finite volume methods, 

the DG methods require solutions of systems of equations with more unknowns for the 

same grids. Consequently, these methods have been recognized as expensive in terms of 

both computational costs and storage requirements. 

DG methods are indeed a natural choice for the solution of the hyperbolic equations, 

such as the compressible Euler equations. However, the DG formulation is far less 

certain and advantageous for the compressible Navier-Stokes equations, where viscous 

and heat fluxes exist. A severe difficulty raised by the application of the DG methods to 

the Navier-Stokes equations is the approximation of the numerical fluxes for the viscous 

fluxes, that has to properly resolve the discontinuities at the interfaces. Taking a simple 

arithmetic mean of the solution derivatives from the left and right is inconsistent, 

because the arithmetic mean of the solution derivatives does not take in account a 

possible jump of the solutions. A number of numerical methods have been proposed in 
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the literature, such as those by Bassi and Rebay
21,22

, Cockburn and Shu
23

, Baumann and 

Oden
24 

a, Peraire and Persson
25

, and many others. Arnold et al.
26 

have analyzed a large 

class of discontinuous Galerkin methods for second-order elliptic problems in a unified 

formulation. All these methods have introduced in some way the influence of the 

discontinuities in order to define correct and consistent diffusive fluxes. Lately, Gassner 

et al
27

 introduced a numerical scheme based on the exact solution of the diffusive 

generalized Riemann problem for the discontinuous Galerkin methods. Liu et al
28

, and 

Luo et al
29

 used a BGK-based DG method to compute numerical fluxes at the interface 

for the Navier-Stokes equations, which has the ability to include both convection and 

dissipation effects. Unfortunately, all these methods seem to require substantially more 

computational effort than the classical continuous finite element methods, which are 

naturally suited for the discretization of elliptic problems. More recently, van Leer et 

al
30-32

 proposed a recovery-based DG (rDG) method for the diffusion equation using the 

recovery principle, that recovers a smooth continuous solution that in the weak sense is 

indistinguishable from the discontinuous discrete solution.  

Dumbser et al
18-20

 have originally introduced a new family of reconstructed DG 

methods, termed PnPm schemes, where Pn indicates that a piecewise polynomial of 

degree of n is used to represent a DG solution, and Pm represents a reconstructed 

polynomial solution of degree of m (m≥n) that is used to compute the fluxes. The 

beauty of PnPm schemes is that they provide a unified formulation for both finite 

volume and DG methods, and contain both classical finite volume and standard DG 

methods as two special cases of PnPm schemes, and thus allow for a direct efficiency 

comparison. When n=0, i.e. a piecewise constant polynomial is used to represent a 

numerical solution, P0Pm is nothing but classical high order finite volume schemes, 

where a polynomial solution of degree m (m ≥1)  is reconstructed from a piecewise 

constant solution. When m=n, the reconstruction reduces to the identity operator, and 

PnPn scheme yields a standard DG method. Obviously, the construction of an accurate 

and efficient reconstruction operator is crucial to the success of the PnPm schemes. 

Normally, this is achieved using a so-called in-cell recovery similar to the inter-cell 

recovery originally proposed by Van Leer et al., where recovered equations are obtained 

using a L2 projection, i.e., the recovered polynomial solution is uniquely determined by 

making it indistinguishable from the underlying DG solutions in the contributing cells 

in the weak sense. This recovery-based PnPm schemes are termed rDG(PnPm) in this 

paper, where the lower case r indicates that a higher order polynomial solution of degree 

m is obtained using a recovery principal, i.e., a weak interpolation. Nourgaliev et al
33 

have shown that that in 1D, the resulting recovery-based DG method using piecewise-

constant approximation rDG(P0P2) is nothing but FV-PPM method
37

, linear rDG(P1P5) 

is 6
th

 order accurate, quadratic rDG(P2P8) is 9
th

-order accurate, and cubic rDG(P3P11) 

12
th

-order accurate, versus the 2
nd

, 3
rd

, and 4
th

-order accuracy of the underlying DG 

method, while keeping the same number of the degrees of freedom and being compact. 

