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Abstract. The main claim of this paper is to evaluate velocity potential caused by an 
applied magnetic field on a stationary fluid flow at rest. The fundamental governing 
equations of the problem can be found using a coupled Maxwell and flow potential 
equations. A rectangular duct with the section of unity in any direction of coordinate 
system has been chosen as the problem's domain. Some mathematical manipulation has 
been carried out to make the governing equations decoupled, mathematically. Then the 
final form of these equations may be stated in general form of Poisson equation so that 
the right hand side of the equation "b" is a function of nodes position vector and also 
function of new introduced potential parameter. Then powerful and practical approach 
of Dual Reciprocity Boundary Element Method has been employed to treat the problem. 
The radial basis function is a linear function of radial displacement which does not 
change throughout the problem. 

     The behavior of the flow is highly affected by changing of Hartmann number. The 
special case of interest could be investigation of boundary layer thickness on the walls 
and also figuring out the induced velocity component which both have been studied 
here. Furthermore Although the dual reciprocity boundary element method can solve 
several types of nonhomogeneous partial differential equation, here well known as 
Poisson equation, the method plied a set of interpolation function which causing the 
problem to be very sensitive to the nodes gird configuration. This configuration includes 
the number of interior and boundary nodes, the type of elements (constant, linear, etc), 
the boundary condition, etc. Therefore some typical cases are studied to get the best 
result. 

     The conclusion depicts that some other more complex radial basis functions may 
provide better results but with making the numerical initialization more difficult. 
Anyhow, as it expected the result tending to the exact solution as the number of nodes or 
degree of boundary elements increases. Boundary layer formation obviously is also 
illustrated. Moreover, different physical aspects of the problem investigated via several 
figures to give the reader a fast and reasonable discernment. 
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INTRODUCTION: 

     The magnetohydrodynamic flow has lots of practical uses in different industries 
including MHD pumps, MHD shock absorber, MHD flow driver system, etc. The basis 
of all devices working based on MHD is almost the same. An applied constant or 
variant magnetic field causes the conducting fluid to flow. This procedure is usually 
followed by an induced current. Several researches have been carried out on simulating 
the MHD flow by virtue of various numerical and analytical techniques. The analytical 
solution of the problem is expressed by different authors. The problem was first studied 
by Hartmann [1] for an incompressible, viscous flow between two flat plates. The 
analytical researches  made by Dragos [2] and Shercliff [3] may be mentioned as two 
typical analytical ones. The numerical approaches also include almost all well known 
numerical method including FDM, FDM and BEM as well. Numerically investigation 
of the problem using BEM is considered here. The domain of the problem is a one by 
one square which in Cartesian coordinate system can be shown as 0≤x,y≤1 as it is 
common in different text books. The domain of the problem is intentionally chosen like 
this to make the authors able to validate numerical analysis with the exact solution of 
the problem. The all sides of the squares are assumed to be insulated. Now, one can 
decouple the equations by method of change of variables.  

     After the equations are decoupled, governing equations will be in form of Poisson 
equations which their right hand sides (RHS) are a function of potential field only. 
Hence the dual reciprocity method has been employed to solve the problem 
numerically, the fundamental solution of the problem remains unchanged and is exactly 
the same as Laplace equation's fundamental solution. The DRBEM [4] evaluates 
domain integrals appearing in boundary integral equation by series of interpolation 
functions based on different radial basis functions. Several different RBFs are 
introduced and investigated to verify the accuracy of the results. The work of 
Ramachandran and Karur [5] is a good example. However the simplest radial basis 
function i.e. 1+r is used here to solve the problem. Then different interior and exterior 
node configuration has studied to show that the results are independent of the nodes 
number. Lots of comparisons showed in the results section depicts the solution has a 
good agreement with the exact solution. The conclusion shows that the numerical 
results tending to the exact solution when the number of interior nodes increases, as it 
expected. 

