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Abstract. A control-volume finite element formulation is proposed for the numerical 

solution of incompressible laminar flow of Newtonian fluids on 2-D unstructured grids. 

A collocated arrangement of dependent variables is used and oscillatory solutions are 

prevented by using the momentum interpolation scheme for mass carrying velocity 

components in the continuity equation. Bi-linear shape functions in triangular element 

combined with a physical-based discretization scheme are used to simulate the 

integration point diffusion and advection fluxes. Benchmark numerical solutions and 

experimental data are used to validate the proposed numerical solution method. 

Computational results are in good agreement with the reference data. 
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1 INTRODUCTION 

The fundamental equations which govern the flow of fluids are the equations for 

mass, momentum and energy conservation. In two dimensional cases, there are four 

unknowns, i.e. pressure P , velocity components u and v, and temperature T, which 

should be obtained simultaneously from the solution of the governing equations. In the 

pressure-based solution strategy the density (  ) as well as other thermo-physical 

variables such as viscosity ( ) are obtained from the relevant state equations. 

In incompressible flow, the density is constant and the temperature field does not 

have any effect on the continuity and momentum equations. Thus, the temperature field 

is no longer an unknown and the energy equation is redundant. The set of equations for 

an incompressible flow in a two-dimensional solution domain includes the continuity, 

x-momentum and y-momentum. The three dependent variables, i.e. u, v and P , are 

coupled in an incompressible flow field. However, while the momentum balance 

equations constrain the velocity components, there is apparently no explicit constraint 

on the pressure field. The pressure is indirectly constrained by the continuity equation. 

The pressure, therefore, needs to play a role in the momentum equations such that a 

divergence-free velocity field is obtained.  

The numerical modeling of the coupling between the pressure and velocity fields in 

incompressible flow is not a trivial task and carelessly designed discretization schemes 

are prove to physically meaningless oscillatory solutions. 

Several numerical solution strategies have been proposed to tackle the pressure-

velocity coupling problem in incompressible flows. An effective remedy to the 

decoupling symptom, i.e. the use of a staggered grid arrangement, was proposed by 

Patankar and Spalding
2
 among others. On a staggered grid, the pressure and velocity are 

not calculated at the same nodal position. In spite of its effectiveness, the staggered grid 

strategy has a number of shortcomings including the implementation difficulties on 

unstructured meshes. The first successful co-located method, initially implemented on a 

structured grid, was proposed by Rhie and Chow
3
. Chorin

4
 has also proposed a solution 

methodology based on the velocity projection concept. There are also other methods 

which solve the original governing equations simultaneously in a coupled manner
5,6

. In 

the coupled solution strategy special solution methods, suitable for the solution of ill-

conditioned linear equations, are employed and other numerical techniques and tools 

such as re-ordering, preconditioning and convergence accelerators are often necessary
7
. 

In nearly all of these developments, structured grids were employed originally.  

Incompressible flow solution algorithms on unstructured grids have also been 

developed during the past decades
8,9,10,11,12

, mostly in response to the need for solving 

flow problems in geometrically complex domains.  

Acharya et al.
13

 have provided a comprehensive review of pressure-based finite-

volume methods in computational fluid dynamics. Furthermore, Kwak et al.
14

 describe 

some of the computational challenges regarding the numerical solution of viscous 

incompressible flows. 

In this paper we propose a control-volume finite element method (CVFEM) 

formulation for the numerical solution of incompressible laminar flows of Newtonian 

fluids on 2D unstructured collocated grids. The CVFEM was proposed by Baliga
15

 and 

employed by many others including Schneider and Raw
16

 and Karimian et al.
17

. In a 

CVFEM solution procedure, discretizatin is basically carried out in two major steps. In 

the first step the governing equations are integrated over the control volumes and in the 

second step the integration point flux terms are related to the nodal point variables. The 

proposed algorithm is implemented on a triangular unstructured grid and borrows 
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features from the projection method
4
 and the momentum interpolation technique

3,10
 to 

tightly couple the pressure and velocity fields. The power law scheme, modified for 

triangular meshes, is used to properly model the advection and diffusion transport in the 

flow field. Boundary condition implementation is described in details and satisfactory 

numerical results on a number of standard test cases are reported. 

