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Abstract. The characteristic-based split (CBS) method has been widely used in the 
finite element community to facilitate the numerical modeling of the Navier-Stokes 
equations. In this paper a CBS-based finite volume algorithm is introduced for the 
solution of incompressible Navier-Stokes equations. The proposed method is 
implemented on a co-located grid arrangement and employs a transient fractional step 
method. In the first step, an explicit characteristic-based method is employed to obtain 
an intermediate velocity field from the modified momentum equations. Using continuity 
as an equation for pressure, the divergence-free velocity constraint of incompressible 
flow is also enforced in the second step. To devise a fully explicit algorithm for the 
solution of the pressure equation, an artificial compressibility factor is also defined and 
used. The correct, divergence-free velocity field is calculated afterwards using the 
intermediate velocities and the pressure field. Explicit time iterative solution of the 
finite volume algorithm discussed above is subjected to time step limitations. To 
validate the proposed CBS finite volume method, computational results are compared to 
those of numerical and experimental benchmark solutions. Satisfactory convergence 
rates and accurate results are obtained in all steady state and transient test cases. 
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1 INTRODUCTION 
Incompressible viscous flow phenomena arise in numerous disciplines in science and 

engineering. The behavior of flow in this case is mathematically expressed using well 
known Navier-Stokes (NS) equations. Numerical methods of incompressible Navier-
Stokes  equations (INSE) are major parts of the well-astablished yet rapidly growing 
field of computational fluid dynamics (CFD). CFD is now emerging as a necessary tool 
in the solution of science and engineering problems. 

Numerical oscillations due to central difference approximation of the convective 
terms and the instabilities of the pressure field arising from inappropriate pressure-
velocity coupling are two major obstacles in the numerical solution of INSEs, which are 
evidently common to all numerical solution techniques of these equations. 

In the finite volume context, for instance, the central difference scheme, which is 
equivalent to standard finite element Galerkin method, produces unrealistic oscillations. 
This problem can be solved with up-winding strategies originally developed in the finite 
difference context. In the finite element framework, Petrov-Galerkin and Galerkin least 
square schemes1 are solutions with similarities to those used in the finite volume 
community. Numerical schemes such as characteristic Galerkin or Taylor-Galerkin1 are 
also two remedies to this long-standing problem. 

In the present study a method similar to characteristic-Galerkin procedure is 
employed. We perform the temporal discretization of the modified momentum 
equations using the characteristic concept. This leads to the introduction of additional 
second order terms that prevent the numerical oscillations normally occurred with 
central approximation of convection terms in convection-dominated flows. 

The characteristic-based split (CBS) algorithm is developed and used in the finite 
volume context. This algorithm is the extension of the general CBS method initially 
introduced by Zienkiewicz and Codina in a finite element framework2. The CBS finite 
volume scheme uses three steps to obtain pressure and velocity fields. The advantages 
of such a time stepping procedure include exploiting co-located grid arrangement and 
obtaining stable pressure solution. To devise a fully explicit algorithm, an artificial 
compressibility (AC) method is also employed. This AC method is a standard scheme 
based on the original work by Chorin3. 

Therefore a fully explicit CBS finite volume code combined with AC method is 
developed for the solution of incompressible flow problems. The unsteady flows can be 
solved via a dual time stepping procedure. Numerical simulations of two benchmark 
steady state problems and one transient problem are presented. The computational 
results are also compared to those of numerical or experimental solutions available in 
the literature. 

2 FORMULATION AND DISCRITIZATION 

2.1 Governing equations 
The governing equations for the viscous incompressible flow can be written as 

follows:  
Mass conservation: 
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In Eq. (1), U ii uρ= are components of the mass flux. 
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The transient density term in the continuity equation can be replaced by the 
following relation under isentropic flow assumption: 

t
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2
1ρ  (2)

where c is the wave speed. 
Momentum conservation: 
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In the above equations is the velocity component, ρ is the density, p is the pressure 
and

iu
μ is the constant dynamic viscosity. 

