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Abstract

The aim of this paper is to present an approximate solution toan initial boundary value
problem related to blood flow by using an hybrid method. It is assumed that the fluid is
homogeneous, incompressible and follows the Newton law of viscosity. This procedure
does not use any kind of linearization of the equations or discretization of the variables.

1 Introduction

The Navier-Stokes equations are the equations governing the motion of Newtonian fluids such
as water, oil, air, etc. Blood is a complex Non-Newtonian fluid but can be regarded as Newto-
nian during the flow in large blood vessels, [1]. This paper deals with an initial boundary value
problem related to blood flow. Namely, it is assumed that the fluid is homogeneous, incom-
pressible and follows the Newton law of viscosity. An expression for the pressure gradient is
provided in order to simulate the systole and diastole movements. With these considerations
we have for the momentum equation

ut + (u · ∇) u = ε2∆u −
1

ρ
∇p, (1)

whereε2 is the kinematic viscosity,ρ is the fluid density,u is the fluid velocity andp is the
pressure. Imposing an oscillating pressure gradient to theflow given by

−
1

ρ
∇p = α0 + α cos (ωt) , (2)

whereα andω are related, respectively, to the amplitude and frequency of the cardiac move-
ment andα0 > α represents a static favorable pressure gradient that ensures no reverse flow,
equation (1) can represent the blood flow in large blood vessels. The center-line flow velocity
in a 2−D blood vessel or channel is approximated by thex component of equation (1) with
uy = 0, e.g. the one-dimensional differential equation

ut + uux = ε2uxx + α0 + α cos (ωt) (3)



with the boundary conditions

u (t, 0) = u (t, L) = β0 + β sin (ωt) (4)

and with the initial condition

u (0, x) = β0. (5)

The Fourier Method is combined with the Adomian Decomposition Method in order to provide
a solution satisfying both initial and boundary conditions.

The proposed exact solution is of the form

u (t, x) = h (t, x) +

∞
∑

k=1

θk (t) sin

(

kπx

L

)

. (6)

whereh (t, x) is a function that depends on the boundary conditions andθk (t) andϕk (t),
for k ∈ N, are the solutions of a nonlinear system of ordinary differential equations. The
initial conditions for this system are given by the projection on the functionsθ0 (x) andϕ0 (x)
in a suitable function space. An approximate solution to thesystem is obtained by using the
Adomian Decomposition Method, described in the next section. The solution in the form (6)
satisfies the boundary conditions. Pulsating flows of newtonian and non-newtonian fluids have
been studied in detail, theoretically and numerically witha finite volume method in [2].

2 The Adomian Decomposition Method

In [3], G. Adomian developed a decomposition method for solving nonlinear (stochastic) dif-
ferential equations using special polynomialsAn, usually called Adomian polynomials. The
An’s are generated for each nonlinearity.

One of the main advantages of the Adomian’s polynomials is that they depend only on the
known functionu0 (x). Another great advantage of this method is that the algorithm is of
simple implementation.

Unfortunately the solutions provided by the standard Adomian Decomposition Method usually
do not satisfy the boundary conditions. In [4] and [5] the authors present a method that allows
the standard Adomian Decomposition Method to solve initialboundary valued problems for
Partial Differential Equations.

The convergence of the Adomian Decomposition series has been investigated by several au-
thors. In [6] and [7], the authors showed that the method doesnot always converge, particularly,
when the method is applied to linear operator equations. Thetheoretical analysis of conver-
gence and speed of convergence of the decomposition method was considered in [8], [9], [10],
[11] and [12].

Let us now consider the differential equation



Lu = Ru + Φu, (7)

whereL (linear) andR are differential operators andΦ is a nonlinear operator.

The Adomian polynomials decompose a given functionu (t, x) in a series

u (t, x) =

∞
∑

n=0

un (t, x) , (8)

and for a nonlinear operatorΦ we have the following decomposition

Φ (u (t, x)) =

∞
∑

n=0

An, (9)

where theAn, usually called the Adomian’s Polynomials, are given by therecurrence formula

An =
1

n!

dn

dλn

[

Φ

(

∞
∑

n=0

λnun

)]

∣

∣

∣

λ=0

, n ≥ 0. (10)

The Adomian polynomials can be constructed as follows:

A0 = Φ (u0) ,

A1 = u1Φ (u0) ,

A2 = u2Φ
′ (u0) +

1

2
u2

1Φ
′′ (u0) ,

A3 = u3Φ
′ (u0) + u1u2Φ

′′ (u0) +
1

3!
u3

1Φ
′′′ (u0) ,

...

Algorithms for formulating Adomian polynomials where investigated in [13] and [14].

We also suppose the existence of the inverse operatorL−1. Thus, applyingL−1 to (7), we
obtain the recurrence relation,

un+1 = L−1Run + L−1Φun, u0 = u0 (x) , n ∈ N ∪ {0} , (11)

that provides a reliable approach to the solution of the problem.