This recovery-based DG method has been successfully extended to 2D problems on 

quadrilateral grids. However, the resulting rDG methods are not completely satisfactory, 

since the stencils in the recovery have to involve the vertex-neighboring cells and thus 

destroy the compactness of the underlying DG method. For instance, in the case of 

rDG(P0Pm) recovery, a quadratic polynomial solution (m=2) in a cell can be fully 

recovered using  piecewise constant solutions at that cell and its two neighbors in 1D. 

However, a fully quadratic polynomial has six degrees of freedom, and thus requires six 

cells in order to recover a quadratic solution in 2D. Unfortunately, there are only five 

cells available on quadrilateral grids and four cells on triangular grids, when only face-

neighboring cells are used in the recovery. Clearly, most of appealing features possessed 
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by the rDG method are lost for the multidimensional problems, and especially on 

unstructured arbitrary grids. The key issue is how to judiciously choose a proper form of 

a recovered polynomial and a set of contributing cells in such a way that the resulting 

recovered linear system is well conditioned, and thus can be inverted. Instead of 

attempting to recover a full polynomial solution that has the same number of degree of 

freedom as the number of recovered equations, Dumbser et al. only recover a reduced 

polynomial solution that has less number of the degrees of freedom than the number of 

the recovered equations.  The resultant over-determined system is then solved using a 

constraint least-squares method that guarantees exact conservation, not only of the cell 

averages but also of all higher order moments in the reconstructed cell itself, such as 

slopes and curvatures.  

The objective of the effort discussed in this paper is to present a reconstructed 

discontinuous Galerkin method, termed RDG(P1P2) in short, using a Taylor basis
13

 for 

computing the compressible flow problems on arbitrary grids, where the upper case R 

denotes Reconstruction, being different from r for Recovery,  an in-cell reconstruction 

scheme
35

 is used obtain a quadratic polynomial representation of the underlying linear 

DG  solution, and an inter-cell reconstruction
36

 on top of the in-cell reconstruction is 

introduced to obtain a continuous quadratic polynomial solution on the union of two 

neighboring, interface-sharing cells. The in-cell reconstruction is designed to enhance 

the accuracy of the discontinuous Galerkin method by increasing the order of the 

underlying polynomial solution. The inter-cell reconstruction is devised to remove an 

interface discontinuity of the solution and its derivatives and thus to provide a simple, 

accurate, consistent, and robust approximation to the diffusive fluxes. The developed 

RDG(P1P2) method is used to compute a variety of flow problems on arbitrary meshes 

to demonstrate its accuracy, efficiency, and robustness. The numerical results indicate 

that this RDG(P1P2) method is able to obtain a third-order accurate solution at a 

slightly higher cost than its second-order DG method and significantly increases its 

performance over the third order DG method in terms of computing costs and storage 

requirements, and the inter-cell reconstruction DG method is a simple alternative for an 

accurate, stable, consistent, and efficient discretization of the viscous fluxes, and is 

capable of delivering the same accuracy as BR2 scheme at a half of its computing costs. 

The remainder of this paper is structured as follows. The governing equations are listed 

in Section 2. The underlying reconstructed discontinuous Galerkin method is presented 

in Section 3. Extensive numerical experiments are reported in Section 4. Concluding 

remarks are given in Section 5. 

2 GOVERNING EQUATIONS 

The Navier-Stokes equations governing unsteady compressible viscous flows can be 

expressed as  

 

(2.1)                                                                                                                                                                            

where the summation convention has been used. The conservative variable vector U, 

advective (inviscid) flux vector F, and viscous flux vector G are defined by   

                                                                                                                        

  

                                                                           (2.2)                                                                                                                                                                                                                                                                                                      
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Here ρ, p, and e denote the density, pressure, and specific total energy of the fluid, 

respectively, and ui  is the velocity of the flow in the coordinate direction ix . The 

pressure can be computed from the equation of state 

 

(2.3)                                                                                                                                                                                    

 

 which is valid for perfect gas, where γ is the ratio of the specific heats. The components 

of the viscous stress tensor σij and the heat flux vector are given by 

 