 

GOVERNING EQUATION 

     When a constant or variant magnetic field applies to an incompressible non-viscous 
conducting fluid, induced current forces the fluid to flow and the flow is now called a 
magnetic driven flow. The Maxwell electromagnetic equation and also flow momentum 
equation lead to a coupled system of equations. Additionally it is supposed that no 
vortex shedding mechanism presents. Thus the flow should be classified as fully 
developed laminar flow. The non-dimensional set of equation is presented by Dragos[2] 
and Shercliff [3] as following: 

ቐߘଶܸ + ܯ ப஻ப௫ = ܤଶߘ1− + ܯ ப௏ப௫ = 0                                                       (1) 
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     Where here ∇ is Laplace operator, M is the Hartmann number, V(x,y) and B(x,y) are 
velocity and magnetic fields, respectively. Both of the equations are defined on the 
domain Ω. The domain of the problem illustrated in Fig.1 showing both the main 
domain geometry and applied boundary condition. 

 

Fig.1: The problem domain and applied boundary condition 

      As it shown in Fig.1 the flow direction is now in the opposite direction of positive Z 
axis, say, here driven down. Since here the applied boundary condition simulate 
physical insulation, one can now decouple the governing equation using a simple 
change of variable method. Let u1=V+B and u2=V-B so that the transformed equation 
presented by (1) converted to the following set of equations. 

൜ݑଵ = ܸ + ଶݑܤ = ܸ − ܤ  →   ቐߘଶݑଵ + ܯ ப௨భப௫ = ଶݑଶߘ1− − ܯ ப௨మப௫ = −1   ≡    ቐߘଶݑଵ = −1 − ܯ ப௨మப௫ߘଶݑଶ = −1 + ܯ ப௨మப௫                            (2) 

      The new transformed set of equation now is decoupled with respect to two new 
introduced parameters and in general form of Poisson equation which the RHS is only a 
function of spatial potential derivate respect to x component. Although the DRBEM can 
solve the aforementioned equations in an iterative manner recommended by 
Ramachandran [6], the set of equations can be further simplified by using second 
change of variable. Now define the new variables as U1=exp(0.5Mx)×u1 and 
U2=exp(0.5Mx)×u2. Thus we have   

൝ ଵܷ = ݁ಾమ ௫. ଵ  ܷଶݑ = ݁ିಾమ ௫. ଶݑ   →   ቐ ଶߘ ଵܷ = ெమସ ଵܷ − ݁ቀಾమ ቁ௫ߘଶܷଶ = ெమସ ܷଶ − ݁ିቀಾమ ቁ௫                              (3) 

     Now the RHS of Poisson equations are only a function of potentials and the 
positional components of any desired points and not a function of potentials derivatives. 
As it discussed later, the numerical solution can be carried out much easier in this 
situation. If the domain discretized via several nodes, the spatial terms in foregoing 
equation are always known for every node. However the potential is not determined and 
should be evaluated. The RHSs of (3) may be emphasized and rewritten as: 

ቐܾଵ(ݔ, ,ݕ ଵܷ) = ெమସ ଵܷ − ݁ቀಾమ ቁ௫   ܾଶ(ݔ, ,ݕ ܷଶ) = ெమସ ܷଶ − ݁ିቀಾమ ቁ௫                                           (4) 
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     Readily one can result that b2=b1(-M). This relation decreases the needed CPU time 
much less than solving two equations separately. The new boundary conditions of the 
problem with considering two changes of variable can be straightly forward obtained as 
U1=U2=0 on all boundaries. Once the different values of U1 and U2 are calculated, the 
origin V and B field values will be computed by two simple equations arising from the 
changes of variable and may be expressed as (5). ቐܸ = ଵଶ ቂexp ቀ− ெଶ ቁݔ ଵܷ + exp ቀெଶ ቁݔ ܷଶቃܤ = ଵଶ ቂexp ቀ− ெଶ ቁݔ ଵܷ − exp ቀெଶ ቁݔ ܷଶቃ                                   (5) 

 

