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Abstract. Realizing high-fidelity simulations is a key issue in Computational Fluid Dy-
namics (CFD) for Aeroacoustics (CAA) studies. Indeed, in this case, CFD computations
are required both to satisfy the stringent constraints of CAA and to allow a deep insight
in the mechanisms responsible for the noise generation. For these purposes, high-order
compact schemes are recognized as useful tools to deal with the numerical schemes aspects
of this problem. However, while many studies deal with high-order compact schemes in
a Finite-Difference (FD) context, just few use Finite-Volume (FV) approaches. In pre-
vious works, the authors have developed a compact scheme in a Finite Volume approach.
This compact scheme is formulated in the physical space to be suitable to highly irregular
meshes and thus be able to handle complex geometries. The purpose of the present work is
to demonstrate the capabilities of the scheme by simulating a round jet flow with a Large
Eddy Simulation (LES) approach. The configuration considered is a Mach = 0.3 jet of
diameter D = 5cm. The Reynolds of the jet is Rej = 3.21 105. Experimental measure-
ments have been realized at the Laboratoire d’Etudes Aerodynamiques (LEA) of Poitiers,
by Laurendeau et al. The nozzle lips have a thickness of e = D/100. The measured thick-
ness of the mixing layer is around δω = 0.032D and the potential core ends at about 4.8D
downstream to the nozzle exit. The mixing layer is already turbulent at the nozzle exit
but with a weak turbulence rate of 0.4%. The performed computations include the nozzle
geometry in order to well reproduce these trends.
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1 INTRODUCTION

In order to serve for aeroacoustics studies, CFD computations are required both to
satisfy the stringent constraints of Computational Aeroacoustics (CAA) [1] and to allow
a deep insight in the mechanisms responsible for the noise generation. It is now well
established that high-order compact schemes are useful tools to deal with the spatial
discretization aspects of the issue.

While many studies deal with high-order compact schemes in a Finite-Difference (FD)
context, just few use Finite-Volume (FV) approaches. However FV formulations are more
popular for industrial applications due to their robustness since they are generally based
on a weak formulation of the field equations. Therefore, they require less solution and
mesh smoothness than FD methods. Moreover, they are conservative. If the former
advantage is not yet valid for high-order FV schemes, the latter still holds true. Among
recent studies are the works of [2] and those of [3]. The former authors build high-order
FV schemes in the computational domain. A coordinate transformation is then applied
between the physical and the computational spaces to keep the high-order accuracy. The
latter authors introduce a second-order compact scheme directly in the physical space.
Even if this approach is more complex than the previous, it is well suited for highly
irregular grids because it removes the error associated with the discrete representation of
metric terms.

In line with the works of [3], [4] developed a formally sixth-order compact FV scheme
for compressible flows, directly in the physical space. The fluxes are determined by a high-
order compact interpolation using cell-averaged quantities. The main difference between
this new scheme and the Lacor and coworkers one is the use of a local frame defined
using the mesh line as a preferred direction. The method aims to keep the sixth-order
in this preferred direction. Specific treatments are also done to deal with multi-block
formulation, and the resulting scheme is proved to be theoretically stable. The scheme is
implemented in a fully parallel multi-block structured finite-volume code (elsA software
developed by ONERA and CERFACS). [4] also shows that the resulting scheme has a
high-order accuracy and is low dispersive and low dissipative even on highly irregular
meshes for academic test cases.

The purpose of the present work is to demonstrate the capabilities of such a scheme
by simulating a round jet flow with a Large Eddy Simulation (LES) approach. The
configuration considered is a Mach = 0.3 jet of diameter D = 5cm. The Reynolds of the
jet is Rej = 3.21 105. Experimental measurements have been realized at the Laboratoire
d’Etudes Aerodynamiques (LEA) of Poitiers, by Laurendeau et al. [5]. The simulation of
this configuration is a first step towards the simulation of jet noise fluidic control using
microjets which was the object of Laurendeau and coauthors work.

The present paper is organised as follows. Section 2 briefly presents the compact scheme
developed by [4]. Then, section 3 gives a description of the jet configuration considered
and the meshing strategy. Section 4 follows by describing other numerical tools used
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to perform computations like the time-marching algorithm and the boundary conditions.
Then, results are discussed in Section 5. The results given by the compact scheme are also
compared to those obtained using a third order Roe solver for convective fluxes, which is
a traditionnal solver used in the code.

