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Abstract. We are concerned with the theoretical analysis of the model of incompressible,
viscous, stationary flow through a plane cascade of profiles. The boundary value problem
for the Navier-Stokes system is formulated in a domain representing the exterior to an
infinite row of profiles, periodically spaced in one direction. Then the problem is reformu-
lated in a bounded domain of the form of one space period and completed by the Dirichlet
boundary condition on the inlet and the profile, a suitable natural boundary condition on
the outlet and periodic boundary conditions on artificial cuts. Specially, we derive and
study the question of existence and uniqueness of the weak solution of this problem for
linear separated ”do nothing” type boundary condition (which we derive) and for nonlin-
ear modification of the ”do nothing” type of boundary condition which was proposed by
C. H. Bruneau, F. Fabrie in ([1]). The problems of existence and uniqueness for these
two cases are discussed and compared.

1 GEOMETRY OF THE PROBLEM

We study the steady flow through a simplified plane cascade of profiles. The model
of cascade of profiles describes e.g. the flow through a turbine or thorough a general
blade machine. If we consider the intersection of the real 3D region filled by the moving
fluid with a surface defined along the streamlines of the flow, and expand the surface in
the x1, x2–plane we will naturally arrive at a 2D domain. The obtained two dimensional
domain is unbounded, however periodic in the x2–direction. Its complement in R2 consists
of the infinite number of profiles, numbered from −∞ to +∞.

The following assumptions are naturally fulfilled. We suppose that the boundary of
the profile No. 0 is a simple closed curve C0 in R2, piecewise of the class C2, whose
interior and exterior are domains with a Lipschitz–continuous boundary. We put Ck =
{(x1, x2 + kτ); (x1, x2) ∈ C0} (for k ∈ Z), where τ is a positive constant. We assume
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that τ is so large that the curves Ck are mutually disjoint. The set M :=
⋃+∞
k=−∞ IntCk is

called a cascade of profiles. (IntCk denotes the interior of curve Ck.) Number τ is called
the period of the cascade.

From the definition of the domain it is reasonable to assume that the flow through the
cascade is periodic in the x2–direction with the period τ . Consequently, we can study the
flow just in one spatial period of the whole domain. The chosen period is denoted Ω. Its
boundary consists of the curves Γi, Γo, Γ+, Γ− and Γw.

-
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Fig. 1 : Domain of interest
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2 AUXILIARY RESULTS

We shall work with the following function spaces.
By H1(Ω) we denote the usual Sobolev space and by H1(Ω)2 := [H1(Ω)]2 we denote

functions with two components, both in H1(Ω). Space X is a space of test functions
constructed for the deriving of the weak solution.

X = {v ∈ H1(Ω)2; v = 0 a.e. in Γi ∪ Γw, v(x1, x2 + τ) = v(x1, x2)
for a.a. (x1, x2) ∈ Γ−} .

The boundary conditions on the curves Γi, Γw and Γ− are interpreted in the sense of traces.
Let

V =
{
v ∈ X; div v = 0 a.e. in Ω

}
.

The norm in X, defined in this way

|||v||| =
(∫

Ω

2∑
i,j=1

(
∂vi
∂xj

)2
dx
)1/2

(1)

is an equivalent norm in H1(Ω)2.
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2.1 Function g∗ - the realization of the boundary condition on Γi

Lemma Let s ∈ (1
2 , 1〉 and let function g belongs to the Sobolev–Slobodetskii space

Hs(Γi)2. Then there exists a constant cg > 0 independent of g and a divergence–free
extension g∗ ∈ H1(Ω)2 of function g from Γi onto Ω such that g∗ = 0 on Γw, g∗ satisfies
the condition of periodicity

g∗(x1, x2 + τ) = g∗(x1, x2) for (x1, x2) ∈ Γ− (2)

and the estimate
‖g∗‖1 ≤ cg ‖g‖s; Γi . (3)

We will seek the weak solution u in the form u = g∗ + z where z ∈ V will be a new
unknown function. This form of u guarantees that u will satisfy the prescribed velocity
profile on the boundary Γi.

