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Abstract. The influence of element shape on the stability of a Runge-Kutta Discontin-
uous Galerkin method is systematically investigated, in order to improve the time step
calculation in practical simulation. The maximum time step for stability is determined
by comparing the eigenvalue spectrum of the semi-discrete scalar advection operator to
the stability region of the Runge-Kutta integrator. Stability analyses are performed with
a broad range of structured periodic triangular grids, all elements of each grid having the
same shape, so that each element shape can be associated to a stability bound. Maximum
Courant numbers are computed for Carpenter’s low-storage (4,5) Runge-Kutta scheme,
based on three different measures of the element size. Lower values of the maximum
Courant number, to be used in practical simulations, are provided, and the accuracy of
the CFL condition is assessed for each element size measure. In order to remedy the
relative lack of reliability of CFL conditions, a simplified procedure for stability analysis
is presented, that can be used for maximum time step calculation in practical simulations.
It is shown in two examples involving respectively an unstructured and a hybrid grid, that
it compares favorably to the CFL conditions.
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1 INTRODUCTION

Among the numerous numerical methods used to solve hyperbolic partial differential
equations on unstructured grids, the Discontinuous Galerkin (DG) Method is receiving
growing attention in different fields like Computational ElectroMagnetics, Computational
Fluid Dynamics (CFD) or Computational AeroAcoustics (CAA). Its ability to obtain so-
lutions with arbitrarily high order of accuracy is a particularly interesting feature. Other
advantages over concurrent high-order methods like Finite Differences are the straightfor-
ward formulation of boundary conditions, as well as the compactness of the scheme, that
allows an efficient parallel implementation.

When solving time-dependent Partial Differential Equations (PDE’s), the DG method
is often combined with Runge-Kutta (RK) time integrators. In this case, there exists a
maximum time step above which the scheme becomes unstable. A stability bound can
be obtained by applying to each element in the computational domain the well-known
Courant-Friedrichs-Levy (CFL) inequality:

‖a‖ ∆t

h
≤ C (1)

where ‖a‖ is the magnitude of the largest characteristic quantity of the hyperbolic
system, ∆t is the time step, h is a measure of the element size and C is a constant that
depends on the spatial and time discretization methods. The left-hand side of inequality
(1) is called the Courant number.

With one spatial dimension, this condition has been thoroughly studied and found to
provide a satisfying bound for the maximum time step,1 as the element size is well-defined
in a 1D space. However, it is not well adapted to 2D and 3D, because the element shape
is then only taken into account in the parameter h. In Ref. 2, the stability of the DG
method combined with Strong-Stability-Preserving RK schemes is studied for low orders
of the DG polynomial basis. However, that work is restricted to only two structured
triangular grid configurations, and does not deal with the influence of element shape on
the stability bounds. Yet, evaluating the dependency of the maximum Courant number
on geometrical characteristics of the element, and determining the size measure h that
minimizes this dependency, would improve the calculation of the time step to be specified
in practical simulations. The work presented in this paper aims at evaluating the impact
of the shape of 2D triangular elements on the CFL condition, and providing satisfying
stability bounds for the Courant number, which could be used as simulation guidelines.
A simplified stability analysis method, meant to be a more reliable alternative to the CFL
condition for time step calculation in practical simulations, is also described.

In Sec. 2, a method to analyze the stability of RK-DG methods for triangular elements
with various shapes is described. Results on the accuracy of the CFL condition, as well
as practical values for the maximum Courant number, are presented in Sec. 3. The
development of an advanced procedure for time step calculation, based on a simplified
stability analysis, is explained in Sec. 4. Examples of time step calculations on two grids
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are given in Sec. 5. Finally, conclusions are drawn in Sec. 6.

2 METHOD

2.1 Discontinuous Galerkin Method

As a model for hyperbolic conservation laws, the scalar advection equation over a
domain with periodic boundary conditions is considered:

∂q

∂t
+
∂arq

∂xr
= 0 (2)

where q is the unknown, t is the time, xr is the r-th space coordinate, and ar is the
r-th component of the constant advection vector a. Einstein’s summation convention is
used over the r index.