(2.4) 

                                                                                                                                                               

In the above equations, T is the temperature of the fluid, Pr the laminar Prandtl number, 

which is taken as 0.7 for air. μ represents the molecular viscosity, which can be 

determined through Sutherland’s law 
 

                                                                                                                                                             

(2.5) 
 

μ0 denotes the viscosity at the reference temperature T0, and S is a constant which for 

are assumes the value S = 110
o
K. The temperature of the fluid T is determined by 

(2.6) 

                                                                                                                                                                                    

 

Neglecting viscous effects, the left-hand side of Eq. (2.1) represents the Euler 

equations governing unsteady compressible inviscid flows.  

3 RECONSTRUCTED DISCONTINUOUS GALERKIN METHOD 

The governing equation (2.1) is discretized using a discontinuous Galerkin finite 

element formulation. To formulate the discontinuous Galerkin method, we first 

introduce the following weak formulation, which is obtained by multiplying the above 

conservation law by a test function W, integrating over the domain Ω, and then 

performing an integration by parts,  

 

(3.1)                                                                                                                                                                                      

 

where Γ(=∂Ω) denotes the boundary of Ω, and nj the unit outward normal vector to the 

boundary. We assume that the domain Ω is subdivided into a collection of non-

overlapping elements Ωe, which can be triangles, quadrilaterals, polygons, or their 

combinations in 2D and tetrahedra, prisms, pyramids, and hexahedra or their 

combinations in 3D. We introduce the following broken Sobolev space Vh
p
  

 

                                                                                                                                    (3.2)                                                

 

which consists of discontinuous vector-values polynomial functions of degree p, and 

where m is the dimension of the unknown vector and  
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                               Find                        such as 

                                                                                                                                                                      

 

(3.4) 

                                                                                                                                                                       

  

 

where Uh and Wh represent the finite element approximations to the analytical solution 

U and the test function W respectively, and they are approximated by a piecewise 

polynomial function of degrees p, which are discontinuous between the cell interfaces. 

Assume that B is the basis of polynomial function of degrees p, this is then equivalent to 

the following system of N equations,  

 

 

(3.5) 

                                                                                                                                                                       

                                                                                                                                                                                   

 

where N is the dimension of the polynomial space. Since the numerical solution Uh is 

discontinuous between element interfaces, the interface fluxes are not uniquely defined. 

The choice of these fluxes is crucial for the DG formulation. Like in the finite volume 

methods, the inviscid flux function Fk(Uh)nk appearing in the boundary integral can be 

replaced by a numerical Riemann flux function Hk(U
L

h,U
R

h,nk) where Uh
L 

and Uh
R 

are 

the conservative state vector at the left and right side of the element boundary. The 

computation of the viscous fluxes in the boundary integral has to properly resolve the 

discontinuities at the interfaces. This scheme is called discontinuous Galerkin method of 

degree p, or in short notation DG(P) method. Note that discontinuous Galerkin 

formulations are very similar to finite volume schemes, especially in their use of 

numerical fluxes. Indeed, the classical first-order cell-centered finite volume scheme 

exactly corresponds to the DG(P0) method, i.e., to the discontinuous Galerkin method 

using a piecewise constant polynomial. Consequently, the DG(Pk) methods with k>0 

can be regarded as a natural generalization of finite volume methods to higher order 

methods. By simply increasing the degree P of the polynomials, the DG methods of 

corresponding higher order are obtained. 

      The domain and boundary integrals in Eq. (3.5) are calculated using Gauss 

quadrature formulas. The number of quadrature points used is chosen to integrate 

exactly polynomials of order of 2p on the reference element. In 2D, two, three, and four 
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       In the traditional DGM, numerical polynomial solutions Uh in each element are 
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as following 
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On each cell, a system of NxN has to be solved, where polynomial solutions are 

dependent on the shape of elements. For example, for a linear polynomial 

approximation in 2D as shown in Fig.1, a linear polynomial is used for triangular 

elements and the unknowns to be solved are the variables at the three vertices and a bi-

linear polynomial is used for quadrilateral elements and the unknowns to be solved are 

the variables at the four vertices. However, numerical polynomial solutions U can be 

expressed in other forms as well. In the present work, the numerical polynomial 

solutions are represented using a Taylor series expansion at the center of the cell. For 

example, if we do a Taylor series expansion at the cell centroid,  the quadratic 

polynomial solutions can be expressed as follows  
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cells, regardless of element shapes, as shown in Fig.2.  