2 HIGH ORDER FINITE VOLUME SCHEMES

2.1 Presentation of the scheme for linear problems

Let be considered the following linear convection equation:
∂u

∂t
+ ∇ · f(u) = 0, (1)

where f(u) is a linear vectorial function of u. By integrating Eq. (1) over a volume control
Ω and using the Stokes formula, one can obtain:

V
dū

dt
+

∮

∂Ω
f(u) · ndS = 0, (2)

with V = |Ω| and
ū =

1

V

∫

Ω
udΩ.

Now, it is assumed that Ω is a polyhedron (polygon in 2D), i.e. the unitary normal on
each of its faces is constant over the face. Therefore, using the linearity of f , Eq. (2) leads
to:

V
dū

dt
+

nf
∑

i=1

f

(
∫

∂Ωi

udS
)

· ni = 0, (3)

where nf is the number of faces and ∂Ωi, the i-th face of Ω. Eq. (3) is equivalent to

V
dū

dt
+

nf
∑

i=1

f (ũi) Si · ni = 0, (4)

where Si = |∂Ωi| and
ũi =

1

Si

∫

∂Ωi

udS.

Hence, to obtain a high-order discretization of Eq. (4), it is sufficient to have a high-order
approximation of the face-averaged quantity ũi.

Now, a three-dimensional structured (indexed by (i, j, k)) grid composed of polyhedrons
is considered. This section presents the different strategies proposed to approximate at
a high-order the interface-averaged value of a quantity u on the interface (i + 1/2, j, k),
using cell-averaged values of neighbouring cells. In this section, the mesh line (j, k) for
which these two indexes remain constant is under consideration. To make this approxima-
tion spatially implicit or compact, the formula involves averaged values on neighbouring
interfaces (i − 1/2, j, k) and (i + 3/2, j, k). Thus the compact interpolation reads as

αũi−1/2,j,k + ũi+1/2,j,k + βũi+3/2,j,k =
l=n
∑

l=−m

p=r
∑

p=−q

s=u
∑

s=−t

al,p,sūi+l,j+p,k+s, (5)
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where
ūi,j,k =

1

Vi,j,k

∫

Vi,j,k

udV, (6)

are cell-averaged values and
ũi+1/2,j,k ≈

1

Si+1/2,j,k

∫

Si+1/2,j,k

udS, (7)

approximate interface-averaged values. The interpolation coefficients α, β and al,p,s are
chosen, depending on the interface (i + 1/2, j, k), in order to obtain a given order of
approximation.
The system of equations formed with Eq. (5) along the mesh line (j, k) to compute values
at the interfaces is a tridiagonal system. This choice has been made since this system is
efficiently inversed using, for example, the Thomas algorithm. Moreover, the inversion of
the system could be done for each grid line in each dimension.
To determine the interpolation coefficients, a Taylor series expansion is done for each
term in Eq. (5), and two possibilities are studied in this paper depending on the following
choice:

• u is considered as a function of s, the curvilinear abscissa along the (j, k) line;

• u is considered as a function in a well chosen tridimensional coordinates system
(x′, y′, z′).

Two types of schemes could be derived from these considerations and are discussed in
details in [4]. For sake of convenience, only the more general approach using the second
consideration is presented here. This approach has been shown to be more efficient in
highly irregular meshes on academic test cases however both methods give similar results
on smooth grids.
Therefore, u is considered as a function of three coordinates x, y, z for three-dimensionnal
flow. Thus a Taylor series expansion introduced in Eq. (5) involves all derivatives with
respect to these three directions:

u(x, y, z) =
∞
∑

m=0

∞
∑

n=0

∞
∑

p=0

1

m!

1

n!

1

p!
(x − x0)

m(y − y0)
n(z − z0)

p ∂m+n+pu

∂xm∂yn∂zp
(x0, y0, z0). (8)

Remembering that averaged values as defined by Eq. (6) and Eq. (7) are considered,
relations obtained using the Taylor series expansion involve kinetic moments Jxmynzp

Ω =
∫

Ω(x − xΩ)m(y − yΩ)n(z − zΩ)pdΩ of cells and interfaces which belong to the stencil.
The main idea of the scheme consists in the definition of a new frame, local to each inter-
face, in which the Taylor series expansions are performed. Indeed, since only the interfaces
(i − 1/2, j, k), (i + 1/2, j, k) and (i + 3/2, j, k) appear in Eq. (5), the proposed scheme
has already a preferred direction along this (j, k)-line. Thus a new frame (x′, y′, z′) (see
Fig. 1) is introduced so that the x′-direction represents this preferred direction, tangent
to (j, k) mesh line. Taylor series expansions are written in this frame, and all derivatives
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Ci,j

Ci+1,j
~x′

~y ′

(a) Orthogonal frame defined by
the cell centers line.

Figure 1: Different local frames considered for the high-order curvilinear interpolation.

