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Abstract

The aim of this paper is to present an approximate solutiamoitial boundary value
problem related to blood flow by using an hybrid method. Itgswemed that the fluid is
homogeneous, incompressible and follows the Newton lawisafogity. This procedure
does not use any kind of linearization of the equations ardiization of the variables.

1 Introduction

The Navier-Stokes equations are the equations governggnttion of Newtonian fluids such
as water, oil, air, etc. Blood is a complex Non-Newtoniandflout can be regarded as Newto-
nian during the flow in large blood vessels, [1]. This papedsleith an initial boundary value
problem related to blood flow. Namely, it is assumed that thiel fls homogeneous, incom-
pressible and follows the Newton law of viscosity. An expgien for the pressure gradient is
provided in order to simulate the systole and diastole mardgs With these considerations
we have for the momentum equation

1
U+ (u-V)u=e’Au — ;Vp, (1)

wheree? is the kinematic viscosity is the fluid densityu is the fluid velocity and is the
pressure. Imposing an oscillating pressure gradient tldtegiven by

1
—;Vp = ag + acos (wt) (2)

wherea andw are related, respectively, to the amplitude and frequehtlyeocardiac move-
ment andy, > « represents a static favorable pressure gradient thateseorreverse flow,
equation (1) can represent the blood flow in large blood Ves$hae center-line flow velocity
in a2—D blood vessel or channel is approximated by theomponent of equation (1) with
u, = 0, e.g. the one-dimensional differential equation

Uy + Uty = 2y, + o + cos (wt) (3)



with the boundary conditions

u(t,0) =wu(t,L) = [y + [ sin (wt) (4)
and with the initial condition

u(O,x) = BO- (5)

The Fourier Method is combined with the Adomian Decomposilethod in order to provide
a solution satisfying both initial and boundary conditions

The proposed exact solution is of the form

= kmx
u(t,z) =h(t,x Op (t)sin | — | . 6
0) =t + Y @sin (777 ©
whereh (t,z) is a function that depends on the boundary conditionsérid) and ;. (),
for £ € N, are the solutions of a nonlinear system of ordinary difiée¢ equations. The
initial conditions for this system are given by the projenton the functiong, (x) andy ()

in a suitable function space. An approximate solution tosysem is obtained by using the
Adomian Decomposition Method, described in the next sacfltne solution in the form (6)
satisfies the boundary conditions. Pulsating flows of neiatoand non-newtonian fluids have
been studied in detail, theoretically and numerically vatinite volume method in [2].

2 The Adomian Decomposition Method

In [3], G. Adomian developed a decomposition method for imgwnonlinear (stochastic) dif-
ferential equations using special polynomidls, usually called Adomian polynomials. The
A,’s are generated for each nonlinearity.

One of the main advantages of the Adomian’s polynomialsas tiney depend only on the
known functionu, (). Another great advantage of this method is that the alguoriith of
simple implementation.

Unfortunately the solutions provided by the standard Adontdecomposition Method usually

do not satisfy the boundary conditions. In [4] and [5] thehaus$ present a method that allows
the standard Adomian Decomposition Method to solve inli@indary valued problems for

Partial Differential Equations.

The convergence of the Adomian Decomposition series has ibgestigated by several au-
thors. In [6] and [7], the authors showed that the method doealways converge, particularly,
when the method is applied to linear operator equations.tiiéeretical analysis of conver-
gence and speed of convergence of the decomposition metmdomsidered in [8], [9], [10],
[11] and [12].

Let us now consider the differential equation



Lu = Ru + Pu, (7)
where/ (linear) andR are differential operators arlis a nonlinear operator.
The Adomian polynomials decompose a given functidn =) in a series

w(t,z)=> u,(tx), 8)
n=0

and for a nonlinear operatdr we have the following decomposition

® (u(t, ) =Y An, ©)

where thed,,, usually called the Adomian’s Polynomials, are given byrd®irrence formula

1 dn o
= —— " > 0.
A, T [@ (ngzo)\ un>] ‘)\:0, n>0 (20)

The Adomian polynomials can be constructed as follows:

AO = @(Uo),
Al = Ul(I) (Uo),

1
AQ = UQ(I)/ (Uo) + QUI%(I)// (UO) y

1
Ag = U3(I), (Uo) -+ U1U2(I>” (UQ) + gui’(ﬁ'" (UQ) s

Algorithms for formulating Adomian polynomials where irstggated in [13] and [14].

