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Abstract. In this paper the response of the biosensor based on a chemically modified 

electrode is modeled numerically by using grid computing. Computer models intended 

to investigate characteristics of biosensors are commonly parameterized. In most cases 

the same problem is to be manifold solved at different sets of parameter values. Running 

multiple simulations is a time-consuming task, which can be accelerated by using the 

grid computing.  

Biochemical behavior of the biosensor based on a chemically modified electrode
1
 

was investigated. The mathematical model of the biosensor is based on a system of non-

linear reaction-diffusion equations. The Crank–Nicolson finite difference method has 

been used when approximating the model
2
. The biosensor action was modeled in stirred 

and non-stirred solutions. 

In this paper the input, output and operational requirements are defined for 

computer models to be executed in computational grids. A technique assuring an 

efficient usage of the grids to investigate the peculiarities of the biosensor response is 

defined. The introduced technique of computational grid usage was applied to perform 

computer simulation to investigate the peculiarities of the above-mentioned biosensor.  

An efficiency of the developed technique was investigated by comparing the time of 

calculation in the BalticGrid environment with the corresponding time in a local 

computer. The technique dependency on the size of the whole computational task and 

the quantity of subtasks distributed among different computing nodes in the grid was 

investigated. In the investigation there was noticeable delay when simulating biosensors 

response in the computational grid. This delay is caused by an approximately constant 

time for the grid middleware to process all tasks in the grid environment and the time of 

random tasks delayed in some computational nodes. 



V.Ašeris, R.Baronas 

 

 

 

 

2 

1 INTRODUCTION 

Grid computing is rapidly developing technology. A cluster is a group of linked 

computers which in many aspects can be viewed as a single computer. Computational 

grids are formed by connecting independent clusters. The computational grids are used 

in a wide variety of scientific researches – molecular physics, thermodynamics
3
, 

cosmology
4
 and other areas. In this paper the grid computing is used to model the 

behavior of a chemically modified biosensor. 

Biosensors are sensing devices that transform a biological recognition into an 

electrical signal. During the biosensor operation the substrate to be analyzed is 

biochemically converted to a product. The signal is usually proportional to the 

concentration of the reaction product
5
. Biosensors are widely used to detect very 

accurate chemical compounds and to define them
6
. The biochemical behavior of the 

biosensor can be described by a mathematical model. A computer simulation is the way 

to solve the mathematical model in a general case. It is crucial to know the influence of 

parameters for biosensors response when creating new biosensors or modifying existing 

ones. Large sets of parameter values are used when modeling the biocatalysis process in 

a specific biosensor. The modeling tasks can be solved independently and parallelly 

when the same computer model is used with many different sets of parameters values. A 

usage of computational grids is a perspective way to accelerate the investigation of 

biosensors peculiarities
7
.  

The computational grid is a system that coordinates resources that are not subject to 

centralized control using standard, open, general-purpose protocols and interfaces to 

deliver nontrivial qualities of service
8
. The computer software designed to solve 

problems of parameterized computer modeling already exists
9,10,11

. Specialized software 

highly depends on the middleware installed in a specific computational grid. The 

purpose of this work was to develop a technique assuring an efficient usage of the 

computational grids. This technique was primarily designed to investigate the 

peculiarities of the biosensor response without attaching to specific middleware. The 

efficiency of the developed technique was investigated in BalticGrid computational 

grid. Developed technique was applied to compare the detail model of the chemically 

modified biosensor and its quasi-steady state approximation.  

 

2 TECHNIQUE 

Computer modeling software has to meet specific requirements in order to ensure  

efficient and convenient usage of grid computing. 

2.1 Requirements for computer models 

The most important requirements for passing parameters and the environment of 

software are the following ones: 

• Data input and output. The ability to change model’s parameters without changing 

model itself is crucial. The most efficient way to assure this requirement is to 

develop the software which would read modeling data from a file defined in 

models parameters. Data input and output must be independent of the operating 

system. 

• Operation of the software. Computer models have to operate in command line 

mode as in the computational grids they are executed automatically. Occurring 
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mistakes should be logged to the error log file because it the only way to assure 

that no information is lost during the process. 

2.2 Grid computing usage scheme 

Computer models have many parameters in most cases. The most common and 

important task in parameterized simulations is to define the dependency between the 

initial data and the results of computer simulation
12

. Specific characteristic’s 

dependency on the initial parameters during simulation process can be described as 

follows: 

 y = f(p1, p2,..., pN), (1) 

where y stands for the above mentioned specific characteristic, N – the number of 

parameters, Q = {p1, p2,..., pn} – the parameter queue where values p1, p2,..., pn affects 

the investigated characteristic y, f denotes the simulation process. 