NUMERICAL SOLUTION PROCEDURE 

     As it mentioned before, the Dual Reciprocity Boundary Element Method has been 
employed to solve the problem numerically. It is well known that the direct boundary 
element method was firstly formulated and specified for solving only the Laplace 
equations and has a drawback of solving Poisson equation because of domain integral 
which appears in this class of partial differential equation. Although the domain integral 
may be evaluated by surface numerical integration, this approach cannot be known as 
boundary method. Then the new modified boundary element method first presented by 
Nardini and Brebbia [4] and Partridge [7] disappear the weakness of direct boundary 
element method. This approach utilizes a set of interpolation functions ϕk to evaluate the 
values of b function on every node. Interpolation function ϕk sometimes called radial 
basis function because it is only a function of radial distances between the nodes. The 
main advantage of radial basis function is that they are only a function of single variable 
independent of problem dimensions. There are several proposed radial basis function 
which some of them can be mentioned here as following [5,7]: 

1. Linear function: ϕk = 1+r 

2. Duchon radial cubic: ϕk = r3 

3. Radial quadratic plus cubic: ϕk = 1+r2+r3 

4. Thin plate spline: ϕk = r2ln r 

5. Hardy multiquadrics: ϕk = (r2+C2)n/2 

6. Inverse multiquadrics: ϕk = 1/(√(r2+C2)) 

7. Gaussian: ϕk = exp(-r2/C2) 

Using interpolation function the RHS of the Poisson equation can be rearranged as ܾ௠ = ∑ ϕ௠,௞α௞ேା௅௞ୀଵ                                                     (6) 

     Where subscript m is the counter parameter on nodes, α is the interpolation 
coefficient and N and L are the number of boundary and interior nodes, respectively. 
The values of matrix ϕ elements are always constant if the position of all nodes 
sustained unchanged. So the interpolation function is easily found by taking inverse of 
interpolation function as following α௞ = ∑ ௞௠ܾ௠ேା௅௠ୀଵܧ                                                    (7) 
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Here E in the matrix inverse of interpolation function. Now if a set of functions fk can be 
found such that the Laplacian of fk is equal to ϕk, then the domain integral can be 
converted to the boundary integral [8] therefore we have ߘଶ ௞݂ = ϕ௞, ϕ௞ = 1 +  (8)                                             ݎ

Now because we assumed that the interpolation functions are a single variable function 
of radial distance, the Laplace operator can be rewritten in polar coordinates to find the 
fk.  ∇ଶ ௞݂ = ݎ1 ݎ݀݀ ൬ݎ ൰ݎ݂݀݀ = 1 + →   ݎ   ݀ ൬ݎ ൰ݎ݂݀݀ = ݎ) + →  ݎ݀(ଶݎ ݎ݂݀݀   = 2ݎ + ଶ3ݎ  →    ݂ = ଶ4ݎ + ଷ9ݎ  

(10) 

Where here r(x,y) in our two dimensional problem has a familiar definition of a vector 
length. ݎ = ඥ(ݔ − ௞)ଶݔ + ݕ) −  ௞)ଶ                                           (11)ݕ

Note that the governing equation is now discretized by virtue of interpolation functions 
as following: ߘଶܷ = ܾ = ∑ ଶߘ ௞݂. α௞ேା௅௜ୀଵ                                            (12) 

Multiplying by fundamental solution and integrating over the whole domain arises  ׬ ଶܷఆߘݒ ߗ݀ = ׬ ∑)ݒ ଶߘ ௞݂. α௞ேା௅௜ୀଵ ఆߗ݀(                                   (13) 
Hence we use DRBEM for solving the problem, the fundamental solution remains 
unchanged. The fundamental solution is a particular solution which satisfies following 
relation. ߘଶܷ = ,ݔ)ߜ−  (14)                                                  (ݕ

Where δ is the Dirac delta function has an infinity value at applied source points and 
zero value at any other points. One can obtain the fundamental solution as Katsekadelis 
[9] did.  ݒ = − ଵଶ஠ ݈݊ ݎ = ଵଶ஠ ݈݊ ቀଵ௥ቁ                                         (15) 