 

 

 

 

 

 

 

Figure 2. Representation of polynomial solutions using a Taylor series expansion for a 
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The discontinuous Galerkin formulation then leads to the following six equations  

 

 

 

(3.10)                                                                                                                                                                               

 

 

Note that in this formulation, equations for the cell-averaged variables are decoupled 

from equations for their derivatives due to the judicial choice of the basis functions and 

the fact that  
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In the implementation of this DG method, the basis functions are actually normalized in 

order to improve the conditioning of the system matrix (3.5) as follows: 
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      However, in comparison to the reconstructed FV methods, the DG methods have a 

significant drawback in that they require more degrees of freedom, an additional domain 

integration, and more Gauss quadrature points for the boundary integration, and 

therefore more computational costs and storage requirements. On one hand, the 

reconstruction methods that FV methods use to achieve higher-order accuracy are 

relatively inexpensive but less accurate and robust. One the other hand, the DG methods 

that can be viewed as a different way to extend a FV method to higher orders are 

accurate and robust but costly. It is appealing to develop a numerical method that 

combines the efficiency of the reconstruction methods and the accuracy of the DG 

methods. The ‘‘reconstructed DG’’ methods, originally proposed by Dumbser et al
18-20

, 

and termed PnPm schemes represent a first step in this direction. The key issue is how 

to construct an accurate and efficient reconstruction operator, i.e., how to obtain a 

higher order polynomial solution from an underlying DG solution. Normally, this is 

achieved using a so-called in-cell recovery where recovered equations are obtained 

using a L2 projection in the weak sense. However, recovery is not the only way to 

obtain a higher-order polynomial representation of an underlying DG solution. Rather, 

reconstruction widely used in the finite volume methods provides an alternative, 

probably a better choice to obtain a higher-order polynomial representation. Although 

our discussion in this work is mainly focused on the RDG(P1P2) method in 2D, its 

extension to higher-order and 3D DG methods is straightforward. In the case of 

RDG(P1P2) method, a linear polynomial solution Ui in any cell i is  

 

                                                                                                  (3.15)                                                                                

 

Using this underlying linear polynomial DG solution in the neighboring cells, one can 

reconstruct a quadratic polynomial solution Ui
R
 as follows: 

 

                                                                                                                     (3.16)                                                             

 

In order to maintain the compactness of the DG methods, the reconstruction is required 

to involve only von Neumann neighborhood, i.e., the adjacent cells that share a face 

with  the cell i under consideration. There are six degrees of freedom, and therefore 6 

unknowns must be determined. The first three unknowns can be trivially obtained, by 

requiring the consistency of the RDG with the underlying DG: 1) The reconstruction 

scheme must be conservative, and 2) The values of the reconstructed first derivatives 

are equal to the ones of the first derivatives of the underlying DG solution at the 

centroid i. Due to the judicious choice of Taylor basis in our DG formulation, these 

three degrees of freedom simply coincide with the ones from the underlying DG 

solution, i.e.,  

(3.17) 

                                                                                                                                                                               

As a result, only three second derivatives need to be determined. This can be 

accomplished by requiring that the point-wise values and first derivatives of the 

reconstructed solution and of the underlying DG solution are equal at the cell centers for 

all the adjacent face neighboring cells. Consider a neighboring cell j, one requires  
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where the basis functions B are evaluated at the center of cell j, i.e., B=B(xj,yj). This can 

be written in a matrix form as follows: 

 

 

(3.19) 

 

                                                                                                                                                                                  

 

