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Abstract. 

Computational fluid dynamics (CFD) is now widely used as an essential tool in the 

development of industrial products. However, the time required for repairing non-

watertight geometries has recently become a serious problem in current CFD processes. 

In the case of industrial products such as automobiles and electronic devices, the 

geometry is composed of several million polygons. In particular, a geometry including 

incomplete polygons is called a non-watertight geometry. In general CFD processes, all 

incomplete polygons must be repaired before grid generation. This repair work is time-

consuming when a geometry has many incomplete polygons.  

Therefore, we developed an efficient simulation method. Notably, the proposed method 

allows the flow around a non-watertight geometry to be simulated. The method can 

considerably reduce the turnaround time and effort required for implementing CFD processes 

because the repair work can be eliminated.  

In the proposed approach, the Cartesian grid method is used. The Cartesian grid 

enables rapid and automatic grid generation, even if an object has a complex shape and 

non-watertight geometry. Moreover, this method is combined with an embedded 

boundary condition technique in order to capture arbitrary shapes on the background 

Cartesian grid with higher accuracy. In addition, a local mesh refinement technique is 

adopted to realize more efficient calculation, and large-eddy simulation (LES) is used to 

reproduce high-Reynolds-number turbulent flow. 

Preliminary tests were performed using a non-watertight object and an inclined thin 

plate; as a result, the proposed method was found to enable rapid and stable simulation of the 

flow around the non-watertight geometry. In addition, this approach could be used to 

approximate shapes more accurately than the voxel method that is one of conventional 

approaches, and good agreement with experimental data was observed. 
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1 I�TRODUCTIO� 

1.1 Background  

At present, computational fluid dynamics (CFD) is widely used as an essential tool in 

the development of industrial products. However, the time required for repairing non-

watertight geometries has recently become a serious problem in current CFD processes. 

In the case of industrial products such as automobiles and electronic devices, the 

geometry is composed of several million polygons. In particular, as shown in Figure 1, a 

geometry including incomplete polygons is called a non-watertight geometry. Since 

most general CFD software requires a watertight geometry, all incomplete polygons 

must be repaired before grid generation, as shown in Figure 2. With existing technology, 

repairing polygons automatically remains difficult, in spite of intensive research
1
. The 

repair task is time-consuming and can require several days to weeks when the geometry 

includes many incomplete polygons. This task often accounts for the greater part of the 

turnaround time of the simulation. If an efficient CFD approach for avoiding the repair 

of polygons can be developed, the turnaround time is expected to be reduced 

substantially.  
 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Example of non-watertight geometry including incomplete polygons 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Repair of incomplete polygons 

 

Here, we propose a CFD approach that tolerates non-watertight geometry (Figure 3). 

Since the repair of polygons is not required in this approach, the turnaround time can be 

shortened considerably. Although the flows around the incomplete polygons might be 

slightly irrelevant (see Figure 3), the proposed method is expected to be useful when an 

approximate flow (not detailed) around an object is needed without delay. This approach 
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will also reduce the burden of repair work because only incomplete polygons that 

interfere with the design study need to be repaired. 

 

 

 

 

 

 

 
Figure 3: Flow around a non-watertight geometry 

1.2 Conventional approach and proposed method 

The voxel method
2,3

 is a conventional approach to the flow simulation around a non-

watertight geometry and is among the Cartesian grid methods. Figure 4 shows examples 

of shape approximation of non-watertight geometries by the voxel method. The voxel 

method allows uniform grids to be generated automatically in a short time. This feature 

is highly useful in actual product design. However, in the voxel method, the shape is 

approximated by cubic elements. In some cases, this shape approximation might be 

insufficient in terms of accuracy. Although the cut-cell technique
4
 and the immersed 

boundary method
5
 have been proposed to improve the accuracy of shape approximation 

on a Cartesian grid, these approaches are not applicable to non-watertight geometry. 