2 THE FIRST LEVEL OF DISCRETIZATION: FINITE VOLUME METOD 

The conservation equations governing laminar, incompressible Newtonian fluid flow 

can be expressed in vector form as 
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Where the conserved quantity vector q


, the convection flux vectors cc gf
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, , the 

diffusion flux vectors ,, vv gf
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 and the source term vector S
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 are defined as follows:     
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The components of the stress tensor are related to the velocity derivatives using the 

Newtonian fluid assumption as follows: 
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The solution domain is discretized by a number of triangle elements. A control 

volume, defined around a nodal point, is shown in Fig. 1. Each control volume has a 

number of faces represented by mid points, also called the integration points. The 

incompressible governing equations are discretized by integrating Eq. (1) over the 

control volume displayed by the shaded area in Fig. 1. 

 

Figure 1: Control volume around a nodal point. 
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Using the divergence theorem, the volume integrals associated with the flux terms 

are converted to surface integrals: 
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The transient and source volume integrals are approximated by the commonly 

employed lumped assumption and linear distribution along the face is assumed to 

approximate the surface integrals. Therefore, the balance equation, Eq. (5), can now be 

expressed in the following form: 
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Equation (6), which includes some integration point quantities, may be called the 

first level discrete form of the governing equations. To carry out the next step, the finite 

element shape functions are employed to facilitate the profile assumption part of the 

discretization procedure. 

 

3 THE SECOND LEVEL OF DISCRETIZATION: FINITE-ELEMENT 

INTERPOLATIONS 

Equation (6) contains dependent variables and their derivatives at the integration 

points. These quantities should be expressed in terms of the nodal dependent variables. 

In the proposed method, bi-linear shape functions, ipN


, are used to estimate the variable 

  at an arbitrary location within the element in terms of the element nodal values. 

Equation (7) shows the vector form of the interpolation via the element shape functions 

for a typical integration point shown in Fig. 2: 
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The vector 


 may represent the nodal values corresponding to any physical quantity 

of interest such as u, v or P  and ),( ts  are the local coordinates within an element as 

shown in Fig. 2.     
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Figure 2: Local coordinates in triangular element. 

 The derivatives of   are calculated using chain rule and Eq. (7). 
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These equations can be expressed in the following compact vector form: 
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Vectors Tx


 and T


 are transposes of x


 and 


. Note that the use of linear shape 

functions in triangular elements results in a constant uniform estimation of the gradient 

within the element. The normal outward area vector at each integration point is 

calculated as follows: 
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7.2 Convection Modeling 

Equation (6) contains convective fluxes which are nonlinear. Discretization of the 

continuity equation will be discussed later. Now we want to introduce a suitable 

interpolation strategy for the velocities in the convection terms in the momentum 

equations such that the physical propagation of the signals in the flow are simulated 

correctly. The proposed interpolation is dictated by the direction of the flow at the 

integration point and the element Peclet number. Along the local flow direction, a 

weighted average of the upwind and central schemes, related to the element Peclet 

number, is used. Also, the added numerical diffusion due to the first order upwinding in 

this scheme, enhances the numerical stability. For an arbitrary quantity   at the 

integration point ,ip  the convection flux is calculated as follows: 

  10      ,  ipupipipupip N 


 (14) 

The power-low scheme can be used for the calculation of ip   
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The location of up  is shown in Fig. 3, and L  is the average of three sides of the 

triangle. up is calculated from linear interpolation between a  and b  which are shown 

in Fig. 3 as follows 
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Figure 3: Location of the upwind point for an integration point.  

7.2 Diffusion Modeling 

The diffusion fluxes at the right hand side of Eq. (5) are the components of stress 

tensor which are related to the derivatives of the components of velocity vector. Using 

Eq. (10) which describes the derivatives in vector form at each integration point in 

ip 
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terms of nodal values, the diffusion term xx  in Eq. (3), can be represented by the 

following expression:  
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Other components of diffusion fluxes can be obtained in a similar manner. 

 

4 PRESSURE-VELOCITY COUPLING  METHOD 

A major consideration in the numerical modeling of an incompressible flow is to 

avoid the checkerboard symptom. Such undesirable solutions may appear if the 

continuity equation is descretized with no attention to the modeling of the effect of the 

pressure field. In the original governing equations pressure does not appear explicitly in 

the continuity equation and there exists no explicit coupling between the pressure and 

velocity in the continuity equation. Patankar and Spalding
2
 used staggered grid 

formulation to enforce the correct relationship between the nodal values of pressure and 

velocity. In this formulation pressure is stored at the center and velocities at the faces of 

the control volumes. However, in unstructured grid the collocated storage scheme is 

preferred for the sake of convenience as pointed out previously.  

In the proposed method in this paper the integration point velocity components in the 

continuity equation are discretized using the momentum interpolation technique. 

Consequently, the nodal pressure appears in the control volume continuity equation. 