Applying Green-Gaussian theory for LHS of (12) gives  ܵܪܮ = ׬ ቂݒ ப௎ப௡ − ப௩ப௡ ܷቃ ߁݀ − ϵ௜ ௜ܷ௰                                  (16) 

Here ϵ is a coefficient depends on the degrees between elements. The LHS can be 
discretized and written in matrix form. ܵܪܮ = ∑ ௜௝ܷ௡௝ே௝ୀଵܩ − ∑ ෡௜௝ܪ ௝ܷே௝ୀଵ − ϵ௜ ௜ܷ                                (17) 
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The LHS is only the boundary integral. That's why the summation performed only on N 
boundary element nodes. Let's now apply Green-Gauss theory to the RHS of equation 
ܵܪܴ  .(12) = ∑ ቂ׬ ቀݒ௜ ப௙೔ப௡ − ப௩೔ப௡ ௞݂ቁ ߁݀ − ϵ௜ ௜݂௞௰ ቃ α௞ேା௅௞ୀଵ                          (18) 

The normal derivative of f function can be simply found by rule of chain. 

௞݂ᇱ = ∂ ௞݂∂݊ = .࢔ ߘ ௞݂ = ݊௫ ൬∂ ௞݂∂ݔ ൰ + ݊௬ ൬∂ ௞݂∂ݕ ൰ = ∂ ௞݂∂ݎ ൤݊௫ ݔ∂ݎ∂ + ݊௬ =൨ݕ∂ݎ∂ ൬12 + 3൰ݎ ൣ݊௫(ݔ − (௞ݔ + ݊௬(ݕ −  ௞)൧ݕ
(19) 

Where here n is the normal vector outward the boundary. Thus the RHS of (12) can be 
rearranged to provide a new equation.  ܴܵܪ = ∑ ൫∑ ௜௝ܩ ௝݂௞ᇱே௝ୀଵ − ∑ ෡௜௝ܪ ௝݂௞ − ϵ௜ ௜݂௞ே௝ୀଵ ൯α௞ேା௅௞ୀଵ                     (20) 

For sake of simplicity introduce a new parameter S defining as following [6] 

௜ܵ௞ = ∑ ௜௝ܩ ௝݂௞ᇱே௝ୀଵ − ∑ ෡௜௝ܪ ௝݂௞ − ϵ௜ ௜݂௞ே௝ୀଵ                                (21) 

Substituting the equation (7) for α into latter equation gives ܴܵܪ = ∑ ௜ܵ௞ ∑ ௞௠ܾ௠ேା௅௠ୀଵேା௅௞ୀଵܧ                                       (22) 

It is convenient in programming to absorb the second summation into the first one in 
following manner using a new dummy variable M [6]. ܯ௜௠ = ∑ ௜ܵ௞ܧ௞௠ேା௅௞ୀଵ                                                (23) 

Presenting the RHS much more practical for programming purposes. ܴܵܪ = ∑ ௜௠ܾ௠ேା௅௠ୀଵܯ                                               (24) 

Combining equations (18) and (20) and then substituting in equation (12) results the 
final discretized Poisson equation invoking DRBEM. ∑ ௜௝ܷ௡௝ே௝ୀଵܩ − ∑ ෡௜௝ܪ ௝ܷே௝ୀଵ − ϵ௜ ௜ܷ = ∑ ௜௠ܾ௠ேା௅௠ୀଵܯ                     (25) 

As it shown in the final discretized equation, the summation on the LHS is performed 
only on N boundary nodes, whereas the RHS is on both boundary and interior nodes. 
The term ϵiUi intentionally is not absorbed in the H matrix. In contrast with the direct 
boundary element method, the values of ϵ is not constant due to presence of interior 
nodes. The governing equations are now discretized and would ready to solve if the b 
function was constant. However, here b is a function of nodes position vectors and 
potential values (4). The position dependent terms i.e. exp(± 0.5M)x are always known 
because the nodes position known in advance, whereas the potential dependent terms 
cannot be found simply. In this condition we have N unknown quantity (potential or 
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flux depending on boundary conditions) and L unknown potential values for interior 
nodes. Thus we have to move the collocation or source points also to the interior nodes 
to close the problem. 