Now we briefly describe how to apply the Adomian Decomposition Method to systems of
ordinary differential equations. Let us consider a system of ordinary differential equations in
the form



















Lu1 = f1 (t, u1, u2, . . . , un)
Lu2 = f2 (t, u1, u2, . . . , un)

...
Lun = fn (t, u1, u2, . . . , un)

, (12)



with initial conditionsui (0), for 1 ≤ i ≤ n, whereLu = u̇ ≡
du

dt
with inverseL−1 (·) =

∫ t

0
(·) dt.

Applying the inverse operatorL−1 to (12) we obtain the following canonical form



















u1 = u1,0 + L−1
t [f1 (t, u1, u2, . . . , un)]

u2 = u2,0 + L−1
t [f2 (t, u1, u2, . . . , un)]

...
un = un,0 + L−1

t [fn (t, u1, u2, . . . , un)]

, (13)

whereui,0 = ui (0) for 1 ≤ i ≤ n.

Applying the Adomian Decomposition Method, each componentof the solution of (12) can be
expressed as a series of the form

uj =

∞
∑

i=0

fi,j (14)

and the integrands on the right side of (13), using (10), are expressed as

fi (t, u1, u2, . . . , un) =

∞
∑

j=0

Ai,j (fi,0, fi,1, fi,2, . . . , fi,j) , 1 ≤ i ≤ n, (15)

where theAi,j are the Adomian Polynomials corresponding to the nonlinearpartfi.

We should note that in order to solve system (12), we obtain a system of Volterra integral
equations of the second kind, (13).

Therefore (6) is actually of the form

u (t, x) = h (t, x)+
∞
∑

k=1

uk (t) sin

(

kπx

L

)

= h (t, x)+
∞
∑

k=1

(

∞
∑

i=0

uk,i (t)

)

sin

(

kπx

L

)

. (16)

In order to accelerate the convergence of the method when applied to nonlinear systems of
Volterra integral equations of second kind, we will proceedas in [15]. For considerations
related to the convergence of the Adomian Decomposition Method when applied to nonlinear
systems of Volterra integral equations of second kind, we refer the reader to [16], where the
problem of convergence is studied.

As an example of application of this procedure to obtain an approximate solution to the initial
boundary valued problem for higher order nonlinear parabolic equations we refer the reader to
[17].



3 The parameters of the model

Under certain simplifications, the differential equations(3) and (6) can represent a model for
blood flow in large blood vessels. For large shear rates, blood behaves like a suspension of
particles in a Newtonian fluid. Einstein derived an equationfor spherical particles at a low
volumetric concentration, [18]. This equation applied to blood reads,

η = ηp

(

1

1 − αφ

)

whereη is the blood viscosity,ηp the plasma viscosity andα is a parameter related to the shape
of the particles. For high values of haematocrit,H = 100φ , the following empirical relation
is available,

α = 0.076exp

[

2.49φ +
1107

T
e−1.69φ

]

for 0.05 ≤ φ ≤ 0.6

with T (Kelvin) the human body temperature. ConsideringT = 37◦ = 310K, the plasma
viscosity isηp ≈ 1.24 × 10−2Pa.s. The healthy haematocrit isH = 45 and thenφ = 0.45.
These conditions lead toα = 1.237 andη = 0.028Pa.s. The kinematic viscosity isε2 = η

ρ

whereρ is the blood density. For the healthy value ofρ = 1060Kg/m3 we haveε2 = 0.265×
10−4m2/s. The steady pressure gradient parameter,α0, was estimated considering a decrease
of ∆p = −10mmHg along the aorta lenghtL = 0.5m. This leads toα0 = −1

ρ

∆p

L
= 2.5m/s2.

The oscillating parameterα is considered to be20% of the mean steady pressure,α = 0.2α0 =
0.5m/s2 , denoting the amplitude of the systolic-diastolic pressure, usually12− 8mmHg. For
the boundary conditions parameters,β0 andβ, an average aortic blood velocity was considered,
β0 = 0.5m/s , and an oscillation of20% is assumed,β = 0.2β0 = 0.1m/s. The frequency of
the cardiac movement,f = 75

60
beats per second, is assumed for the calculation ofω = 2πf =

7.854rad/s.

Pulsating flows of newtonian and non-newtonian elastic fluidwas studied theoretically using
the method of separation of variables and numerically usingthe finite-volume method in [19],
[2], [20] and [21] respectively.

4 The approximate solution for the nonlinear problem

Let us now consider the problem























ut + uux = ε2uxx + f (t, x)

u (t = 0, x) = u0 (x)

u (t, 0) = u (t, L) = g (t)

(17)



In order to obtain an approximate solution to this problem, it is necessary to do some mathe-
matical manipulation to get homogeneous boundary conditions. Let us consider that the exact
solution,u (t, x) can be expressed as a sum of two functions, an unknown function w (t, x) and

S (t, x) = A (t)
(

1 −
x

L

)

+ B (t)
(x

L

)

being function that satisfies the boundary conditions.