3 THE PROBLEM WITH THE NONLINEAR BOUNDARY CONDITION
ON THE OUTLET

3.1 Used Equations

We assume that the fluid is viscous, stationary, incompressible and newtonian. For
simplicity we suppose that the unit system is chosen in such a way that the constant
density of the fluid is one. The conservation of momentum is described by the Navier-
Stokes equations in the form

(u · ∇)u = f − ∇p + ν ∆u. (4)

where u (= (u1, u2)) is the velocity of the fluid and p the pressure in the fluid, f (= (f1, f2))
is the density of the volume force and constant ν > 0 is the kinematic viscosity. The
conservation of mass is described by the equation of continuity

div u = 0. (5)

3.2 Boundary conditions

We prescribe the inhomogeneous Dirichlet boundary condition on the inlet:

u |Γi = g. (6)

We assume that the fluid satisfies the no slip Dirichlet boundary condition on the profile:

u |Γw = 0. (7)
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According to the definition of the model we suppose that the following conditions of
periodicity are fulfilled on the artificial boundaries Γ+ and Γ−:

u(x1, x2 + τ) = u(x1, x2) for (x1, x2) ∈ Γ−, (8)

∂u

∂n
(x1, x2 + τ) = −∂u

∂n
(x1, x2). for (x1, x2) ∈ Γ−, (9)

p(x1, x2 + τ) = p(x1, x2) for (x1, x2) ∈ Γ−. (10)

We use the the nonlinear form of the do-nothing type of boundary condition proposed
C. H. Bruneau, F. Fabrie in [1].

−ν ∂u
∂n

+ p · n − 1
2

(u · n)− u = h on Γo (11)

where n is the outer normal vector and h is a given function. For a ∈ R we set a+ =
(|a|+ a)/2 and a− = (|a| − a)/2.

3.3 Weak formulation

In order to derive formally the weak formulation of the problem, we multiply equation
(4) by an arbitrary test function v = (v1, v2) ∈ V and integrate in Ω. We obtain

∫
Ω
f · v dx =

∫
Ω

(
−ν ∆u+

2∑
j=1

uj
∂u

∂xj
+∇p

)
· v dx

= ν
∫

Ω

2∑
i,j=1

∂ui
∂xj

∂vi
∂xj

dx − ν
∫
∂Ω

∂u

∂n
· v dS +

∫
Ω

2∑
i,j=1

uj
∂ui
∂xj

vi dx

−
∫

Ω
p div v dx +

∫
∂Ω
p v · n dS. (12)

If we apply Green’s theorem and use all the boundary conditions (6)–(11), we arrive at
the equation ∫

Ω
f · v dx = ν

∫
Ω

2∑
i,j=1

∂ui
∂xj

∂vi
∂xj

dx +
∫

Ω

2∑
i,j=1

uj
∂ui
∂xj

vi dx

+
∫

Γo

1
2

(u · n)− u · v dS +
∫

Γo
h · v dS, v ∈ V. (13)

In order to simplify its form, we introduce the following notation: for u = (u1, u2),
v = (v1, v2), w = (w1, w2) ∈ H1(Ω)2, we put

a1(u,v) := ν
∫

Ω

2∑
i,j=1

∂ui
∂xj

∂vi
∂xj

dx,

4
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a2(u,v,w) :=
∫

Ω

2∑
i,j=1

uj
∂vi
∂xj

wi dx,

a3(u,v,w) :=
∫

Γo

1
2

(u · n)− v ·w dS,

a(u,v) := a1(u,v) + a2(u,u,v) + a3(u,u,v),

(f ,v) :=
∫

Ω
f · v dx,

b(h,v) := −
∫

Γo
h · v dS.

Obviously, all these forms are well defined for u, v, w ∈ H1(Ω)2, f ∈ L2(Ω)2 and h ∈
L2(Γo)2. Now the identity (13) can shortly be written as

a(u,v) = (f ,v) + b(h,v), v ∈ V. (14)

Suppose that the function g, appearing in the boundary condition (6), belongs to
Hs(Γi)2 for s ∈ (1

2 , 1〉 and g(A1) = g(A0). (Let us recall that A0 and A1 are the end–
points of Γi.) Let f ∈ L2(Ω)2 and h ∈ L2(Γo)2 be given functions. We seek a vector
function u ∈ H1(Ω)2 which satisfies the equation of continuity (5) a.e. in Ω, the boundary
conditions (6) (respectively (7)) in the sense of traces on Γi (respectively on Γw), the
condition of periodicity (8) a.e. on Γ− and such that identity (14) holds for all test
functions v ∈ V .

The solution u of this problem is called a weak solution in the domain Ω.

3.4 Existence of a weak solution

Now we shall seek for the weak solution u in the form u = g∗ + z where z ∈ V is a
new unknown function. This guarantees that u satisfies all the boundary and periodicity
conditions (6)–(11). Substituting this form of u into the equation (14), we derive the
following problem: Find a function z ∈ V such that it satisfies the equation

a(g∗ + z,v) = (f ,v) + b(h,v) (15)

for all v ∈ V . The following theorem can be proved.

Theorem (on the existence of a weak solution). There exists ε > 0 such that if
‖g‖Hs(Γi)2 < ε then there exists a solution u = g∗+z of the problem. Moreover z satisfies
the estimate

|||z||| ≤ R1 . (16)

Consequently, the weak problem (15) has a solution u (= z + g∗) that satisfies

‖∇u‖L2(Ω)2 ≤ R1 + ‖∇g∗‖L2(Ω)2 ≤ R1 + c ‖g‖Hs(Γi)2 := R2 . (17)
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Here R1 and c are constants based on the construction of the weak solution in the proof
of the theorem.