We also suppose the existence of the inverse opegitér Thus, applyingC~—? to (7), we
obtain the recurrence relation,

Upy1 = L Ru, + L7 ®u,, up =g (), n € NU{0}, (11)
that provides a reliable approach to the solution of the lerab

Now we briefly describe how to apply the Adomian Decompositidethod to systems of
ordinary differential equations. Let us consider a systémrdinary differential equations in
the form

£U1 = fl(t,Ul,Ug,...,un)
EUQ = fg(t,ul,UQ,...,un)

: (12)

cun = fn (tau17u27 cee 7un)



with initial conditionsu; (0), for 1 < i < n, whereLu = @ = d—? with inverseL™! (-) =
[ () dt.
Applying the inverse operatai— to (12) we obtain the following canonical form

uy = ul,O_‘_‘Ct_1 [fl (tau17u27"'7un)]
Uy = ugo+ Ly [fo (tur, ug, .., up)] (13)
Uy = Uno+ L7 [fo (Eur, ug, . uy)]

whereu; o = u; (0) for 1 <i <mn.

Applying the Adomian Decomposition Method, each compowéttie solution of (12) can be
expressed as a series of the form

uj = Z i (14)
i=0

and the integrands on the right side of (13), using (10), spesssed as

fi(tur, ug, .o un) = ZAZ'J (fios firs fizsoos fig) s 1< <im, (15)
=0

where thed; ; are the Adomian Polynomials corresponding to the nonlipeatf;.

We should note that in order to solve system (12), we obtaipséem of Volterra integral
equations of the second kind, (13).

Therefore (6) is actually of the form

w(tz) = h(t,2) —i-guk () sin (’”Tx) iy (t,x)+§; (2 e (t)) sin <1me> (16)

In order to accelerate the convergence of the method whelreddp nonlinear systems of
Volterra integral equations of second kind, we will proceedin [15]. For considerations
related to the convergence of the Adomian Decompositiorhbtktvhen applied to nonlinear
systems of Volterra integral equations of second kind, Vier khe reader to [16], where the
problem of convergence is studied.

As an example of application of this procedure to obtain gar@amate solution to the initial
boundary valued problem for higher order nonlinear patalsgjuations we refer the reader to
[17].



3 Theparametersof themode

Under certain simplifications, the differential equatig@sand (6) can represent a model for
blood flow in large blood vessels. For large shear rates,dobmhaves like a suspension of
particles in a Newtonian fluid. Einstein derived an equafmmspherical particles at a low
volumetric concentration, [18]. This equation applied kadadl reads,

B 1
77—77p<1_a¢)

wherer is the blood viscosityy, the plasma viscosity andis a parameter related to the shape
of the particles. For high values of haematockt,= 100¢ , the following empirical relation
Is available,

1107
a = 0.076exp {2.49¢ + 76—1-6%} for 0.05< ¢ <0.6

with 7" (Kelvin) the human body temperature. Considering= 37° = 310K, the plasma
viscosity isn, ~ 1.24 x 1072Pa.s. The healthy haematocrit & = 45 and thenp = 0.45.
These conditions lead t@ = 1.237 andn = 0.028 Pa.s. The kinematic viscosity is? = %
wherep is the blood density. For the healthy valugoof 1060K g/m? we haves? = 0.265 x
10~*m?/s. The steady pressure gradient parametgrwas estimated considering a decrease
of Ap = —10mmH g along the aorta lenght = 0.5m. This leads tay, = —%% = 2.5m/s>.
The oscillating parameteris considered to b20% of the mean steady pressuse= 0.2ay =
0.5m/s* , denoting the amplitude of the systolic-diastolic pressusuallyl2 — SmmHg. For
the boundary conditions parametefgand, an average aortic blood velocity was considered,
Bo = 0.5m/s , and an oscillation 020% is assumed; = 0.2/, = 0.1m/s. The frequency of
the cardiac movemernft,= g—g beats per second, is assumed for the calculationef27 f =
7.854rad/s.

Pulsating flows of newtonian and non-newtonian elastic fluad studied theoretically using
the method of separation of variables and numerically ugiadinite-volume method in [19],
[2], [20] and [21] respectively.