For each element Ω resulting from the partitioning of the computational domain, a
basis B = {ϕj, j = 1 . . . Np} is defined, in which the components ϕj are polynomials of

order p supported in Ω, with Np = (p+1)(p+2)
2

for triangular elements. An approximation
qΩ of q on Ω is obtained by a projection on this basis:

qΩ =

Np∑
j=1

qΩ
j ϕj

Applying the Discontinuous Galerkin procedure to Eq. (2) results in:

MΩ∂q
Ω

∂t
− KΩ

r arq
Ω +

3∑
i=1

M∂ΩiF ∂Ωi = 0 (3)

with:

MΩ
kj =

∫
∆

ϕkϕj
∣∣JΩ
∣∣ d∆(

KΩ
r

)
kj

=

∫
∆

(
JΩ
)−1

sr

∂ϕk
∂ξs

ϕj
∣∣JΩ
∣∣ d∆ (4)

M∂Ωi
kj =

∫
∂∆i

ϕkϕj
∣∣J∂Ωi

∣∣ d∂∆i

where each element Ω is mapped onto a unique reference element ∆ by a function with
Jacobian matrix JΩ. Likewise, each element edge ∂Ωi is mapped onto a unique edge ∂∆i

of ∆ by a function with Jacobian matrix J∂Ωi . The basis B is then expressed in ∆ with
reference coordinates (ξ1, ξ2). In Eq. (3), F ∂Ωi is an approximation of the numerical flux
computed on the element edge ∂Ωi that is common to Ω and its neighbour Ω′i. In this
work, F ∂Ωi is either the Lax-Friedrichs flux:

F ∂Ωi =
1

2

[
(a · n)

(
qΩ + qΩ′

)
− ‖a‖

(
qΩ′ − qΩ

)]
(5)
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or the upwind flux:

F ∂Ωi =

{
(a · n) qΩ, a · n ≥ 0

(a · n) qΩ′
, a · n < 0

(6)

n being the outgoing unit normal to the element edge ∂Ωi. These two choices of flux are
the most widely used to solve linear PDE’s.

2.2 Stability Analysis

2.2.1 Semi-Discrete Discontinuous Galerkin Operator

The global DG space operator L can be assembled directly by applying Eq. (3) for all
elements of a grid, yielding:

∂q̃

∂t
= L q̃

where q̃ contains the semi-discrete solution for all degrees of freedom in the computational
domain.

In this work, stability analyses are performed with structured grids made up of periodic
patterns of congruent elements, as illustrated in Fig. 1. In this case, a Von Neumann-
like procedure is used as an alternative to the global operator assembly. It consists in
considering harmonic solutions on a single pattern:

q = q̂ ei(kx∆x+ky∆y)

and exploiting the periodicity of patterns to formulate the semi-discrete operator:

∂q̂

∂t
= L (kx, ky) q̂

where q̂ represents the complex amplitude of the solution for all degress of freedom in a
pattern.

2.2.2 Stability of Runge-Kutta Methods

The stability of a RK method is determined by its characteristic polynomial P obtained
by applying the time integration scheme to the model equation:

∂u

∂t
= λu

with λ ∈ C. The time stepping scheme can then be formulated as un+1 = P (z)un, where
z = λ ·∆t, and the absolute stability region S of the RK scheme is given by:

S = {z : |P (z)| ≤ 1}
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2.2.3 Stability of the Fully Discrete Scheme

To evaluate the stability of the fully discrete RK-DG method with a given time step
∆t, the eigenvalues λ (L) of the semi-discrete operator L are computed, and the spectrum
λ · ∆t is compared to S, as illustrated in Fig. 2. Although the presence of the whole
spectrum inside S is not a sufficient condition for the stability of the fully discrete scheme,
it provides an excellent guideline for the choice of ∆t.3 In order to find the maximum
allowable time step ∆tmax for stability, a simple bisection method is applied to P (λ ·∆t).
The maximum Courant number ν is then computed as

ν (a) = ‖a‖ ∆tmax
h

for a given measure h of the element size.