Derivatives Total number

1D ∂(0), ∂
(i)
xi , i = 1, ..., 5 6

2D ∂(0), ∂
(i+j)
xiyj , i, j ∈ {0, ..., 5}, i + j ≤ 5 21

3D ∂(0), ∂
(i+j+k)
xiyjzk , i, j, k ∈ {0, ..., 5}, i + j + k ≤ 5 56

Table 1: Derivatives to cancel out in order to get a formal sixth-order interpolation in all directions.

along x′ are cancelled out in order to get the sixth-order accuracy in this direction.
It would be too expensive to satisfy all transverse derivatives (along y′ and z′) relations.

Indeed, in the two dimensional case for example, there are 15 more relations to satisfy
in order to get a sixth-order scheme for transverse derivatives (see Tab. 1) and it would
be too expensive to use a suitable stencil to fullfill these relations. Therefore, transverse
derivatives are accounted for as corrections terms using a least square approach. The
scheme account for all transverse derivatives up to the fourth order (∂y′, ∂x′y′, ∂y′2,
∂x′2y′, ∂x′y′2, and ∂y′3) and use four supplementary cells in 2D case (eight supplementary
cells in 3D). The list of all derivatives used are presented in Tab. 2. Fig. 2 presents the
resulting stencil in 2D case. The four points represented by a square are used to match
the derivatives in x′ direction, and the four points represented by a circle (•) are used for
transversal correction.

To treat multiblock boundaries, an explicit fourth-order formulation is used on the
boundary interface (i = 1/2):

ũ1/2,j,k =
l=2
∑

l=−1

p=r
∑

p=−q

s=u
∑

s=−t

al,p,sūl,j+p,k+s. (9)

This scheme allows to keep conservativeness on multiblock boundaries at an acceptable
computational cost since no parallel inversion of a tridiagonal system is needed and only
two ghost cells are necessary. For stability reasons, an implicit decentered fifth-order
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Dimension Derivatives Total number

2D ∂(0), ∂x′, ∂2x′2, ∂3x′3, ∂4x′4, ∂5x′5, 12
∂y′, ∂2y′2, ∂2x′y′, ∂3y′3, ∂3x′2y′, ∂3x′y′2

3D ∂(0), ∂x′, ∂2x′2, ∂3x′3, ∂4x′4, ∂5x′5, 22
∂y′, ∂z′, ∂2y′2, ∂2z′2, ∂2x′y′, ∂2x′z′, ∂2y′z′, ∂3y′3, ∂3z′3,
∂3x′2y′, ∂3x′y′2, ∂3x′2z′, ∂3x′z′2, ∂3y′2z′, ∂3y′z′2, ∂3x′y′z′

Table 2: Derivatives used for the general curvilinear scheme.

Supplementary cells

Main cells

Interfaces

Figure 2: Cells used by the curvilinear interpolation.

scheme is used on the second interface (i = 3/2):

αũi−1/2,j,k + ũi+1/2,j,k + βũi+3/2,j,k =
l=2
∑

l=0

p=r
∑

p=−q

s=u
∑

s=−t

al,p,sū1+l,j+p,k+s. (10)

So in this latter formula, the ghost cell is not used.
More details about the local frame, the least square approach and the multi-block

boundary closures used could be found in [4].

2.2 Discretization of the compressible Navier-Stokes equations

Here are considered the compressible Navier-Stokes equations written in conservative
form:

∂W

∂t
+

∂Ec

∂x
+

∂Fc

∂y
+

∂Gc

∂z

+
∂Ed

∂x
+

∂Fd

∂y
+

∂Gd

∂z
= 0,

(11)

where
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W = (ρ, ρu, ρv, ρw, ρe)t , (12)

is the vector of conservative variables,

Ec =
(

ρu, ρu2 + p, ρuv, ρuw, (ρe + p)u
)t

,

Fc =
(

ρv, ρuv, ρv2 + p, ρvw, (ρe + p)v
)t

,

Gc =
(

ρw, ρuw, ρvw, ρw2 + p, (ρe + p)w
)t

are the convective flux densities,

Ed = (0,−τ11,−τ12,−τ13,−(τ11u + τ12v + τ13w) + q1)
t ,

Fd = (0,−τ21,−τ22,−τ23,−(τ21u + τ22v + τ23w) + q2)
t ,

Gd = (0,−τ31,−τ32,−τ33,−(τ31u + τ32v + τ33w) + q3)
t

are the diffusive flux densities, p is the pressure, τ the stress constrainsts tensor and q the
heat flux vector.