4 Theapproximate solution for the nonlinear problem
Let us now consider the problem
U + ULy = Uy + f (L, )
w(t=0,z) = up(z) (17)

u(t,0)=u(t,L) = g(t)



In order to obtain an approximate solution to this problens hecessary to do some mathe-
matical manipulation to get homogeneous boundary comditibet us consider that the exact
solution,u (¢, z) can be expressed as a sum of two functions, an unknown functi =) and

S (t,x) = A(t) (1—Z>+B()<i>

being function that satisfies the boundary conditions.
It is easy to see that

Stax)=g(t),

and therefore,
u(t,x) =w(t,x)+g(t). (18)

Using (18) in (17), we obtain the nonlinear homogeneouslprolffor w (¢, x)),
W+ ww, + g () we = Ewae + f (1) — g (t)
w(t=0,z) = u(z) —g(0) (19)

w (t,0) = w(t,L)=0

Let us now consider that the exact solution of (19) is of threnfo

Z wy, (t) sin (kﬁm) . (20)

Using an approximation of (20) in (19) we obtain the relation

Zwk ) sin (lmsc) _ _% zn: kwy (t) w; (t) cos (lme) sin (?)

+ i ¢k (t) sin (lme) , (22)

where

=2 [ () - g @) (52) as 22)



Multiplying (21) by 2 = sin (W) for 1 < i < n and integrating in order to the variablewe
obtain the following nonlinear system of ordinary diffeti@hequations:

L 27 - krx\ | iTx\ . [iTx
w; (1) = T2 Z kwy (t) w, (t)/O cos (T) sin (]T) sin (T) dx
k=1

7 > kg ) 1) /OL cos (’”Tx) sin (%) d
- ({)w 0+ [(Gen-swm () a 23)
forl1 <i<n.

Integrating in order to the variabtewe obtain the following recurrence scheme:

_ (%)2/Otwi(t)dt+%/ot UOL(f(t,:c)—g(t))sm (“;U) dx} dt, (24)

for 1 <1i <mnandZ is given by

L kmx Jjmx X
Trji = / cos <—) sin <—) sin <—) dz. (25)
A L L L

Thus, we obtain the following recurrence scheme

. 2 t
ELTT
wi,m—i—l E k ijz / Wi m( )wj,m (t> dt — ( I ) / Wim (t> dt
0

_%;k UO oS (?) sin <?) d:c] /Otg(t) W (1) dt
+% /Ot {/OL (f (t,2) — ¢ (1)) sin (?) dx} dt, (26)
forl1 <i<n.

The initial conditions for this system are given by

w; (0) = % /0 (o () — ¢ (0)) sin (%) da. 27)



The nonlinearities in (26) (or in (23) and (24)) are of thenfob (u, v) = uwv. Thus, using (10)
we have ford (u, v)

Ao = uovo

Al = U1V + UgVq

Ag = UgUg + UIV1 + UgU2

A3 = U3Vg + UV1 + U V2 + UgV3

A4 = U4V + U3V| + UVUy + U V3 + UgUy

In the next section an example of application is presented.

5 Numerical application

The method previously described was applied to the noraiibod flow model

U+ Uy = Uy + ap + acos (wi)
u(t=0,z) = [y, 0<z <L, ) (28)
uw(t,0) = wu(t,L)= [0+ Fsin(wt), t>0

The numerical simulation was achieved with odlterms of the series (6).

The model parameters have been established in 3 and the halu®.5m is assumed to be
the aorta length

Figure 1: Solution fod <t < 0.2 Figure 2: Solution fob <t <04

It is observed, from the figures, that the initial steady g&ois significantly perturbed after
0.1 seconds. For the interval of tinle< ¢ < 0.2 the pulsating flow is not evident and the
velocity begins to be affected by the pulsating pressurdignaat the end of the channel. The
pulsating flow begins afteh.5 seconds and is completely established ajft&rsecond. This
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Figure 3: Solution fob <t < 0.6 Figure 4: Solution fob <t < 0.8

response to the oscillating pressure gradient gives anatiéae inertia of the flow. Blood
flow inertia can represent an important role in some disead®s results of the numerical
simulation agree with physical considerations and showatthe method is consistent and
convergent when applied to this flow.
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