In many cases of the comprehensive analysis the simulations are carried out with 

different sets of parameters called the parameter sweeps
13

. The parameter sweep is a 

collection of parameter queues. It can be created by enumerating particular values of 

parameters or can be generated. When generating parameter queues the following 

values must be specified
14

:   

• The interval of parameter values: 

 pA ≤  pi ≤  pB,  (2) 

where pA stands for the starting value of the concrete parameter, pB – last value, and 

pi – any parameter from the parameter queue, i = 1, 2, ..., N. 

• The progression type to define whether arithmetic or geometric progression is used 

to generate the parameter.  

Computer models designed to investigate the peculiarities of biosensors are 

parameterized as well. To perform the parameterized simulation in the computational 

grid a group G of total NG tasks is submitted to the grid: 

 G = {M, PSi},                         (3) 

where G stands for a group of tasks, M is the computational model, PSi – parameter 

sweeps where every parameter queue consists of parameters p1, p2,..., pN and i = 1, 2, 

…, NG.  

Utilization of grid computing to solve parameterized tasks can be defined by the 

following steps: 

• The rules to form parameter sweep are defined. The parameter sweep can be 

enumerated by hands, generated using progression or both ways can be used at the 

same time. In such case, a part of the parameter queues are generated and part of 

them are enumerated manually. 

• The main parameter sweep is prepared according to the defined rules. 

• Produced parameter sweep is devided into NG amount of smaller sweeps. It is 

recommended to seek that smaller sweeps would be simmilar in size. 

• The group of tasks (3) is submitted to the computational grid. 

• The results are retrieved after the simulation is finished. 
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2.3 Implementation of the technique 

It is commonly required that some parameter values would be enumerated, some to 

be generated and some to remain constant in all parameter queues. In order to meet this 

requirement we have developed a method for the parameter sweep generation. 

Directions for the generation of parameters are provided in the parameter description 

file in the following syntax: 

N

GuidelinesType

GuidelinesType

M PQ









;;

...

;;

;

, 

where MPQ stands for the number of the desired parameter queues in the main parameter 

sweep (which also equals to the total number of simulations), N is the total number of 

parameters, Type defines the type of parameter generation and Guidelines defines an 

additional information needed for the current parameter. Values allowed for Type and 

Guidelines are defined in Table 1. 

Type Type description Guidelines Guidelines description 

0 Parameter is not 

changed during 

the simulations.  

ConcreteValue A single value with semicolon at the 

end. 

1 Parameter is 

changed by 

enumerating its 

values.  

ListOfValues The enumerated list of parameter 

values separated by semicolons. If 

ListOfValues count is less than MPQ, 

then the last value of the given list is 

used for the remaining parameter 

queues, if ListOfValues count is more 

than MPQ, then the remaining values are 

ignored. 

2 Parameter is 

generated using 

arithmetic 

progression.  

StartingValue; 

EndValue 

StartingValue stands for the first value 

in desired interval of parameter’s 

values; EndValue is the final value 

(number MPQ) in mentioned interval. 

3 Parameter is 

generated using 

geometric 

progression. 

StartingValue; 

EndValue; 

StartingValue stands for the first value 

in desired interval of parameter’s 

values; EndValue is the final value 

(number MPQ) in mentioned interval. 

Table 1. Parameter values defined in the description file. 

A computer program was developed to generate the main parameter sweep using 

parameter description file. 

Entire technique of computational grid usage was implemented as follows: 

• The main parameter sweep is generated using the above mentioned syntax. 

• The main parameter sweep of MPQ parameter queues is divided into NG smaller 

parameter sweeps. An average amount of parameter queues in smaller parameter 

sweep is found: 

 Navg = MPQ / NG.  (4) 
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Let Navg,int be the integer part of the average Navg. Then a total number of A parameter 

sweeps will have Navg,int parameter queues. A total number of B parameter sweeps will 

have Navg,int + 1 parameter queues. A and B stands for integer numbers satisfying the 

following equation: 

 MPQ = ANavg,int + B(Navg,int + 1).   (5) 

In accordance with the equation (5) we assure that every smaller parameter sweep 

would be similar in the size. 

•  The group of NG tasks (3) is submitted to the computational grid.  

• The modeling software writes results to the output file independently in its own 

computing node. 

• The output files from different computing nodes are collected and joined after the 

separate modeling tasks are completed. 