2.3 Database

To determine the dependance of the stability bound on the triangle shape, stability
analyses are performed on various grids made up of periodic patterns (see Fig. 1), in which
all elements are congruent. The triangle shape, common to all elements in a grid, can
be uniquely determined by three quantities (e.g. three side lengths). However, it can be
deduced from Eqs. (3) and (4) that the semi-discrete operator L is inversely proportional
to a scale size, so that only two independant parameters need to be studied. Thus,
the horizontal edge length ∆x is fixed, and the vertical element height ∆y and mesh
inclination α (see Fig. 1) are varied to obtain 42 different patterns (thus 42 different
grids). Fig. 3 shows the shape of the 42 different elements. The grids are characterized
by the triangle aspect ratio γ, which is commonly considered as a grid quality measure in
meshing methods:

γ = 2
rinner
rcircum

where rinner is the radius of the inscribed circle and rcircum is the radius of the circumcircle
of the triangle. The grid quality measure γ varies from 0.00176 to 0.988 with a mean of
0.304. Its distribution is shown in Fig. 4.

It can be seen from Eqs. (3), (5) and (6) that L is proportional to the advection velocity
‖a‖, so that one can set ‖a‖ = 1, and study only the effect of the advection direction θ
with a = (cos θ, sin θ). θ varies in the range [−180◦, 180◦] with a step of 4◦ and a stability
analysis is carried out for each value of a.

3 CFL CONDITION

The results are obtained with Carpenter’s low-storage (4,5) RK scheme,4 that is par-
ticularly appropriate for aeroacoustic propagation and other wave propagation problems.
The same method can be applied to any RK scheme.

The maximum Courant number ν (a) is then calculated for three different element size
measures h: the shortest edge in the triangle (νl), the shortest height in the triangle (νh),
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Figure 1: Structured grid (a) and sketch of the periodic pattern of elements (b) used for stability analysis.
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Figure 2: Stability plot for the 2D DG space operator (p = 1).
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Figure 3: Lower-left element of all patterns used for the stability analysis.
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and the radius of the inscribed circle (νr). Only the minimum value νmin = minθ ν (θ) is
retained for each grid, since the characteristic directions cannot be determined a priori
for most hyperbolic equations of practical interest.

3.1 Results for the Lax-Friedrichs Flux

Fig. 5 shows the three types of maximum Courant number in function of grid quality
obtained with the Lax-Friedrichs flux at order p = 5. It can be noted that νl exhibits a
large dispersion, especially for low mesh quality. This is due to the fact that low values of
∆tmax are obtained with triangles that have one short edge, but also with “flat” triangles
that have three long edges (i.e. triangles with two small and one large angle). The
maximum Courant number νl based on the shortest edge is therefore not appropriate
for triangular grids, and should be considered as unreliable for time step calculation
in practical simulations. This is confirmed by Table 1, which contains the maximum
deviation from the minimum value:

D =
max (νmin)−min (νmin)

min (νmin)

for νlmin, νhmin and νrmin with order p up to 10, obtained with the Lax-Friedrichs flux.
These data suggest that νrmin is a better measure at low order p, whereas νhmin is better
at higher order p. Minimum values of νlmin, νhmin and νrmin, that guarantee stability with
any element shape, are provided for order p up to 10 in Table 2.

p 1 2 3 4 5 6 7 8 9 10

νlmin 948 942 936 946 951 944 944 944 943 944
νhmin 26 31 28 26 22 22 19 19 17 17
νrmin 23 20 21 19 23 24 27 27 30 29

Table 1: Maximum deviation D from the minimum value for maximum Courant numbers νl
min, νh

min and
νr

min with order p from 1 to 10 with the Lax-Friedrichs flux, in percent.

3.2 Results for the Upwind Flux

Fig. 6 shows the three types of maximum Courant number in function of grid quality
obtained with the upwind flux at order p = 5. Again, it is clear that the maximum Courant
number νl based on the shortest edge is a bad choice, for the reasons explained in Sec.
3.1. Moreover, νr varies significantly, with low values for low quality elements and higher
values for higher quality elements. νh, however, exhibits a remarkably low deviation. This
is confirmed by Table 3, where the results for the maximum deviation from the minimum
value show that the maximum Courant number νh based on the shortest height is the
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Figure 4: Mesh quality measure γ in function of the pattern aspect ratio ∆y/∆x and mesh inclination α.
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Figure 5: Maximum Courant numbers νl
min, νh

min and νr
min for the Lax-Friedrichs flux in function of grid

quality measure γ at order p = 5.