 

where R is used to represent the right-hand-side for simplicity. Similar equations can be 

written for all cells connected to the cell i with a common face, which leads to a non-

square matrix. The number of face-neighboring cells for a triangular and a quadrilateral 

cell is three and four, respectively.  Correspondingly, the size of the resulting non-

square matrix is 9x3 and 12x3, respectively. This over-determined linear system of 9 or 

12 equations for 3 unknowns can be solved in the least-squares sense. In the present 

work, it is solved using a normal equation approach, which, by pre-multiplying through 

by the matrix transpose, yields a symmetric linear 3x3 system of equations as follows 

  

 

 

 

 

 

 

 

 

                                                                                                                                                                                 

(3.20) 

 

 

 

 

This linear system of 3x3 can be then trivially solved to obtain the second derivatives of 

the reconstructed quadratic polynomial solution.  

This reconstructed quadratic polynomial solution is then used to compute the 

domain and boundary integrals of the underlying DG(P1) method in Eq. (3.5). The 

resulting RDG(P1P2) is expected to have the third order of accuracy at a moderate 

increase of computing costs in comparison to the underlying DG(P1) method. The extra 

costs are mainly due to the least-squares reconstruction, which is relatively cheap in 

comparison to the evaluation of fluxes, and an extra Gauss  quadrature point, which is 

required to calculate the domain integrals for the triangular element (four quadrature 

points). Like in the DG(P1), two quadrature points are used to calculate the boundary 

integrals, and four points are used to calculate the domain integrals for quadrilateral 

elements. In comparison to DG(P2), this represents a significant saving in terms of flux 

evaluations. Furthermore, the number of degrees of freedom is considerably reduced, 

which leads to a significant reduction in memory requirements, and from which implicit 

methods will benefit tremendously. The cost analysis for the FV(P1), DG(P1), 

RDG(P1P2) and DG(P2) is summarized in Table 1, where the memory requirement for 

storing only the implicit diagonal matrix is given as well, and which grows 

quadratically with the order of the DG methods. We would like to emphasize that the 
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storage requirements for the implicit DG methods are extremely demanding, especially 

for higher-order DG methods.  

 

Table 1. Cost analysis for different numerical methods in 2D 

 FV(P1) DG(P1) RDG(P1P2) DG(P2) 

Number of quadrature points 

for boundary integrals 

1 2 2 3 

Number of quadrature points 

for domain integrals 

0 3(triangle) 

4(quadrilatera

l) 

4 

4 

6 

9 

Reconstruction Yes No Yes No 

Order of Accuracy O(h
2
) O(h

2
) O(h

3
) O(h

3
) 

Storage for Implicit Diagonal 

Matrix 

25 words 

Per element 

225 225 900 

  

The discretization of the Navier-Stokes equations requires the evaluation of the viscous 

fluxes at a cell interface, which has to properly resolve the discontinuities at the 

interfaces. Taking a simple arithmetic mean of the viscous fluxes from the left and right 

cells is inconsistent, because the arithmetic mean of the solution derivatives does not 

take into account a possible jump of the solutions. In the reconstructed RDG(P1P2) 

method, a continuous quadratic polynomial solution U
R 

is reconstructed on the union of 

two cells Ωij(=ΩiUΩj) adjacent to the interface based on the  reconstructed in-cell 

discontinuous Galerkin solution in the two abutting elements. This reconstructed 

smooth solution is then used to compute the viscous fluxes at the interface. Without lose 

of generality, let us consider the case of RDG(P1P2) method, where the reconstructed 

solution U
R
, similar to the underlying DG solution on Ωi, can be expressed in Ωij using a 

Taylor basis as follows: 

 

                   (3.21)                                                                                                                                                               

 

where Ũij is the mean value of U
R
 on Ωij, and the derivatives are the point-wise value at 

the center of Ωij. There are six degrees of freedom, and therefore six unknowns to be 

determined. However, the cell-average value Ũij can be trivially obtained, by requiring 

the reconstruction scheme to be conservative, a fundamental requirement. Due to the 

judicious choice of Taylor basis in our DG formulation, this leads to 

 

                                                                                                (3.22)                                                                                 

 

 The remaining five degrees of freedom can be determined by requiring that the 

reconstructed solution and its derivatives are equal to the underlying and reconstructed 

DG solution and its derivatives at cells i and j. Consider cell i, one obtains  
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(3.23) 

 

 

 

where the basis function B is evaluated at the center of cell i, i.e., Bi=B(xj,yj). This can 

be written in a matrix form as follows: 
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Similar equations could be derived for the cell j, which leads to a non-square matrix. 