It is easy to see that

S (t, x) = g (t) ,

and therefore,
u (t, x) = w (t, x) + g (t) . (18)

Using (18) in (17), we obtain the nonlinear homogeneous problem (forw (t, x)),























wt + wwx + g (t) wx = ε2wxx + f (t, x) − ġ (t)

w (t = 0, x) = u0 (x) − g (0)

w (t, 0) = w (t, L) = 0

(19)

Let us now consider that the exact solution of (19) is of the form

w (t, x) =

∞
∑

k=1

wk (t) sin

(

kπx

L

)

. (20)

Using an approximation of (20) in (19) we obtain the relation

n
∑

k=1

ẇk (t) sin

(

kπx

L

)

= −
π

L

n
∑

j,k=1

kwk (t) wj (t) cos

(

kπx

L

)

sin

(

jπx

L

)

−g (t)
π

L

n
∑

k=1

kwk (t) cos

(

kπx

L

)

−
(επ

L

)2
n
∑

k=1

k2wk (t) sin

(

kπx

L

)

+
n
∑

k=1

ck (t) sin

(

kπx

L

)

, (21)

where

ck (t) =
2

L

∫ L

0

(f (t, x) − ġ (t)) sin

(

kπx

L

)

dx. (22)



Multiplying (21) by 2

L
sin
(

iπx
L

)

, for 1 ≤ i ≤ n and integrating in order to the variablex we
obtain the following nonlinear system of ordinary differential equations:

ẇi (t) = −
2π

L2

n
∑

j,k=1

kwk (t) wj (t)

∫ L

0

cos

(

kπx

L

)

sin

(

jπx

L

)

sin

(

iπx

L

)

dx

−
π

L

n
∑

k=1

kg (t)wk (t)

∫ L

0

cos

(

kπx

L

)

sin

(

iπx

L

)

dx

−

(

εiπ

L

)2

wi (t) +
2

L

∫ L

0

(f (t, x) − ġ (t)) sin

(

iπx

L

)

dx, (23)

for 1 ≤ i ≤ n.

Integrating in order to the variablet, we obtain the following recurrence scheme:

wi (t) = wi (0) −
2π

L2

n
∑

j,k=1

kIkji

∫ t

0

wk (t) wj (t) dt

−
π

L

n
∑

k=1

k

[
∫ L

0

cos

(

kπx

L

)

sin

(

iπx

L

)

dx

]
∫ t

0

g (t) wk (t) dt

−

(

εiπ

L

)2 ∫ t

0

wi (t) dt +
2

L

∫ t

0

[
∫ L

0

(f (t, x) − ġ (t)) sin

(

iπx

L

)

dx

]

dt, (24)

for 1 ≤ i ≤ n andIkji is given by

Ikji =

∫ L

0

cos

(

kπx

L

)

sin

(

jπx

L

)

sin

(

iπx

L

)

dx. (25)

Thus, we obtain the following recurrence scheme

wi,m+1 (t) = −
2π

L2

n
∑

j,k=1

k [Ikji]

∫ t

0

wk,m (t) wj,m (t) dt −

(

εiπ

L

)2 ∫ t

0

wi,m (t) dt

−
π

L

n
∑

k=1

k

[
∫ L

0

cos

(

kπx

L

)

sin

(

iπx

L

)

dx

]
∫ t

0

g (t) wk,m (t) dt

+
2

L

∫ t

0

[
∫ L

0

(f (t, x) − ġ (t)) sin

(

iπx

L

)

dx

]

dt, (26)

for 1 ≤ i ≤ n.

The initial conditions for this system are given by

wi (0) =
2

L

∫ L

0

(u0 (x) − g (0)) sin

(

iπx

L

)

dx. (27)



The nonlinearities in (26) (or in (23) and (24)) are of the form Ψ (u, υ) = uυ. Thus, using (10)
we have forΨ (u, υ)

A0 = u0υ0

A1 = u1υ0 + u0υ1

A2 = u2υ0 + u1υ1 + u0υ2

A3 = u3υ0 + u2υ1 + u1υ2 + u0υ3

A4 = u4υ0 + u3υ1 + u2υ2 + u1υ3 + u0υ4

...

In the next section an example of application is presented.

5 Numerical application

The method previously described was applied to the non-linear blood flow model























ut + uux = ε2uxx + α0 + α cos (ωt)

u (t = 0, x) = β0, 0 ≤ x ≤ L,

u (t, 0) = u (t, L) = β0 + β sin (ωt) , t > 0

. (28)

The numerical simulation was achieved with only5 terms of the series (6).

The model parameters have been established in 3 and the valueL = 0.5m is assumed to be
the aorta length
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Figure 1: Solution for0 ≤ t ≤ 0.2
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Figure 2: Solution for0 ≤ t ≤ 0.4

It is observed, from the figures, that the initial steady velocity is significantly perturbed after
0.1 seconds. For the interval of time0 < t < 0.2 the pulsating flow is not evident and the
velocity begins to be affected by the pulsating pressure gradient at the end of the channel. The
pulsating flow begins after0.5 seconds and is completely established after0.8 second. This
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Figure 3: Solution for0 ≤ t ≤ 0.6
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Figure 4: Solution for0 ≤ t ≤ 0.8

response to the oscillating pressure gradient gives an ideaof the inertia of the flow. Blood
flow inertia can represent an important role in some diseases. The results of the numerical
simulation agree with physical considerations and showed that the method is consistent and
convergent when applied to this flow.
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