     In this case study we have to assume a set of initial values for the unknown 
potentials. Let's have a brief look on two common boundary conditions namely 
Neumann and Dirichlet. If the RHS of the Poisson equation i.e. b is a linear function of 
the potential such as b=C1m+C2mU, one can rewrite (25) and finds that ∑ ௜௝ܷ௡௝ே௝ୀଵܩ − ∑ ෡௜௝ܪ ௝ܷே௝ୀଵ − ϵ௜ ௜ܷ = ∑ ଵ௠ܥ)௜௠ܯ + ଶ௠ܷ௠)ேା௅௠ୀଵܥ               (26) 

Where here C1m and C2m are two potential independent coefficients. Note that these 
parameters are not always constant and can vary with spatial coordinates of the nodes. 
Suppose that no boundary conditions applied, so we can move all unknown terms to the 
LHS of (26) and all known ones the RHS giving ∑ ௜௝ܷ௡௝ே௝ୀଵܩ − ∑ ෡௜௝ܪ ௝ܷே௝ୀଵ − ϵ௜ ௜ܷ − ∑ ଶ௠ܷ௠ேା௅௠ୀଵܥ = ∑ ଵ௠ேା௅௠ୀଵܥ௜௠ܯ           (27) 

Depending on what types of boundary conditions applied on the boundaries, the 
procedure can be continued as it is done and common in direct boundary element 
method. A special care should be paid on the upper and lower limits of the summation 
over the term C2mUm for the convenience in programming. The summation can be 
divided into two terms as following. ∑ ଶ௠ܷ௠ேା௅௠ୀଵܥ = ∑ ଶ௠ܷ௠ே௠ୀଵܥ + ∑ ଶ௠ܷ௠ேା௅௠ୀேାଵܥ                        (28) 

Without regard to what types of boundary conditions are applied, the values of Um are 
always unknown on interior nodes whereas the summation over boundary nodes is 
known if the Dirichlet boundary condition applied. Anyhow, the complete discretized 
Poisson equation can be expressed in matrix presentation. ܩ௜௝ܷ௡௝ − ෡௜௝ܪ ௝ܷ − ϵ௜ ௜ܷ − ∑ ଶ௠ܷ௠ே௠ୀଵܥ + ∑ ଶ௠ܷ௠ேା௅௠ୀேାଵܥ =  ଵ௠       (29)ܥ௜௠ܯ

Here the counter j indicates the terms due to potentials and m arises from force terms 
(RHS). The subscript i stands on the number of node which the source point is applying 
on it. The following schematic matrix relation shows the dimensions of matrices. 

቎ ଵଵܩ ⋯ ⋮ேଵܩ (ܰ + (ܮ × ܰ ଵ,(ேା௅)ܩ⋮ ⋯ ே቏,(ேା௅)ܩ ൥ܰ × 1൩
− ቎ ଵଵܩ ⋯ ⋮ேଵܩ (ܰ + (ܮ × ܰ ଵ,(ேା௅)ܩ⋮ ⋯ ே቏,(ேା௅)ܩ ൥ܰ × 1൩ − ሾܰ × 1ሿሾܰ × 1ሿ் − ⋯ 
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NUMERICAL RESULTS AND DISCUSSION 