The non-dimensional variables are defined as follows: 
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where is the free stream velocity,∞u ∞ρ is the free stream density and L is any relevant 
characteristic length. 

The non-dimensional forms of the equations are then obtained as follows: 
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In the non-dimensional momentum equations, Re is the Reynolds number defined as: 

ν
∞=

Lu
Re  

where ∞= ρμν /  is the kinematic viscosity. 

2.2 Characteristic-based split 
The splitting process was initially introduced by Chorin3 for incompressible flow 

problems in the finite difference framework. After that, a splitting method was 
developed in the finite element context and employed for different applications of 
incompressible flow4,5,6. However, the algorithm in its full form was first introduced in 
1995 by Zienkiewicz and Codina2 to solve the fluid dynamics equations of both 
compressible and incompressible flows. The foremost advantage of this method is the 
capability of solving either incompressible or compressible subsonic and supersonic 
flows by the same algorithm1. The CBS is developed here for the solution of INSEs in 
the finite volume context. 
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2.3 Temporal discretization 
Using Eq. (6), the momentum equation can be written as follows1 (primes are 

dropped from the non-dimensional equations for the sake of simplicity): 
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Using the explicit characteristic method1, Eq. (7) can be written as follows: 
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Comparing the above equation with Eq. (7), some additional second-order terms are 
added to the original momentum equation. These terms act as a smoothing operator that 
reduces the oscillations arising from the spatial discretization of the convection terms. 
In other words, in the new form of the momentum equation the spatial discretization of 
the convection terms can be carried out using the central difference scheme without 
having numerical oscillations in high Reynolds number flows. This is due to the 
stabilization nature of the additional diffusion terms arising from discretization along 
the characteristic lines. 

Choosing different values of 2θ , Eq. (9) can be formulated in explicit and semi-
implicit forms. In the present work, with 02 =θ the fully explicit form is employed. 

At this stage two different splitting procedures can be used to implement the 
fractional step method1. In this paper split A is used, in which the pressure gradient is 
removed from Eq. (9) and an intermediate velocity is defined as follows1: *
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This equation will be solved subsequently by an explicit time step applies to the 
discretized form. The correction given below is available once the pressure increment is 
evaluated: 
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Enforcing the continuity equation, Eq. (5) can be written as follows: 
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where . n
i
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with 15.0 1 <<θ . 
In summary, the three steps of the fully explicit CBS scheme are: 
1. Solve Eq. (10) for  *

iU
+np2. Solve Eq. (13), for  1

1+nU3. Solve Eq. (11) for  i

The semi-discrete equations of (10, 11 and 13) can be solved after carrying out the 
finite volume spatial discretization. 

2.4 Artificial compressibility (AC) method 
The incompressible flow solvers are generally classified into projection or velocity 

correction and AC schemes by many authors. An efficient algorithm that employs good 
features from both classifications was first introduced by Nithiarasu7 as an extension to 
the general CBS method in the finite element context. In the Present work, a finite 
volume algorithm based on the work of Nithiarasu7 is presented. In this section, the AC 
parameter and local time step calculations are explained. 

The compressible wave speed in Eq. (13) approaches infinity for incompressible 
flow problems. This prevents the explicit treatment of the pressure equation. To devise a 
fully explicit algorithm, the wave speed can be replaced by an appropriate local artificial 
parameterβ . It is essential to define a β  which is suitable for different Reynolds 
numbers and also for different flow regimes of a specific problem. 

In this work, the following relations are considered for the artificial wave 
speedβ and for the local time step tΔ 7 

),,max( diffconv vvεβ =  (14)

whereε is a constant (taken as 0.5 here), vconv and vdiff are the convective and diffusion 
velocities, respectively. These velocities are calculated as follows: 

Re
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In the above equation, h is a non-dimensional control volume length scale. In a two 
dimensional uniform grid, h is simply the width of the control volume. In non-uniform 
grids; however, different length scales can be used. 