p 1 2 3 4 5 6 7 8 9 10

νlmin 0.044 0.026 0.017 0.012 0.0088 0.0067 0.0053 0.0042 0.0035 0.0029
νhmin 0.402 0.226 0.154 0.106 0.0809 0.0612 0.0497 0.0398 0.0336 0.0280
νrmin 0.930 0.539 0.365 0.253 0.188 0.141 0.112 0.0896 0.0740 0.0618

Table 2: Minimum value of the maximum Courant numbers νl
min, νh

min and νr
min for order p from 1 to

10 with the Lax-Friedrichs flux.
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only suitable choice, being particularly accurate at high order p. Minimum values of νlmin,
νhmin and νrmin are given for order p up to 10 in Table 4.
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Figure 6: Maximum Courant numbers νl
min, νh

min and νr
min for the upwind flux in function of grid quality

measure γ at order p = 5.

p 1 2 3 4 5 6 7 8 9 10

νlmin 954 945 939 946 955 948 956 971 959 950
νhmin 12 12 11 8.2 7.6 6.2 6.1 5.1 5.0 4.4
νrmin 53 57 54 52 50 49 49 46 48 47

Table 3: Maximum deviation D from the minimum value for maximum Courant numbers νl
min, νh

min and
νr

min with order p from 1 to 10 with the upwind flux, in percent.

4 SIMPLIFIED STABILITY ANALYSIS PROCEDURE

The results reported in Sec. 3 show that the maximum Courant number can vary
depending on the element shape. The amplitude of this variation, as well as the best
element size measure to use, depend on the numerical flux type and the order p of the
polynomial basis. Thus, using minimum values provided in Tables 2 and 4 in a real-
world simulation may result in suboptimal time step, in spite of ensuring stability for any
element shape.

On the other hand, one could think of calculating the time step by considering each
element in the grid, and performing Von-Neumann analyses for the corresponding periodic
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pattern with varying advection direction, as described in Sec. 2.2. Unfortunately, this
procedure is far too expensive computationally.

However, some observations on the database of stability results described in Sec. 2.3
enable to considerably simplify the stability analysis process. These observations are
related hereafter.

4.1 Estimation of ∆t from the Spectral Radius

As seen in Fig. 2, the shapes of the RK stability region S and of the locus z = λ ·∆t
in the complex plane are not trivial, so that a non-linear search method has to be used to
find the exact ∆tmax. However, the eigenvalues of largest complex magnitude are usually
among the first to leave the stability region (close to the real axis) when increasing ∆t.
A reasonable estimation of the time step can thus be obtained with:

∆tmax ≈
max |< (S)|

ρ (L)
(7)

where ρ (L) = max ‖λ‖ is the spectral radius of the semi-discrete space operator L. For
Carpenter’s low-storage (4,5) RK scheme, max |< (S)| = 4.656.

Table 5 shows the maximum error in the estimated ∆tmax over all element shapes and
all advection directions mentioned in Sec. 2.3. For the Lax-Friedrichs flux, the error
becomes negligible at order higher than p = 3, whereas the prediction is less accurate for
the upwind flux.

4.2 Extrapolation from Order p = 2

A careful analysis of the stability database results shows that it is possible to devise
approximate scaling laws for the spectral radius ρ (L) in function of the order p. For
reasons explained in Sec. 4.3, it is particularly interesting to relate ρ (L) to the spectral
radius ρ (Lp=2) of the semi-discrete operator at order p = 2 for the same element shape
and advection vector a.

Fig. 7 shows the spectral radius ρ (L) at order p = 5 in function of the spectral radius
ρ (Lp=2) at order p = 2, for the Lax-Friedrichs flux with advection a = (1, 0). The scaling

p 1 2 3 4 5 6 7 8 9 10

νlmin 0.044 0.026 0.017 0.013 0.0095 0.0075 0.0061 0.0051 0.0043 0.0037
νhmin 0.461 0.267 0.180 0.131 0.101 0.0790 0.0644 0.0534 0.0450 0.0384
νrmin 0.934 0.541 0.366 0.266 0.204 0.160 0.130 0.109 0.0912 0.0779

Table 4: Minimum value of the maximum Courant numbers νl
min, νh

min and νr
min for order p from 1 to

10 with the upwind flux.
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of ρ (L) when varying the element shape is well described by a linear law. However, this
linear law depends on the advection direction θ, as made obvious in Fig. 8.