 

 

 

  

 

 

 
Figure 4: Shape approximation of non-watertight geometries by the voxel method 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Definition of distance from cell center to geometric boundary 

in two dimensions 

 

 To address these issues, we developed a practical simulation method to improve the 

accuracy of shape approximation by the Cartesian grid method; furthermore, this 

approach can be applied to non-watertight geometries. In the proposed method, at the 

cell nearest to a geometric boundary, the governing equation of the fluid is discretized 

using the distance di. As shown in Figure 5, di represents the axial distance (d1, d2) from 

a cell center to the geometric boundary. Since the distance information is taken into 
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account in the discretization of the governing equation, the accuracy of shape 

approximation by this approach is better than that by the voxel method. Moreover, by 

using the computational technique
6
 of the ray tracing in computer graphics, the distance 

can be calculated with ease. As shown in Figure 5, the distance is also acquired from 

non-watertight geometries. 

 

2 GOVER�I�G EQUATIO�S A�D �UMERICAL METHOD 

2.1 Governing equations  

 The governing equations of the incompressible fluid used in this study are the 

spatially filtered Navier-Stokes equation and a continuity equation:  
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where the tilde symbol (~) denotes the spatial filtering operation, p is the pressure, ui is 

the velocity vector at the cell center, Uj is the velocity vector on the cell face, t is the 

time, ν is the kinematic viscosity, and τij is the subgrid scale (SGS) Reynolds stress, 

respectively. Variables are located as shown in Figure 6.  

 

 

 

 

 

 

 

 
Figure 6: Location of variables on collocated grid in two dimensions 

2.2 �umerical method  

 Both convective and viscous terms of the Navier-Stokes equation are discretized 

using a central difference scheme with second-order accuracy. In some cases, an upwind 

scheme with second-order accuracy is also used for the convective term. For the time 

integration, the Adams-Bashforth method with second-order accuracy is adopted. The 

fractional step algorithm
7
 is used for the pressure-velocity coupling. The SGS Reynolds 

stress must be modeled; in this study, the Smagorinsky model
8
 is used. In addition, the 

Cartesian grid is adopted and combined with the local mesh refinement technique using 

a nested grid method
9
. This technique allows efficient deployment of finer grids close to 

the geometry in order to improve computational accuracy. 

2.3 Discretization of �avier-Stokes equation  

 The discretization method is described for the one-dimensional case for ease of 

presentation. The viscous term is discretized by using a central difference scheme with 

second-order accuracy: 
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where the index i denotes position on the x-axis, and the tilde symbol (~) is omitted. In 

the proposed method, when the geometric boundary is located in the right side of cell i 

as shown in Figure 7, the linearly extrapolated velocity 1
ˆ +iu 10

 is used in place of ui+1 of 

equation (3): 
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Here, hat (^) and bar (–) symbols denote extrapolating and interpolating operations, 

respectively; ∆x is the grid size, and d is the distance shown in Figure 5. This 

extrapolated velocity 1
ˆ +iu  is calculated under the following two assumptions: firstly, the 

gradient of velocity in the vicinity of the geometric boundary is linear; secondly, the 

velocity at the geometric boundary satisfies the no-slip condition. Meanwhile, 

2/1−iu denotes the linearly interpolated velocity on a cell face position calculated from ui 

and ui-1. 

 

 

 

 

 

 

 

 

 
 

Figure 7: Schematic of velocity extrapolation assuming a linear profile in one dimension 
 

The convective term is discretized by using a central difference scheme with second-

order accuracy: 
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Similar to the viscous term, when the geometric boundary is located in the right side of 

cell i as shown in Figure 7, the extrapolated velocity 1
ˆ +iu  is used in place of ui+1 of 

equation (5). The convective and viscous terms of the other axes (x2 and x3) are also 

discretized in the same manner. 

 It should be noted that the extrapolated velocity can be calculated by other methods. 

For example, it can be also determined by using ui as shown in equation (6)
11

: 
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However, 1/d is included in equation (6); the 1/d term might result in computational 

instability if the distance d is extremely small. On the other hand, equation (4) is able to 

maintain computational stability when the distance d is almost zero. 