The critical time step is calculated as follows: 

( )diffconv ttt ΔΔ=Δ ,min  (16)
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where 

β+
=Δ

conv
conv u

ht  (17)

and 

2
Re2htdiff =Δ  (18)

To ensure the stability of the method, the final local time step is chosen as a fraction 
of the critical time step. In other words, a safety factor varying between 0 and 1 is 
imposed on the calculated time step.  

2.5 Spatial discretization via FVM 

2.5.1. Co-located grid 
To start the finite volume spatial discretization, solution domain must be divided into 

control volumes. In this study a co-located, structured grid is used in a Cartesian 
coordinate system. The computational grid is generated based on the cell-centered 
scheme and employs common finite volume notations. An example of a grid generated 
in a rectangular domain is shows in Fig. 1. 

 
Figure 1: A cell-centered finite volume grid. 

In Fig. 1, capital and small letters represent the control volume centers and the 
Integration Points (IP), respectively. Numbers from 1 to 4 are the four corners of a 
typical control volume. 

2.5.2. Finite volume discretization: step 1 
To carry out the first discretization step of the AC-CBS scheme, we integrate Eq. 

(10) over a control volume  associated with cell p shown in Fig. 1. Using the 
Divergence theorem, the volume integrals change to surface integrals and this 
introduces the IP approximations into the equation. For example, the spatial semi-
discrete form of the convection terms in the x-momentum equation (i=1 in Eq. (10)) is 
written as follows: 

p∀
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The IP velocities are related to nodal values via linear approximation. For example, 
the velocity on the right face of the cell p is approximated as follows: 
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In Eq. (19),  and  represent the cell-face areas in Fig. 1. All other IP values are 
treated similarly. 

xΔ yΔ

To complete the first step of the discretization procedure, we have to approximate the 
diffusion fluxes. These fluxes are also approximated using the central difference 
scheme. Note that the discretization of additional diffusion terms needs the values of the 
velocities at the control volume corners.  These corner values are approximated using 
the weighted average of the surrounding nodal values. For example, the x-velocity of 
point 1 in Fig. 1 is approximated as follows: 
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The discretization procedure yields a fully explicit equation relating the cell-centered 
value of intermediate velocities to that of the cell-centered velocities and their neighbors 
(E, W, N, S, NE, NW, SE and SW in Fig. 1) from the previous time step. 

2.5.3. Finite volume discretization: step 2 

In the second step of the AC-CBS method, pressure is obtained from Eq. (13). As 
mentioned before, for incompressible flow problems, the wave speed c is replaced with 
the artificial parameterβ calculated from Eq. (14). Thus, the final form of the pressure 
equation for 02 =θ  is obtained as follows: 
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The finite volume discretization of this equation is simple. Again, after integrating 
over control volumes and introducing the surface integrals into the equation, the central 
difference scheme is used to discretize pressure gradients on the IPs. Solution of this 
equation is done with an explicit procedure. 
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2.5.4. Finite volume discretization: step 3 
The correct divergence-free velocities are calculated from Eq. (11). Neglecting 

higher order pressure terms of this equation, the final velocities are calculated from the 
following equation: 

i

n

i
n
ii x

ptUUU
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Δ−=−=Δ + *1  (23)

From Steps 1 and 2 we have the intermediate velocities and the pressure, 
respectively. Using these values after integrating the above equation over the control 
volumes, the final correct velocities can be easily obtained. Explicit solution of this 
equation is carried out to obtain the final velocities. 

2.6 Boundary conditions 

The main obstacle in the imposition of proper boundary conditions in INSEs is the 
lack of an independent equation for pressure.  

In the present study, the Dirichlet and Neumann velocity boundary conditions are 
applied in the first step of the algorithm. Thus, the velocity boundary conditions have 
been used to obtain intermediate velocities as well. Since the cell-centered grid is 
employed, the required pressure values on the control surfaces are estimated using 
linear extrapolation from the old values of inner nodes. 

Solution of the second step requires implementation of appropriate pressure 
boundary conditions. In the case of known pressure values on the boundary, the 
implementation is simple and straightforward. In other cases with velocities or their 
gradients as known boundary conditions, the proper boundary condition for the pressure 
equation is applied using velocity components normal to the physical boundary of 
interest. 