The size of the resulting non-square matrix is 12x5. This over-determined linear system 

of 12 equations for 5 unknowns can be solved in the least-squares sense. In the present 

work, it is solved using a normal equation approach, which, by pre-multiplying through 

by matrix transpose, yields a symmetric linear system of equations 5x5. This linear 

system of equations can be then trivially solved to obtain the five derivatives of the 

reconstructed continuous quadratic polynomial solution. This reconstructed smooth 

quadratic polynomial solution is then used to compute the viscous and heat fluxes in the 

Navier-Stokes equations at the interfaces. Similar to the recovered DG methods, the 

inter-cell reconstruction is compact, as it only involves two cells adjacent to the 

interfaces. Unlike the recovery-based DG methods, the reconstructed DG method only 

reconstructs a smooth polynomial solution of the same order as the underlying DG 

solution, thus there is no need to judiciously choose a proper form of a recovered 

polynomial and make sure that the recovered system is well conditioned and can be 

inverted. As the computation of the viscous and heat fluxes requires the differentiation 

of the solution in the direction normal to the interfaces and the reconstruction is 

anisotropic due to the embedded 1D interpolation problem in the direction connecting 

the centers of two cells i and j, it is natural to increase the accuracy of the reconstructed 

polynomial solution in that direction. This can be done by adding a cubic term in that 

direction to the reconstructed polynomial solution (3.21), which reads 

(3.25) 
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This inter-cell reconstruction leads to an over-determined system of 12 equations with 6 

unknowns. The numerical experiments indicate that the use of this inter-cell 

reconstruction significantly increases the accuracy of RDG method for the discretization 

of the diffusive fluxes, at a moderate increase of the computing costs and storage 

requirements. This scheme for the discretization of the viscous and heat fluxes will be 

referred to as RDG(P1P2+) method from now on, where + indicates that the 

reconstructed polynomial solutions contain a higher order term in the normal direction 

to the interface. 

 It is worth to note that the application of this inter-cell reconstruction to DG(P0) 

method where the first derivative is approximated using a second-order central 

differencing method demonstrates that this reconstruction DG method automatically 

provides the coupling terms required for the stability and leads to a 5-point second-order 

scheme for the diffusive operator (second derivative) in 1D on a uniform grid, contrary 

to most of discretization methods that lead to a 3-point stencil second-order method. 

This analysis indicates the potential of this reconstruction method for the accurate and 

robust discretization of the viscous fluxes on highly non-uniform, highly stretched, and 

highly distorted grids, as it is practically impossible to obtain a second-order accurate 

and compact cell-centered finite volume method for multi-dimensional problems on 

such grids. 

      This reconstructed DG method has been implemented in a well-tested 2D DG 

code
13-17,29

. In this code, a fast, low-storage p-multigrid method
16,17

 is developed to 

obtain steady state solutions, and an explicit three-stage third-order TVD Runge-Kutta 

scheme is used to advance solution in time for the unsteady flow problems. Many 

upwind schemes have been implemented for the discretization of the inviscid fluxes, 

although HLLC scheme is exclusively used for the approximate solution of the 

Riemann problem in this work.  