Consider the discretized momentum equation for a node P: 
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The dimension of the first term on the right hand side of Eq. (19) is the same as the 

dimension of the velocity and therefore it is called the pseudo-velocity. We can rewrite 

Eq. (19) at an integration point in terms of the pseudo-velocities *u  and *v  as follows: 
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The coefficients u

ipd  and v

ipd  are interpolated from the corresponding nodal values in 

Eq. (19). Pseudo-velocities are computed from the modified momentum equations with 

the pressure derivative terms removed: 
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By substituting the momentum interpolation, Eqs. (20), into the continuity equation, 

the following equation constraining the element nodal pressures is obtained: 
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5 BOUNDARY CONDITIONS 

Achieving a truly divergence free velocity field is one of the most important goals in 

collocated numerical solution schemes for incompressible flow problems
18

. There are 

three types of boundary conditions in this study which are classified as inlet, outlet and 

solid wall boundary conditions. Along a solid wall and an inlet, the nodal velocity is 

specified and there is no need to solve the momentum equations, but the pressure is 

unknown and a zero Neumann boundary condition for the pressure should be imposed. 

Implementation of this boundary condition needs more attention to the pressure 

equation. Remember that the continuity equation was converted into the pressure 

equation through the momentum interpolation for the mass velocities at integration 

points. 

Consider the boundary node B in Fig. 4. The integration points 1ip  and 8ip  are 

located at the boundary on which the velocity is specified and, therefore, there is no 

need to use the momentum interpolation to substitute the velocity by pseudo-velocity 

and pressure gradient. Thus the pressure equation for the boundary nodes on a solid wall 

or an inlet can be expressed as follows: 
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Where intip _  are the internal integration points around node B for which the 

momentum interpolation has to be used, and bouip _  are the boundary integration 

points around node B with known velocity values. As a result, there is no need for any 

additional treatment for the pressure on the boundary because this method inherently 

includes the Neumann boundary condition for the pressure. When the values of velocity 

and pseudo-velocity in Eq. (20) are the same, the pressure gradient is zero. Therefore, 

implementation of the Dirichlet velocity boundary condition is equivalent to imposing 

the Neumann boundary condition for the pressure. This makes sense considering the 

tight relation between the pressure and velocity in incompressible flows. 
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For the outlet boundary condition extrapolation can be used or if the length of the 

channel in an internal flow problem is sufficiently long, the assumption of fully 

developed flow is a reasonable choice. 

 

Figure 4: A typical boundary node.   

 

6 SOLUTION ALGORITHM 

The overall solution algorithm, which is iterative because of the nonlinearity of the 

set of equations, can be described as follows: 

 Make an initial guess for the pressure and velocity fields. 

 Solve Eqs. (21) to obtain the pseudo-velocities *u  and *v . 

 Solve Eq. (22) to obtain the pressure P . 

 Calculate the nodal velocities from Eqs. (20) employed at nodal points. 

 Go to step 2 and iterate until a convergence criterion is satisfied. 

 

7 RESULTS 

Two-dimensional lid-driven cavity flow is commonly a benchmark problem for 

incompressible solvers. The unit square cavity is composed of one moving upper wall 

and three stationary walls. The 2-D unstructured grid is generated using GAMBIT 

software and contains 22464 triangular cells. The flow is computed for Re = 400 and Re 

= 1000 and compare with Ghia et al.
19

 results obtained on a 129×129 structured Grid 

(16641 rectangular cells). Figures 5 and 6 show cavity results for Re = 400. 

 

Figure 5: Cavity Re = 400, (a) u velocity along the vertical centerline; (b) v velocity along the horizontal 

centerline. 



Salman Okhovat and Ali Ashrafizadeh 

 

 10 

 

Figure 6: Streamlines for the Re = 400 case. 

Figures 7 and 8 show cavity results for Re = 1000. 

 

Figure 7: Cavity Re = 1000, (a) u velocity along the vertical centerline; (b) v velocity along the horizontal 

centerline. 

 

Figure 8: Streamlines for the Re = 1000 case. 

Figure 9 shows the streamline for Re = 3200. Due to the first order upwinding in the 

proposed scheme, the solutions are not accurate for higher Reynolds, even though the 

qualitative  behavior of streamlines is satisfactory. 
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Figure 9: Streamlines for the Re = 3200 case. 

 

8 CONCLUSION 

 

A numerical algorithm has been proposed for solution of incompressible viscous 

flows. The algorithm employs a control-volume finite element method on unstructured 

grids. The method resolves the pressure-velocity decoupling issue by a method close to 

the well-known momentum interpolation scheme. Numerical results are in good 

agreement with those of a benchmark lid-driven cavity problem. 
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