The proof of this theorem is carried out by using the method of Galerkin approxima-
tions. We need to prove the coercivity of the form a and construct the weak solution. The
value of the constant ε comes from the proof to ensure coercivity. The complete proof
can be found in [2] and in [4].

Remark It is not possible to prove the existence of a weak solution for the basic
do nothing boundary condition in the form −ν ∂u

∂n + p · n = h which was proposed
by J. Heywood, R. Rannacher R. and S. Turek. As you can see it is possible to prove
the coercivity of the form a and the existence of the weak solution for the nonlinear
modification of this condition. The restrictive condition on the function g in the theorem
is in agreement with the literature. The case for general inlet is so far unsolved. However
the nonlinear condition cause difficulties in the numerical computation and in the proof
of the uniqueness of the solution. In the fourth section we will show linear type of do
nothing boundary condition which enables us to prove existence of a weak solution of the
flow problem.

3.5 Uniqueness of a weak solution

Theorem (on the uniqueness of a weak solution). There exists R > 0 such
that if u1 and u2 are two solutions of the problem (15) such that ‖∇u1‖L2(Ω)4 ≤ R and
‖∇u2‖L2(Ω)4 ≤ R then u1 = u2.

Proof. Since u1 and u2 are the solutions of the problem (15), they fulfil the equations

a(u1,v) = (f ,v) + b(h,v).

a(u2,v) = (f ,v) + b(h,v)

for all v ∈ V . Subtracting these equations, we get

a(u1,v) − a(u2,v) = 0.

Expressing the bilinear form a by means of the forms a1, a2 and a3, we obtain

a1(u1,v) − a1(u2,v) + a2(u1,u1,v) − a2(u2,u2,v)

+ a3(u1,u1,v) − a3(u2,u2,v) = 0.

This holds for all v ∈ V . If we choose v = u1 − u2 then this identity yields

a1(u1 − u2,u1 − u2) + a2(u1,u1,u1 − u2)− a2(u2,u2,u1 − u2)

+ a3(u1,u1,u1 − u2)− a3(u2,u2,u1 − u2) = 0. (18)
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If we denote

I1 := a1(u1 − u2,u1 − u2) = ν
∫

Ω
|∇(u1 − u2)|2 dx = ν |||u1 − u2|||2,

I2 := a2(u1,u1,u1 − u2)− a2(u2,u2,u1 − u2),

I3 := a3(u1,u1,u1 − u2)− a3(u2,u2,u1 − u2)

then (18) takes the form
I1 = −I2 − I3. (19)

For the terms on the right hand side of (19) we can prove

|I2| ≤ cR |||u1 − u2|||2, |I3| ≤ cR |||u1 − u2|||2

Substituting from this result into (19), we obtain

ν |||u1 − u2|||2 ≤ cR |||u1 − u2|||2.

Now it is seen that if R is small enough (according to the constant c which comes from the
more detailed proof. The complete proof can be seen for example in [4]) then u1 = u2.
The theorem is proved.

4 THE PROBLEM WITH THE LINEAR BOUNDARY CONDITION ON
THE OUTLET

Now let us consider the flow with a linear boundary condition on the outlet of the
domain Ω.

4.1 Used Equations

We study the flow described by Navier–Stokes equation in the form (different from the
third section)

ω(u)u⊥ = −∇q + ν (−∂2, ∂1)ω(u) + f (20)

where ω(u) = ∂1u2 − ∂2u1, u⊥ = (−u2, u1) and q := p+ |u|2
2 . ω(u) denotes the vorticity

of the flow and q is the Bernoulli pressure. The incompressibility condition is described
by the continuity equation

div u = 0 . (21)

4.2 Boundary conditions

Let us suppose that the boundary condition on the boundaries Γi, Γw, Γ− and Γ+ are
identical to the conditions used in previous problem.

The Bernoulli pressure q is naturally supposed to be τ–periodic in the x2–direction
too, i.e.

q(x1, x2 + τ) = q(x1, x2) for (x1, x2) ∈ Γ− . (22)
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The boundary condition used on the outflow Γo is

q = h1, −ν ω(u) = h2 (23)

where h = (h1, h2) is a given function on Γo. This condition will naturally arise (as a
boundary condition of the “do nothing” type) from an appropriate weak formulation.