4 NUMERICAL RESULTS  

4.1 Subsonic flows past a circular cylinder 

 This is a well-known test case: subsonic flow past a circular cylinder at a Mach 

number of M∞=0.38. This test case is chosen to verify if a formal order of the 

convergence rate of the RDG(P1P2) method can be achieved for the compressible Euler 

equations on unstructured grids. Figure 3 shows four successively refined o-type grids 

having 16x5, 32x9, 64x17, and 128x33 points, respectively. The first number is the 

number of points in the angular direction, and the second number is the number of 

points in the radial direction. The radius of the cylinder is r1=0.5, the domain is bounded 

by r33=20, and the radii of concentric circles for 128x33 mesh are set up as 

 

where α=1.1580372. The coarser grids are generated by successively coarsing the finest 

mesh. Numerical solutions to this problem are computed using FV(P1), DG(P1), 

DG(P2), and RDG(P1P2) methods on these four grids to obtain quantitative 

measurement of the order of accuracy and discretization errors. The detailed results for 

this test case are presented in Tables 2a-d. They show the mesh size, the number of 

degrees of freedom, the L2-error of the solutions, and the order of convergence. In this 

case, the following entropy production ε defined as 
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is served as the error measurement, where S is the entropy. Note that the entropy 

production is a very good criterion to measure accuracy of the numerical solutions, 

since the flow under consideration is isentropic. Figure 4 shows the computed Mach 

number contours in the flow field obtained by FV(P1) on the128x33 mesh, DG(P1) on 

the 64x17 mesh, and DG(P2) and RDG(P1P2) on the 32x8 mesh, respectively. One can 

see that the results obtained by DG(P2) on the 32x8 mesh are more accurate than the 

ones obtained by DG(P1) on the 64x17 mesh, which in turn are more accurate than the 

ones obtained by FV(P1) on the 128x33 mesh. Both RDG(P1P2) and DG(P2) solutions 

are virtually identical for this case. However, the DG(P2) does yield a slightly more 

accurate solution than the RDG(P1P2) at the same grid resolution. This can be seen in 

Figure 5, providing the details of the spatial convergence of each method for this 

numerical experiment. As expected, the DG method exhibits a full O(h
p+1 

) order of 

convergence. The reconstructed DG(P1) method does offer a full O(h
p+2

) order of the 

convergence, adding one order of accuracy to the underlying DG(P1) method. 

Moreover, the RDG(P1P2) outperforms DG(P2),  by measuring  the number of the 

degrees of freedom required to achieve the same accuracy.  

 

 

 

 

 

 

 

 

Figure 3: Sequences of four successively globally refined triangular meshes 16x5, 32x9, 

64x17, 128x33 for computing subsonic flow past a circular cylinder.  

 

 



Hong Luo, Robert Nourgaliev, Vincent Mousseau, and Chunpei Cai 

 

 15 

 

 

 

 

 

 

Figure 4: Computed Mach number contours in the flow field obtained by the FV(P1) 

method on 128x33 mesh (top left), DG(P1) method on 64x17 mesh (top right), DG(P2) 

method on 32x9 mesh (bottom left), and RDG(P1P2) on 32x9 mesh (bottom right) for 

subsonic flow past a circular cylinder at M∞=0.38. 

Figure 5. Convergence history versus cell-size (left) and the number of degrees of 

freedom for subsonic flow past a circular cylinder for FV(P1), DG(P1), DG(P2), and 

RDG(P1P2) methods 

4.2 Blasius Boundary Layer 

The laminar boundary layer over an adiabatic flat plate at a free-stream Mach 

number of 0.2 and a Reynolds number of 100,000 based on the freestream velocity and 
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the length of the flat plate is considered in this test case, where the computational 

domain is bounded from -0.5 to 1 in the x-direction and 0 to 1 in the y-direction, and the 

flat plate starts at point (0,0) and extends to (1,0). This problem is chosen to illustrate 

that RDG(P1P2) method is able to maintain the same level of the accuracy as RDG(P2) 

method for the numerical solution of the Navier-Stokes equations, as the Blasius 

solution can be used to measure accuracy of the numerical solutions. Computations are 

performed on four grids: two quadrilateral grids, one hybrid grid, and one triangular 

grid, shown in Figure 6, to assess the accuracy and consistence of the RDG(P1P2) 

method on different types of grids. The first two grids used in this test case have the 

same number of grid points (61x17), with 20 cells ahead of the flat plate and 40 cells for 

the flat plate, the same distribution of the grid points in the x-direction, but a different 

distribution of grid points in the y-direction. In order to cluster points near the wall, the 

point distribution in the y-direction follows a geometric stretching. The stretching ratio 

is the ratio of the heights of the two successive elements. A stretching ratio of 1.2 and 