In the third step, the extrapolated values of IP pressures of the first step are again 
used to obtain the correct velocities.  

3 RECOVERING REAL TRANSIENT SOLUTION 
The principle of recovering the transient solution in the AC method is explained in 

some studies8,9. In this work, a dual time steeping method described by Nithiarasu7 is 
employed to obtain accurate transient solutions from the proposed fully explicit AC-
CBS finite volume algorithm. 

The time step appeared in the previous sections, accelerate solution to steady state. 
This pseudo-time step is calculated locally and is subjected to stability conditions of 
equations (16-18). The addition of a transient term to the momentum equations 
introduces several steady state problems that must be converged to a prescribed pressure 
residual within each real time step. 

tΔ

The CBS procedure supports two approaches for the addition of the real transient 
terms to the momentum equations7. In this study the real transient term is added to the 
third step of the algorithm where the final divergence free velocities are calculated. 
After the addition of the real transient terms to the Eq. (23) the modified equation, being 
used as the third step in the CBS algorithm, is as follows: 
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where τΔ is the real time step. The τ,iUΔ is defined here using a second-order 
approximation as follows: 

2
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In the above equation and are the velocities from the previous real time steps 
that must be stored at the start of each real time step. 

n
iU 1−n

iU

4 RESULTS AND DISCUSSION 
The performance of the proposed fully explicit AC-CBS finite volume scheme is 

investigated in this part. This algorithm is capable of solving two dimensional transient 
INSEs. To validate the method, two steady state benchmark problems have been studied 
and compared with the available numerical and experimental works in the literature. 
The transient performance of the solution code is also investigated by comparing the 
results with previous numerical works in the literature. 

4.1 The lid-driven cavity steady test case  

As the first test case, the lid-driven cavity flow in a ]1,0[]1,0[ × square as shown in 
Fig. 2 is studied here. This is a well known benchmark problem normally used to 
evaluate the performance of the incompressible flow solvers. 

In this work, two different non-uniform structured meshes, shown in Fig. 3, are 
employed to solve the lid-driven cavity problem. The mesh 1 is a 8585×  computational 
grid (Fig. 3(a)) and mesh 2 is a 125125×  grid (Fig. 3(b)). 

 
Figure 2: The lid-driven cavity test case. 

 
(a) Mesh 1 (b) Mesh 2 

Figure 3: (a) Mesh 1, 8585× ; (b) Mesh 2, 125125×  

Mesh 1 is used to solve the cavity flow in Reynolds numbers 400 and 1000. In Figs. 
4 and 5, the velocity distributions at various Reynolds numbers are compared with the 
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benchmark solution of Ghia et al.10. The vertical velocity (v) components along the mid-
horizontal line are compared in Fig. 4 and the horizontal velocity (u) components along 
the mid-vertical line are compared in Fig. 5. The computational results of fully explicit 
AC-CBS finite volume method are in close agreement with the benchmark solution. 

To obtain accurate numerical results for high Reynolds number 5000, mesh 2 is used. 
Again in this case the horizontal and vertical mid-plane velocities are compared with 
those of Ghia et al.10. Figure 6 shows good agreement between the results of the present 
method and those of Ghia10. 
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(a) (b) 
Figure 4: Lid-driven cavity flow, comparison with Ghia et al.10 for the v velocity profile along the 

horizontal center line (a) Reynolds = 400; (b) Reynolds = 1000.  

4.2 The backward facing step steady test case  
In the second test case, backward facing step flow, shown in Fig. 7, is studied. It is a 

2D channel flow with the inlet width h and the outlet width H. The length of the flow 
passage is equal to 26H. Depending on the Value of the flow Reynolds number, 
different recirculation zones occur in the flow as shown schematically in Fig. 7. 

In this problem, a fully-developed parabolic u-velocity profile is prescribed at the 
inlet of the channel and zero-normal velocity derivatives are imposed at the exit. The 
location of the outflow boundary is chosen to be sufficiently far downstream of the step 
so that it does not affect the position of the recirculation zones. All other walls are 
subjected to the no-slip boundary condition. 