Remark Considering the nonlinear term in the Navier–Stokes equation in the form
ω(u)u⊥ has the advantage that if we formally multiply (20) by u, the product ω(u)u⊥ ·u
equals zero point–wise a.e. in Ω and it is therefore not necessary to integrate by parts
in order to remove or transform this term. Thus, we avoid problems on the part Γo
of the boundary, caused by possible backward flows. On the other hand, this approach
implies that we must deal with the Bernoulli pressure q = p+ 1

2 |u|
2 instead of the physical

pressure p on the right hand side of (20) and consequently, also in the first of the boundary
conditions (23). The pressure in the form q is sometimes called the ”total” pressure in
the difference to the ”static” pressure p.

4.3 Weak formulation

In order to arrive formally at the weak formulation of the problem (20)–(23), we mul-
tiply (20) by an arbitrary test function v = (v1, v2) ∈ V , integrate over Ω, apply Green’s
theorem and use the condition of incompressibility (21), and the boundary conditions and
conditions of periodicity (8), (9), (10). We obtain the equation

ν
∫

Ω
ω(u) · ω(v) dx+

∫
Ω
ω(u)u⊥ · v dx − ν

∫
Γo
ω(u) (v2n1 − v1n2) dS

+
∫

Γo
q v · n dx =

∫
Ω
f · v dx .

Using the identities n1 = 1 and n2 = 0 on Γo and substituting here for the terms in the
integrand on Γo from (23), we obtain

ν
∫

Ω
ω(u) · ω(v) dx+

∫
Ω
ω(u)u⊥ · v dx+

∫
Γo

[h2 v2 + h1 v1] dS =
∫

Ω
f · v dx.

This integral equation can be written in the form

a(u,v) = (f ,v) + b(h,v) (24)

where h is given by (23) and the forms a and b are defined below:

a(u,v) = a1(u,v) + a2(u,u,v) , a1(u,v) = ν
(
ω(u), ω(v)

)
L2(Ω)

,

a2(u,v,w) =
∫

Ω
ω(u)v⊥ ·w dx , b(h,v) = −

∫
Γo
h · v dS .
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The weak problem now reads as follows:
Let function g ∈ Hs(Γi)2 (for some s ∈ (1

2 , 1]) satisfy the condition g(A1) = g(A0)
(where A0 and A1 are the end points of Γi). Let f ∈ L2(Ω)2 and h ∈ L2(Γo)2. The weak
solution of the problem (20)–(23) is a vector function u ∈ H1(Ω)2 which satisfies the
condition of incompressibility (21) a.e. in Ω, the identity (24) for all test functions v ∈ V ,
the boundary conditions (6), (7) in the sense of traces on Γi and Γw and the condition of
periodicity (8) in the sense of traces on Γ− and Γ+.

4.4 Existence and Uniqueness of a weak solution

Now we shall seek for the weak solution u in the form u = g∗ + z where z ∈ V is a
new unknown function. This guarantees that u satisfies all the boundary and periodicity
conditions ((6)–(8),(22),(23)). Substituting the sum g∗ + z for u into the (24), we arrive
at the following problem: Find a function z ∈ V such that it satisfies the equation

a(g∗ + z,v) = (f ,v) + b(h,v) (25)

for all v ∈ V .

Let us formulate the problem of existence of the weak solution as the following theorem:

Theorem There exists ε > 0 such that if ‖g‖Hs(Γi)2 < ε then there exists a solution
u = g∗ + z of the problem. Moreover z satisfies the estimate

|||z||| ≤ R2 .

Consequently, the weak problem (25) has a solution u (= z + g∗) that satisfies

‖∇u‖L2(Ω)2 ≤ R1 + ‖∇g∗‖L2(Ω)2 ≤ R1 + c ‖g‖Hs(Γi)2 := R3 . (26)

Here R2 and c are constants based on the construction of the weak solution in the proof
of the theorem. The proof is carried out by using the method of Galerkin approximations.
We need to prove the coercivity of the form a and construct the weak solution. The value
of the constant ε comes from the proof to ensure coercivity. The complete proof can be
found in [3] and in [4].

Remark The special Navier–Stokes formulation (20) naturally leads to the linear ”do-
nothing” type boundary condition (23) which, on the contrary to the basic linear ”do-
nothing” boundary condition, enables us to prove existence of the weak solution. The
proof is less complicated than in the case of nonlinear boundary condition because of the
perpendicular property of the term a2 and because there is no term a3.

Let us suppose that u1 and u2 are two solutions of the weak problem (25).

Theorem There exists R > 0 such that if u1 and u2 are two solutions of the problem
(25) such that ‖∇u1‖L2(Ω)4 ≤ R then u1 = u2.
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Remark The proof of the uniqueness for the liner type of do nothing boundary condi-
tion is in agreement to the literature and to the theory of the partial differential equations
more simple than the proof in the nonlinear case. Moreover we are able to prove unique-
ness within the weaker assumption than it the case of nonlinear outlet boundary condition
in section three.
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