     The domain of the problem is a one by one square which the origin of XY coordinate 
system coincides with the point O(0,0). Thus in this case study the flow is driven down 
by means of a constant pressure gradient, where here is in the negative direction of Z 
axis (axis of the duct). The domain boundary discretized into 20 equal constant 
elements. There are also 400 (20×20) interior or DRM nodes in the domain to make the 
problem more accurate. For some post-processing reasons, the interior nodes are placed 
such that producing a fully structural mesh grid. This grid is shown in Fig. 2. As it 
mentioned before all boundaries are insulating such that B(x,y)=0 on all of them. 
Furthermore, hence the fluid is supposed to be viscous, no slip boundary condition 
should be applied on all walls, say, boundaries. In other words, both B(x,y) and V(x,y) 
will take the value of zero on all boundaries [10]. So the boundary conditions for (3) 
become ቄܸ = ܤ߁  ݊݋   0 = →  ߁  ݊݋   0    ൜ ଵܷ = ଶܷ߁  ݊݋   0 =  (30)                                   ߁  ݊݋   0

The solution first obtained for U1 and U2 and then transformed back to the original 
variable by virtue of (5).  

 

Fig. 2: The discretized boundary and domain of the problem 

     Hence the problem was solved by constant elements, there is no node on the vertices 
of the square. Here, the needed values on the vertices are evaluated using arithmetic 
average of corresponding adjacent nodes. These values are just used for post-processing 
the results. Microsoft Visual Basic® has been employed to produce the needed codes 
and subroutines for solving this problem. This program can give the programmer high 
ability to write their programs user-friendly and with complex mathematical kernel 
simultaneously.  The problem was solved for different Hartmann number from 5 to 20. 
The main fluid dynamic effect of changing Hartmann number will be seen in formation 
of velocity and magnetic boundary layer near the walls. Some selected contours of 
velocity and induced magnetic fields are depicted in Fig. 3-6.  
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         Fig. 3: Contour of velocity (M=5) 

 
        Fig. 4: Contour of induced magnetic field (M=5) 

     As it shown in Fig. 3 to 6, the formation of both induced magnetic and velocity 
boundary layers are clearly observed. Comparison of Fig. 3 and Fig. 5 depicts that the 
duct flow will be more uniform as the Hartmann Number M increases. More uniform 
flow causes thinner boundary layer. In other words, the boundary layer will be formed 
and developed faster. This behavior also can be seen for induced magnetic or current 
boundary layer. This fact is well known in theory of magnetohydrodynamic flows 
specially in duct flows [2]. The thickness of boundary layer has a reciprocal proportion 
to the value of Hartmann Number M. The degree of this inverse proportionality depends 
on the direction of walls position, namely parallel or perpendicular to applied magnetic 
field [11,2]. Although it is not illustrated here, by increasing the Hartmann Number the 
problem domain should be discretized finer to have the correct solution. Based on 
several numerical simulation carried out by the authors, it is needed to increase the 
number of boundary elements 10 times more than before when the Hartmann Number 
takes the value of 300. 
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Fig. 5: Contour of velocity (M=20) 

 
     Fig. 6: Contour of induced magnetic (M=20) 

     Additionally it is evident that the velocity has a symmetrical behavior with respect to 
both lines parallel to x and y axes which connect the midpoints of the square sides 
whereas the contour of induced magnetic field is symmetric only respect to horizontal 
line. Furthermore, the direction of velocity streams do not change throughout all domain 
and they are clockwise here whereas Fig. 4 clearly demonstrates that the current stream 
directions are clockwise and counterclockwise near to left and right walls respectively. 
According to the Fig. 4 one can distinguish a region in the center of the domain in 
which there is almost no induced current. Thus it must be noted although there is no 
current in the mentioned region, hence all walls are insulating no zero velocity or 
stagnant region can be observed in the domain. Eventually it should be recalled that 
high value of M means stronger applied magnetic field causing formation of boundary 
layer in narrower region i.e. the thickness of boundary layer will be decreased.  
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CONCLUSION 

    Evaluation of both induced velocity and current due to an applying constant magnetic 
field has been carried out in this study. Some well known and typical specification of 
magnetohydrodynamic flows such as the formation of boundary layer, symmetric or 
asymmetric behavior of induced quantities and the influence of Hartmann Number M 
have been reviewed and investigated. The problem has been solved numerically by use 
of dual reciprocity boundary element method. The numerical results qualitatively 
compared by well known magnetic driven flows characteristics and a good agreement 
observed and reported.  
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