1.3 is used for the two meshes in the computation, respectively. For the grid with a 

stretching ratio of 1.2, the height of the first element is 0.1291E-02, and the cell sizes in 

the x-direction for the first element at the leading and trailing edges of the flat plate are 

0.12086e-02 and 0.110386, respectively. When a stretching ratio is set to 1.3, the first 

grid-spacing off the wall is 0.155869E-03. The last two grids consist of 900 grid points, 

and 105 boundary points, with 31 grid points on the flat plate. The height of the first 

element is 0.3464E-03 and 0.82649E-03 at the leading and trailing edge of the flat plate 

respectively. As a result, the quadrilateral grid with a stretching ratio of 1.3 provides the 

best grid resolution for the boundary layers, and the quadrilateral grid with a stretching 

ratio of 1.2 has the least grid points in the boundary layers. The numerical results 

obtained by RDG(P2), and RDG(P1P2) on these four grids are presented, and compared 

with the theoretical one given by the well-known Blasius solution. Figure 7 shows the 

logarithmic plot of the computed skin friction coefficient obtained by RDG(P2) and 

RDG(P1P2) solutions, respectively. Comparing the numerical solutions on the two 

quadrilateral grids, one can observe a consistent convergence of both reconstructed 

RDG(P2) and RDG(P1P2) methods. The more grid points are in the boundary layer, the 

more accurate the numerical solutions are, regardless of the highly non-uniformity of 

the grids. Note that most of the cell-centered finite volume methods are unable to obtain 

a consistent convergence on highly non-uniform grids and will produce a more accurate 

solution on the less stretching ratio grid. The numerical solutions obtained by the 

RDG(P1P2) method are very close to the ones produced by the RDG(P2) scheme, 

demonstrating that the in-cell reconstruction RDG(P1P2) method is able to deliver the 

same accuracy, convergence, and stability as the original DG(P2) scheme. Finally, by 

comparing the computed results between the hybrid and triangular grids, one can clearly 

understand the justification of using the hybrid grids for the computation of the viscous 

flows. A triangular grid has twice many grid cells than a quadrilateral grid, and yet 

yields much less accurate solutions than its hybrid counterpart. 
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Figure 6. Grids used for computing the Blasisus solution: a quadrilateral grid with a 

stretching ratio of 1.2 (top left), a quadrilateral grid with a stretching ratio of 1.3 (top 

right), a hybrid grid (bottom left), and a triangular grid (bottom right). 

 

 

Figure 7. Logarithmic plot of the computed skin friction coefficient distribution along 

the flat plate obtained by the RDG(P2), and RDG(P1P2) solutions on the quadrilateral 

grid with a stretching ratio of 1.2 in the y-direction (top left), the quadrilateral grid with 
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a stretching ratio of 1.3 in the y-direction (top right), the hybrid grid (bottom left), and 

the triangular grid (bottom right). 

 

5 CONCLUSIONS  

A reconstructed discontinuous Galerkin RDG(P1P2) method has been presented for 

the solution of the compressible Navier-Stokes equations on arbitrary grids. An in-cell 

reconstruction is developed to obtain a piecewise quadratic polynomial solution from 

the underlying piecewise linear DG solution using a conservative least-squares method. 

The reconstructed quadratic polynomial solution is used for the computation of the 

inviscid fluxes and for the reconstruction of a continuous quadratic polynomial solution 

using a so-called inter-cell reconstruction. The reconstructed continuous quadratic 

polynomial solution on the union of two neighboring is then used for the discretization 

of the viscous and heat fluxes at the cell interfaces. The developed RDG(P1P2) method 

has been parallelized using MPI and used to compute a variety of flow problems on 

arbitrary grids to demonstrate its accuracy, efficiency, robustness, and versatility. The 

numerical results indicate that the developed RDG(P1P2) method is third-order accurate 

at a cost slightly higher than its underlying second-order DG method, at the same time 

providing a better performance than the third order DG method, in terms of both 

computing costs and storage requirements.  
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