3 MODELING OF BIOSENSORS USING DEVELOPED TECHNIQUE 

The developed technique was applied to model biosensors behavior. Three materials 

are present – enzyme (E), substrate (S) and mediator (M) in the biocatalysis process of 

the studied biosensor.  

 , (6) 

  (7) 

The model involves three regions: the enzyme layer where the biochemical reactions 

(6) and (7) as well as the mass transport by diffusion takes place, a diffusion limiting 

region where only the mass transport by diffusion takes place and a convective region 

where the substrate concentration is maintained constant. 

A mathematical model of a generic amperometric biosensor based on a chemically 

modified electrode (CME) has been proposed
1
. The biosensor response was numerically 

modeled under the quasi-steady state assumption
15

. The goal of this investigation was to 

develop a detail mathematical and the corresponding numerical models of the biosensor 

based on the CME, where no quasi-steady state assumption is applied, and to evaluate 

the conditions at which the biosensor action can be simulated under quasi-steady state 

approximation (QSSA) for an accurate prediction of the biosensor response. 

3.1 Mathematical model of the biosensor 

Coupling the enzyme catalysed reactions (1) and (2) in the enzyme layer with the 

one-dimensional-in-space diffusion, described by Fick's law, leads to the following 

equations
1
 of the reaction–diffusion type (t > 0, 0 < x < de): 
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where x and t stand for space and time, respectively, se(x, t), me(x, t), pe(x, t), eS(x, t), 

ered(x, t) and eox(x, t) are the molar concentrations of the substrate S, the mediator M, the 

product P, the oxidized enzyme Eox, the reduced enzyme Ered and the enzyme substrate 

ES, respectively, de is the thickness of the enzyme layer, and DSe, DMe, DPe are the 

diffusion coefficients. 

Outside the enzyme layer only the mass transport by diffusion of the substrate, the 

mediator and the product takes place. We assume that the external mass transport obeys 

a finite diffusion regime
1
 (t > 0, de < x < de + dd): 

 
2

2

2

2

2

2

,,
x

p
D

t

p

x

m
D

t

m

x

s
D

t

s d
Pd

dd
Md

dd
Sd

d

∂

∂
=

∂

∂

∂

∂
=

∂

∂

∂

∂
=

∂

∂
, (9) 

where sd(x, t), md(x, t) and pd(x, t) stand for the molar concentrations of the substrate, the 

mediator and the product in the diffusion layer, dd is the thickness of the external 

diffusion layer, DSd, DMd and DPd are the diffusion coefficients. 

The biosensor operation starts when some substrate appears in the bulk solution 

(t = 0), 
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where e0 is the concentration of the enzyme in the enzyme membrane, m0 is the 

concentration of the mediator at the boundary between the electrode and the enzyme 

layers, s0 is the concentration of the substrate in the bulk solution. 

The boundary and matching conditions are defined as follows
1
 (t > 0): 
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The anodic or cathodic current is measured as a response of an amerometric 

biosensor in a physical experiment. The density i of the current at time t is 

 
0

)(
=∂

∂
=

x

e
Pee

x

p
FDnti , (12) 

where ne is a number of electrons involved in the electrochemical reaction, and F is 

Faraday’s constant (F = 96486 C/mol)
16

. 

In order to define the main governing parameters of the model the corresponding 

dimensionless mathematical models was derived for the detail and the quasi-state 

assumption-based mathematical models.  

The digital simulation was carried out using the finite difference technique
17

. The 

software was developed by implementing the detail and the quasi-state based 

mathematical models. C++ programming language was chosen as it is the most 

commonly supported language in computational grids. 

3.2 The effect of the thickness of the diffusion layer 

We normalize the steady-state current
2 

because of high sensitivity of the maximal 

biosensor current to the thickness of the enzyme layer: 
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where Bi is the Biot number expressing the ratio of the internal mass transfer resistance 

to the external one, I(Bi) is the steady-state current of the detail mathematical model, 

calculated at given Biot number Bi. I(∞) corresponds to the biosensor response of the 

detail mathematical model for zero thickness of the external diffusion layer, dd = 0. 

The thickness dd of the diffusion layer is inversely proportional to the intensity of 

stirring. The more intense stirring corresponds to the thinner diffusion layer. This 

diffusion layer, also known as the Nerst layer, practically does not depend upon the 

enzyme membrane thickness de. The Nerst layer may be practically minimized up to dd 

= 2µm, but no zero thickness can be achieved
18

. The influence of two diffusion modules 

(Damköhler numbers), σox and σred, 
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were investigated. 