In the present paper, for the convective fluxes, the following formulation is used, for
each interface (i + 1/2, j, k):

F̃c ≈ S(Ec(W̃ )ñx + Fc(W̃ )ñy + Gc(W̃ )ñz). (13)

where, F̃c is the convective flux on the interface (i + 1/2, j, k), W̃ is the vector of the
(i + 1/2, j, k) interface-averaged values of the conservative variables computed using the
above presented compact interpolation. This formulation is formally only second-order
accurate, but it has been observed [4] that it could reach at least a fifth-order accuracy
using the above presented compact interpolation method if the grid is sufficiently regular.
For diffusive fluxes, a traditional second-order method implemented in elsA has been used.
Indeed, since the convective time scale are much smaller than the diffusive time scale
considering the Reynolds of applications focused, this second-order method is sufficient.

3 CONFIGURATION AND MESHING

The configuration considered is a 0.3 mach jet of diameter D = 5cm. The Reynolds
of the jet is Rej = 3.21 105. Experimental measurements have been realized at the
Laboratoire d’Etudes Aerodynamiques (LEA) of Poitiers, by Laurendeau et al. [5]. The
nozzle lips have a thickness of e = D/100. The measured thickness of the mix layer is
around δω = 0.032D and the potential core ends at about 4.8D downstream to the nozzle
exit accordingly to the experimental measurements. The full nozzle geometry, including
walls and lips, are included in the computational domain and meshed.

Meshes are structured and composed with several blocks. The domain is meshed using a
H-mesh inside, surrounded by parts of O-meshes to avoid the axis-singularity (see Fig. 3).
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In the axial direction, the points are stretched in the nozzle such a way that the axis step
size goes from ∆xphys = 0.04D to ∆x0 = 0.001D. From of the end of the nozzle to about
8D downstream (this zone contains the predicted potential core), the points are stretched
in order to reach a spatial step of ∆xphys = 0.04D. Then this step is kept constant until
the end of the physical zone of interest at 12D downstream the nozzle exit. Then, the
step size grows to reach ∆xsponge = 0.2D at the end of the sponge layer zone at about
25D downstream the nozzle exit.
In the radial direction, from the center to the nozzle lips, the points are in a first time
equally spaced with a step of ∆r0 = ∆x0 and then stretched to reach a spatial step
of ∆xcis = δω/20 such a way that there is 20 points in the predicted boundary layer
thickness at the nozzle exit. With that refinement, it is possible to put 8 poins on
the lips of the nozzle. Then from the nozzle lips to the end of the physical zone of
interest at about 6D from the nozzle exit, the step size is progressively increased to
reach ∆rphys = ∆xphys = 0.04D. Then the step size is progressively increased to reach
∆rsponge = ∆xsponge = 0.2D at the end of the sponge layer zone.
In the azimuthal direction, 185 points are equally distributed so there is at least one point
every two degrees.
Finally, the mesh contains about 22 millions of points.
All data are nondimensionalized by the inlet density and sound speed so that D+ = 1,

ρ+ = 1, c+ = 1 and p+ = 1/γ, where c is the speed of sound and γ is the specific heat
ratio.

4 NUMERICAL PROCEDURE

4.1 Spatial schemes

The LES is performed using the curvilinear compact Finite-Volume scheme (CUR6)
presented in section 2 and using a third-order Roe solver (ROE 3) already implemented
in elsA for comparisons. The compact scheme is associated to a compact filter presented
further to get stable computations. This filter is also considered as an implicit subgrid-
scale model [6]. The ROE 3 computations are used without any subgrid-scale model since
an artificial dissipation is already present through the limiter operator.

4.2 Filtering

The filters chosen are compact filters, precisely the sixth-order and eight-order filters
proposed by [7] have been used. The inner filter scheme reads:

αf ûi−1 + ûi + αf ûi+1 =
N

∑

n=−N

anūi+n, (14)

where αf is a parameter ranging from -0.5 to 0.5. The authors also recommend to use
high-order one sided formulas on boundaries instead of decreasing the order of the filter.
The one-sided formulas are defined by
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(a) Zoom on the center of the mesh in the (y, z) plane

(b) Mesh view in the (x, y) plane

Figure 3: Instantaneous vorticity magnitude near the jet axis and velocity divergence field out of the jet.
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û1 = ū1, (15)

αf ûi−1 + ûi + αf ûi+1 =
2N+1
∑

n=1

anūn, i = 2, ..., N. (16)

The filtering is applied in the computational plane. In multidimensional case, filtering
operator is applied successively in each dimension. One can remark that, in each direction,
the first and the last points are not filtered. This could be a drawback since anti-diffusion is
possible at this point. Since for multiblock problems two ghost cells are used, the filtering
includes these points so that the first unfiltered point is fictitious. The combination of
the filtering operator and the compact scheme has been shown to be efficient on academic
test cases in [4]. The sixth-order filter is used with a parameter α set to 0.49.