To compare the computational results with the experimental results of Armaly et 
al.11, the expansion ratio  is set to be 1.94. hHE /=

A uniform structured mesh is employed here to investigate the reattachment and 
separation lengths for Reynolds numbers from 100 to 800. This mesh is composed of 
two blocks, block 1 with control volumes in the inlet channel before the step and 
block 2 with control volumes in the zone downstream of the step. 

3060×
60200×

Computed non-dimensionalised separation and reattachment lengths against inlet 
Reynolds number are shown in Fig. 8 together with the experimental data presented by 
Armaly et al.11. The computational results of the fully explicit AC-CBS finite volume 
method are in close agreement with the experimental results up to Reynolds 500. For 
flows with the Reynolds number above 500, the reattachment and the separation length 
X2 deviate from the experimental results. These deviations for the Reynolds number 
above 500 are probably due to the three-dimensional effects that are neglected in the 
present 2D analysis. 
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Figure 5: Lid-driven cavity flow, comparison with Ghia et al.10 for the u velocity profile along the vertical 

center line (a) Reynolds = 400; (b) Reynolds = 1000 
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Figure 6: Lid-driven cavity flow at Reynolds = 5000 on mesh 2, comparison with Ghia et al.10 of velocity 

profiles along the center lines (a) u velocity profile; (b) v velocity profile 

 
Figure 7: Backward facing step flow, geometry and boundary conditions 

4.3 The lid-driven cavity transient test case  
To investigate the accuracy of the transient solutions, the lid-driven cavity flow is 

again considered here. The flow geometry and boundary conditions are the same as the 
steady state problem studied above. The transient solution is started with the fluid at rest 
in the domain as the initial condition. 

As the first attempt, mesh 1 is used to solve the transient flow with Reynolds 
numbers 400 and 1000 to reach the steady state. The appropriate results are shown in 
Fig. 9. In Fig. 9(a), the center line v-velocity profile at Reynolds 400 is shown in 
different times of the transient solution and the final steady state profile is compared to 
that of Ghia et al.11 These calculations are repeated for Reynolds 1000 in Fig. 9(b). 
Again in this case the steady state result is successfully compared to the results of Ghia 
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et al.11. The results show that the dual time stepping procedure in combination with the 
proposed AC-CBS finite volume method works well for the solution of transient flows. 

To verify the transient results, the transient lid-driven cavity flow for two Reynolds 
numbers 400 and 1000 is studied using mesh 1. Transient solution of the u-velocity 
component at the center of the cavity is plotted in Fig. 10(a) for Reynolds 400 and in 
Fig. 10(b) for Reynolds 1000. The results are in good agreement with those of 
Wirogo12. The difference between the minimum values in transient history profiles of 
Reynolds 1000 is due to mesh resolution used here as compared with Wirogo12. 
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Figure 8: Backward facing step flow, variation in reattachment and separation lengths with Reynolds 

number and comparison with experimental results11 
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Figure 9: Lid-driven cavity transient flow on mesh 1, comparison with Ghia et al.10 of v velocity profiles 

along the center line at different times (a) Reynolds 400; (b) Reynolds 1000 
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Figure 10: Transient solution of u velocity at the center of cavity, solution on mesh 1 and comparison 

with Wirogo11 (a) Reynolds 400; (b) Reynolds 1000 
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5 CONCLUSIONS 
In this work, an artificial compressibility CBS finite volume algorithm is proposed 

and successfully employed for the solution of INSEs. The fully explicit algorithm is 
capable of solving steady state incompressible flow problems up to high Reynolds 
numbers with excellent accuracy. The main advantage of the proposed method is the 
ability to solve the NS equations in the fully explicit, matrix free form. 

To recover real time solutions in transient flow problems, a dual time stepping 
method is also employed. The results show that the dual time stepping procedure in 
combination with the proposed AC-CBS finite volume method, works well for the 
solution of transient incompressible flows. 
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