In the case of the upwind flux, a proportionality relation appears to be accurately
satisfied, the proportionality constant being independent of the advection direction θ, as
illustrated in Fig. 9.

Now, for reasons already mentioned in Sec. 2.3, ρ (L) varies as the inverse of a scale
size, and its scaling with respect to the order p is measured for elements with one edge
fixed at length ∆x. The scale factor can be taken into account for an arbitrary triangle by
considering the length l of the edge corresponding to the horizontal edge of the database
elements (with length ∆x), and defining a scaled spectral radius:

ρ̄
(
LΩ
)

=
l

∆x
ρ
(
LΩ
)

In the general case, the scaling laws for the scaled spectral radius ρ̄
(
LΩ
)

be expressed as:

ρ̄
(
LΩ
)

= α ρ̄
(
LΩ
p=2

)
+ β

where α and β depend on θ for the Lax-Friedrichs flux, and α is independent of θ with
β = 0 for the upwind flux. The spectral radius at any order p can then be computed with:

ρ
(
LΩ
)

= α ρ
(
LΩ
p=2

)
+ β

∆x

l
(8)

provided that the values of α and β are tabulated for each value of p and, if applicable,
for each value of θ.

4.3 Spectral Radius at Order p = 2

The spectral radius of the operator at order p = 2 can be computed by means of the
Von-Neumann-like procedure described in Sec. 2.2. This process is still computationally
intensive, as a whole range of modes (kx, ky) has to be considered: the semi-discrete space
operator L (kx, ky) must be built and its eigenvalues computed for each value of (kx, ky).

However, the database results show that for even values of the order p, the maximum
eigenvalue (and thus the spectral radius) is obtained for (kx, ky) = (0, 0):

ρ
(
LΩ
p=2

)
= ρ

[
LΩ
p=2 (kx = 0, ky = 0)

]
p 1 2 3 4 5 6 7 8 9 10

Lax-Friedrichs Flux 16 7.4 2.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Upwind Flux 16 15 14 11 11 10 10 9.2 9.7 8.9

Table 5: Error in the maximum time step ∆tmax estimated from the spectral radius ρ (L), in percent.
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Figure 7: Spectral radius ρ
(
LΩ
)

at order p = 5 in function of the spectral radius ρ
(
LΩ

p=2

)
at order p = 2,

for the Lax-Friedrichs flux, with horizontal advection direction.
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for the Lax-Friedrichs flux, with all values of the advection direction θ.
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This assumption is verified for all element shapes and all advection directions in the
database, at order p ∈ {2, 4, 6, 8, 10}.

This reduces the computational effort for one element and one advection direction to
one eigenvalue problem on the operator Lp=2 (kx = 0, ky = 0) (i.e. a 12×12 matrix), which
is affordable. The spectral radius can then be extrapolated to any order p, as explained in
Sec. 4.2. The analytical expression of Lp=2 (kx = 0, ky = 0) in function of the coordinates
of the triangle vertices can be obtained by means of a Computer Algebra System and
easily plugged in any Discontinuous Galerkin solver.

4.4 Full Procedure

To summarize, the full procedure to calculate the maximum time step for an arbitrary
triangular grid is described by the following pseudo-code:

for each element Ω in the grid do
for each value of θ do

Compute ρ
(
LΩ
p=2

)
for (kx, ky) = (0, 0)

Compute ρ
(
LΩ
)

from ρ
(
LΩ
p=2

)
with Formula (8).

Compute ∆tmax from ρ
(
LΩ
)

with Formula (7)
end for
Retain minθ (∆tmax)

end for
Retain minΩ (∆tmax)

This procedure can even be safely optimized by pre-selecting the elements Ω to be
analyzed with a geometric criterion based on the CFL condition, instead of applying it
to every element in the computational domain.

5 EXAMPLES

In order to illustrate the relative performance of the different methods, the maximum
time step ∆tmax allowed for stability is computed on two different triangular grids, on
which periodic boundary conditions are imposed. The exact ∆tmax, obtained by directly
assembling the semi-discrete operator L for the whole grid, is compared to the CFL
conditions based on the inner radius Rinner and on the shortest height Hmin, as well
as with the simplified stability analysis procedure. Given that the advection velocity is
constant over the computational domain, the ∆tmax computed by the CFL conditions is
obtained for the smallest element in the grid.