4.3 Time-marching numerical scheme

The time integration scheme used for these computations is the following optimized
sixth-steps Runge-Kutta method [8]











u(0) = un,
u(k) = u(0) + αk∆tL(u(k−1)), k = 1, ..., 6,
un+1 = u(6),

(17)

with L, the space discretization operator and α1 = 0.11797990162882, α2 = 0.18464696649448,
α3 = 0.24662360430959, α4 = 0.33183954253762, α5 = 0.5, α6 = 1.0. This scheme is
second-order accurate for non-linear problems but is optimized in the wavenumber space.

4.4 Boundary conditions

4.4.1 Inflow

Bogey and Bailly have shown in previous works that it is important not to apply the
inflow injection directly at the nozzle exit. Therefore, the inflow injection is applied in the
nozzle, at a distance of 4D upstream the nozzle exit. The inflow conditions are applied
using the radiative boundary condition of Tam and Webb [9] combined with a sponge
zone on the conservative field. This combination has been successfully used by [10] and
allow to obtain a very less reflexive inflow condition. The radiative boundary condition
is used on a range of 8 points rather than on the boundary only. This range of points is
entirely included in the sponge zone layer.

To accelerate the generation of the turbulence at the nozzle exit, perturbations are
injected at the nozzle inlet using randomly generated vortex-ring velocity fluctuations.

4.4.2 Outflow and external flow

At the jet outflow, a Navier-Stokes characteristic boundary condition (NSCBC) method
using the local one-dimensional inviscid (LODI) approach [11] is used. It is combined
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with a sponge zone layer which consists in applying a relaxation parameter on pressure.
External flow boundaries are computed by application of the radiative boundary condition
combined with the same type of sponge zone layer as for the outflow.

Outflow:
Characteristic
Boundary
Condition
+
Sponge Layer

Inflow:
Radiative
Boundary
Condition

Sponge Layer
+
Perturbation

+

Radiative Boundary Condition + Sponge LayerExternal Flow:

Mach = 0.3

Figure 4: Boundary conditions used for the jet simulation.

5 RESULTS

Simulations have been running for 1.2 × 105 iterations corresponding to about t =
19D/Uj. Perturbations have been injected just for the last 4 × 104 iterations. Therefore,
it is clear that flow statistics are not converged yet. As a consequence, the mean and rms
levels are not presented here.
Fig. 5 shows instantaneous vorticity magnitude near the jet axis and instantaneous ve-
locity divergence out of the jet for both ROE 3 and CUR6 schemes. Looking at these
results, it is clear that the third-order Roe solver is too dissipative compared with the
compact scheme. First, it is seen on Fig. 5 that vortices are more diffused for the ROE
3 case. After x = 5D, there are much more vorticity maxi with the CUR6 scheme than
with the ROE 3 scheme. Thus, the CUR6 scheme is able to solve smaller scales and this is
confirmed by the velocity divergence field. Indeed, this velocity divergence field highlight
the acoustic waves emissed by turbulence. Compared to the CUR 6 velocity divergence
field, the ROE 3 velocity divergence field is only composed of the lower frequency waves.
For both schemes, the jet mixing layer is destabilized around x = 0.5D as shown in Fig. 6.
This is due to the fact that the simulation has not been performed for enough time to
get an effective influence of the perturbations injection. Indeed, the perturbations are
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expected to excite the higher-order modes and thus destabilize the mixing layer of the jet
earlier.

6 CONCLUSIONS

This paper has presented a LES of a round jet using a curvilinear compact scheme in
a Finite-Volume approach developed in the physical space. This scheme is implemented
in the elsA code. The round jet simulated is a Mach=0.3 jet at a Reynolds number of
3.21 × 105. Results obtained are qualitatively compared to those obtained using a third-
order Roe scheme which is traditionally used in the elsA code. Although computations
are not converged as far as statistics are concerned, it is clear that the compact scheme is
more suitable to simulate high-Reynolds number. The trends observed also show that the
different tools (boundary conditions, sponge layer and perturbations injection) associated
to the compact scheme could be an effective building block for aeroacoustics studies. More
quantitative results will be available soon.
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(a) Third Order Roe scheme.

(b) Curvilinear Compact scheme.

Figure 5: Instantaneous vorticity magnitude near the jet axis and velocity divergence field out of the jet.
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(a) Third Order Roe scheme.

(b) Curvilinear Compact scheme.

Figure 6: Instantaneous vorticity in the center of the jet.
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