The normalized steady-state current versus the Biot number Bi was calculated at the 

following six values of the thickness de of the enzyme layer: 17.3, 24.4, 34.6, 48.9, 69.2, 

97.9 µm and six values of the enzyme concentration e0 in the enzyme membrane: 10, 

50, 250 nM, 1.25, 6.25, 3.125 µM. At each value of de as well as e0 the Biot number Bi 

was changed from 0.1 up to 100. At these values of de and e0 keeping other parameters 

unchanged the diffusion modules (σox and σred) change in five orders of magnitude. 

Thus, the behaviour of the biosensor response was calculated at different limitations of 

the response. The following values of the model parameters were constant in the 

numerical simulation: 
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The results are displayed in Figure 1. 

 

Figure 1. The normalized steady-state current IN versus the Biot number Bi at six values of the 

diffusion module
2

redσ : 10
−4

 (1), 10
−3

 (2), 10
−2

 (3), 0.1 (4), 1 (5), 10 (6), 
2

oxσ
 
= 1000

2

redσ . 

One can see that the steady-state biosensor current IN is a monotonous increasing 

function of the Biot number Bi when 2

redσ  ≥ 1. IN is non-monotonous when 2

redσ  ≤ 1. The 

normalized steady-state current only slightly varies for different diffusion modules 

when Bi > 10. 

3.3 The accuracy of the quasi-state approximation 

Using numerical simulation based on the detail mathematical model (8)-(11), the 

peculiarities of the biosensor action were investigated at different values of the model 

parameters. The simulation results were compared with the results obtained by using the 

corresponding model simplified by the QSSA
1
. 

We introduced the relative error EQSSA of the biosensor response arose due to the 

QSSA, 

 dttidttidttiE DetQSSADetQSSA ∫∫∫
∞∞∞

−=
000

)()()( ,  (16) 

where iDet is the density of the biosensor’s current calculated by the detailed 

mathematical model of the CME, and iQSSA is the density of the biosensor’s current 

calculated by the corresponding model derived from the detailed model by applying 

QSSA. The error EQSSA can also be called the relative error of QSSA.  

The dependence of error EQSSA on the dimensionless Biot number Bi is shown in 

Figure 2. The responses were calculated by changing the values of de and e0 in the same 

way as in Figure 1. There can be seen an effect of the dimensionless Biot number Bi on 

the modeling error EQSSA. The larger Biot number corresponds to the larger error of 

QSSA calculations. The error of the QSSA may be neglected with all the values of 

diffusion module except the case of small diffusion module for relatively large Biot 
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number (curve 1). When 2

redσ = 10
−4 

and Bi > 30 the error of QSSA calculations is bigger 

than 1% with even bigger EQSSA for larger Biot numbers. 

    

Figure 2. The error EQSSA versus the dimensionless Biot number Bi at six values of the diffusion 

module
2

redσ : 10
−4

 (1), 10
−3

 (2), 10
−2

 (3), 0.1 (4), 1 (5), 10 (6), 
2

oxσ
 
= 1000

2

redσ . 

The parameters affecting the error of the quasi-state-based mathematical model were 

calculated by applying the developed technique. The same problem with different sets 

of parameter-values was solved more than 1000 times by comparing two models in the 

computational grid.  This analysis was solved more than 5 times faster by using the 

computational grid than it would be solved on a local computer. An adaptation of the 

grid computing to the modeling of biosensors is especially perspective in the case of 

two-dimensional and three-dimensional models. 

4 TECHNIQUE EFFICIENCY 

By applying the developed technique to model chemically modified biosensors, the 

computing time required to complete specific simulation locally was compared with the 

time consumed in the BalticGrid. The recommendations for an efficient and convenient 

usage of the grid computing were developed. 

4.1 Efficiency of computational Grid usage 

The difference between simulations efficiency in a local computer and in a grid 

environment was evaluated during the performed investigation. Local simulations were 

carried out on a computer with the processor of 2 GHz speed and a memory of 1 GB of 

RAM. The acceleration R of simulations in the computational grid is described as 

follows: 

 R = (MPQ TS – T) / T  × 100 %, (17) 

where TS stands for duration of simulation with single parameter queue in local 

computer, T is the duration of calculations with all parameter queues in the 

computational grid. T was measured as time between submission of groups of tasks G 

and the receiving of the results. 
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Comparisons were carried out by changing the amount of total tasks NG submitted to 

the grid between 2 and 15 as well as with different durations MPQ TS = 30, 40, 60, 120, 

240 and 480 minutes. Accelerations R dependency on NG is displayed in Figures 3 and 

4. The efficiency of simulations in the computational grid was measured by submitting 

the same tasks and by calculating the average durations. In some cases, values of T were 

much larger than the calculated average and it caused some non-monotonicity as it is 

seen in the Figure 3. This can be attributed to the constantly changing load of the grid 

environment. 