The first grid, shown in Fig. 10, is unstructured and contains 334 triangular elements.
The results of time step calculations at order p = 4 are given in Table 6. For both types
of fluxes, the CFL condition based on the inner radius provides the smallest time step,
whereas the simplified stability analysis method gives significantly better results.
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The second grid, shown in Fig. 11, is composed of a structured part and an un-
structured part, like those commonly used to resolve boundary layers in CFD or CAA
applications. It contains 164 triangular elements. The results of time step calculations at
order p = 6 are given in Table 7. Here again, the simplified stability analysis procedure
performs best, whereas the CFL conditions give inferior results.

In these two examples, the performance of CFL conditions vary, depending on the type
of flux and the type of grid. On the contrary, the simplified stability analysis method gives
the best results in almost all conditions. One can note that the time step provided by
the three methods can be far from optimal (less than half of the optimal time step with
the hybrid grid and the upwind flux). This highlights the fact that local methods, based
on applying criteria element by element, can only provide bounds for stability, and the
global stability condition may be less restrictive. Nevertheless, a gain in time step similar
to the one reached by the simplified stability analysis method over the CFL conditions in
these examples, can lead to a significant reduction in CPU time for practical simulations.

Fluxes Lax-Friedrichs Upwind

Exact 0.0679 0.103
CFL – Rinner (% Error) 0.0463 (31.8%) 0.0486 (52.7%)
CFL – Hmin (% Error) 0.0546 (19.7%) 0.0677 (34.1%)

Simplified Stability Analysis (% Error) 0.0545 (19.8%) 0.0789 (23.2%)

Table 6: Maximum time step computed exactly, with the CFL condition based on the inner radius and
the shortest height, and with the simplified stability analysis procedure, for the unstructured grid of Fig.
10, at order p = 4.

Fluxes Lax-Friedrichs Upwind

Exact 8.62·10−4 2.04·10−3

CFL – Rinner (% Error) 7.75·10−4 (10.1%) 8.80·10−4 (56.9%)
CFL – Hmin (% Error) 6.94·10−4 (19.5%) 8.97·10−4 (56.1%)

Simplified Stability Analysis (% Error) 7.88·10−4 (8.6%) 9.87·10−4 (51.7%)

Table 7: Maximum time step computed exactly, with the CFL condition based on the inner radius and
the shortest height, and with the simplified stability analysis procedure, for the hybrid grid of Fig. 11,
at order p = 6.

6 CONCLUSION

In this work, the stability of a RK-DG method has been systematically investigated
for a set of structured triangular grids featuring a broad range of element shapes.
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at order p = 2,

for the upwind flux, with all values of the advection direction θ.
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Figure 10: Unstructured grid used for validation.
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Maximum Courant numbers have been computed for Carpenter’s low-storage (4,5) RK
scheme, based on three different measures of the element size. The results show that
none of the three measures provide an unambiguous stability bound. The measure based
on the shortest triangle edge is particularly unreliable, as it fails to detect ill-conditioned
triangles with 3 long edges. The other two measures, based on the shortest triangle height
and the radius of the inscribed circle, lead to maximum Courant numbers that can vary up
to 30% in function of the element shape. Lower values of the maximum Courant number,
to be used in practical simulations, are provided.

Based on a number of assumptions that are found to be valid (exactly or approximately)
for the set of structured grids considered, it has been possible to reduce the stability
analysis to a procedure that is computationally efficient enough to be used for time step
calculation in practical simulations.

Two examples involving respectively an unstructured and a hybrid grid, showed that
the CFL conditions perform irregularly, depending on the grid and the type of flux used.
In all cases, the simplified stability analysis procedure gives an equal or better time step
than the best CFL condition. However, the results obtained show the limitations of
element-by-element criteria, as the stability bounds that they provide are significantly
too restrictive compared to the global stability condition.

In the future, this work will be extended to 3D, in order to assess the accuracy of the
CFL conditions and obtain practical values of the maximum Courant number for tetra-
hedral elements. Concerning the simplified stability analysis method, it will be checked
whether the underlying assumptions also hold for elements with higher geometrical order.
Indeed, CFL conditions cannot be applied to curved elements and there is currently no
way to obtain stability bounds for the time step in this case.
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