 

Figure 3. Acceleration R dependence on total count of tasks NG at six values of calculations durations 

on local computer MPQ TS = 30 (1), 40 (2), 60 (3), 120 (4), 240 (5) and 480 (6) min. 

As one can see in Figure 3, the efficiency of the developed technique of 

computational grid usage depends on the volume of the task. The smallest task 

efficiently solved in BalticGrid was with a duration of MPQ TS = 40 minutes. 

Calculations were faster than in the local computer but the task was divided into three 

parts and three remote computers were used instead of one local computer. By dividing 

the same task into more parts calculations were even slower than in the local computer 

because the time required to assign concrete task to its node increases more that 

decreases the time of calculations. The task in local computer solved in 120 minutes 

was efficiently solved in BalticGrid environment with all analyzed total count of tasks 

NG. The task of 480 minutes was also solved efficiently with all analyzed total number 

NG of tasks, but the most efficiently when NG is between 9 and 13 (curve 6). 
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Figure 4. Acceleration R dependence on calculations durations on local computer MPQ TS at five total 

count of tasks NG = 3 (1), 4 (2), 5 (3), 8 (4) and 13 (5). 

Figure 4 shows that the larger is the task MPQ TS the larger becomes optimal count of 

tasks submitted to the grid NG. 60 minutes duration task was solved most efficiently 

when NG is 3, 4 and 5. Larger, 8 hours task, was solved most efficiently when NG is 13. 

Accelerations differ slightly for the tasks with durations between 1 and 4 hours, when 

NG is between 3 and 8 (curves 1–4). 

Relatively small division size NG and acceleration R can be attributed to the fact that 

resource broker used in BalticGrid environment is centralized. The centralized resource 

brokers can cause a noticeable delay. It was noticed during the studies that the delay is 

caused mainly by two reasons: 

• The time required for middleware to assign concrete task to its computational node. 

This delay remains roughly constant during the experiments and is caused by 

configuration of the computational grid and the middleware itself. 

• Random time when one or more computational tasks are finished later than the 

others. This delay depends on the load of the computational grid and the difference 

in capacities of computational nodes. 

4.2 Recommendations for efficient usage of computational Grids 

Our experience gathered during the process can be summarized by following 

recomendations. 

It is required to determine if the usage of computational grid is meaningful at all 

before using grid computing to solve biosensors behavior. The smallest computational 

task solved in the grid environment faster than in local computer is required to be 

determined. The minimal effective duration Tmin can be found by the following steps: 

1. The duration TS of calculations in a local computer with one parameter queue 

PQ1 = p1, p2, ..., pN is measured.  

2. In the initial state we assign NG = 2 and MPQ = NG, where NG is a total count of 

submitted tasks to the grid and MPQ is the parameter queue length in parameter 

sweep. 

3. A group of tasks G = {M, PSi} is sent to computational grid, where PSi contains 

MPQ / NG parameter queues. 



V.Ašeris, R.Baronas 

 

 

 

 

12 

4. The duration T of calculations in the computational grid is measured. 

5. If T is more than MPQ TS then MPQ is increased by NG and steps beginning step 

number 3 are repeated. If T is less than MPQ TS then Tmin = T. 

6. Steps beginning step number three can be repeated by increasing NG by 1. This 

might be done in effort to find lesser Tmin then is already determined in step number 

5, but it is not necessary. 

In our case the smallest task which is solved in computational grid faster than in the 

local computer was approximately Tmin = 40 minutes and NG = 3. 

A total number of submitted tasks NG should be chosen respectively to the volume of 

whole task. The larger is the task MPQ TS the larger becomes optimal count of tasks 

submitted to the grid NG. 

5 CONCLUSIONS 

The technique presented in this paper for an efficient usage of the computing grids 

can be applied to investigate the peculiarities of the biosensor response. The technique 

is bounded to parameterized computer modeling but not concrete biosensors, so it can 

be used for any parameter sweep-related simulations. 

The technique was validated by investigating the biochemical behavior of the 

biosensor based on a chemically modified electrode. The biosensors action was 

analyzed in stirred and non-stirred solutions. The parameters affecting the error of 

quasi-steady-state modeling were determined. 

The developed technique highly depends on the amount of the calculations and the 

count of parameter queues. The technique is more efficient for larger calculations rather 

than smaller ones. 
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