2.4 Discretization of Poisson equation  

The Poisson equation of pressure, which is given in equation (7), is discretized by using a 

central difference scheme with second-order accuracy. The discretized Poisson equation is 

solved iteratively by the successive over-relaxation (SOR) method: 
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where uj
*
 is a pseudo-vector and n is the time step. In this study, equation (8) is taken as the 

boundary condition of pressure at the geometric boundary, except for extremely small 

Reynolds numbers:  
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 Equation (8) shows that the pressure gradient in the normal direction n is zero at the 

geometric boundary. In this study, the difference in the pressure gradients between the 

normal and axial directions is assumed to be very small since the grid resolution is 

extremely fine. Under this assumption, the pressure gradient in the normal direction is 

approximated by the pressure gradient in the axial direction, as shown in Figure 8 and 

equation (9): 
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Figure 8: Schematic of pressure boundary condition at geometric boundary  

in two dimensions 
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Efficiently solving the Poisson equation is critical, taking into account the boundary 

condition given in equation (9). In this study, the left-hand side of the Poisson equation is 

discretized as shown in equation (10): 

 















∂
∂

−
∂
∂

∆
+












∂
∂

−
∂
∂

∆
=

∂

∂
+

∂

∂

−

+

−

+

+

+

−

+

−

+

+

+

++

2/12

1

2/1,

2/12

1

2/1,

2

2/11

1

,2/1

2/11

1

,2/1

1

2

2

12

2

1

12

1

1

j

n

ji

j

n

ji

i

n

ji

i

n

ji

nn

x

p

x

p

x

x

p

x

p

xx

p

x

p

ψψ

ψψ

, 

where 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9: Function for installing pressure boundary condition 

in two dimensions 

 

Here, i and j represent positions in the x1 and x2 directions, respectively, and ψ is a 

function denoting the existence of the geometric boundary. The function ψ is defined on 

the cell face as shown in Figure 9 and equation (11). The function can be calculated at 

the same time as the distance di. Discretization using this function allows efficient 

implementation
12

 of the boundary condition when programming. 

3 RESULTS A�D DISCUSSIO� 

As validation and verification of the proposed method, two cases were calculated. First, 

the flow around a watertight object was calculated as verification. Second, as validation, 

the flow around an inclined thin plate was calculated and then compared with 

experimental data and the results of the voxel method.  

3.1 Case 1: Flow simulation around non-watertight object  

 The computational domains and grid of Case 1 are shown in Figure 10 and Table 1. 

The nested grid technique was adopted for the computational grid. This nested grid was 

composed of three domains. The total number of grids was 0.93 million. A non-

watertight object was located at the center of the computational domain. The object had 

a shape similar to a half-circular cylinder, and included incomplete polygons, as shown 

in Figure 1. At the inlet of Domain 1, a uniform velocity condition was imposed, while 

at the exit, free-outlet condition was adopted. The no-slip condition was imposed on the 
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ground, ceiling, and sidewall of Domain 1. In this case, the Reynolds number was 

5.0×10
2
, based on the width W of the object and the inlet velocity Uin. For the convective term, 

an upwind scheme with second-order accuracy was adopted.  

Figure 11 shows velocity vectors around the object at x3=0.5W. As shown in the figure, the 

proposed method enables grid generation and stable simulation even for the non-watertight 

geometry that includes incomplete polygons featuring lack, overlap, manifold, and 

intersection.  

 

 

 

 

 

 

 

 

 

 
Figure 10: Computational domain and grid for Case 1  

 

 
Grid size 

(∆x1, ∆x2, ∆x3) 

Dimensions 
(Length × Width × Height) 

Domain 1 0.20W 20W × 12W × 6W 

Domain 2 0.10W 8W × 8W × 4W 

Domain 3 0.05W 5W × 5W × 2.5W 

 

Table 1: Grid size and dimensions of each domain for Case 1 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 11: Distribution of velocity vectors around non-watertight object 

3.2 Case 2: Flow simulation around inclined thin plate 

 The computational domains and grid for Case 2 are shown in Figure 12 and Table 2. 

An inclined thin plate was located at an angle of 30 degrees with respect to the grid 

lines of the background Cartesian grid. The height and width of the plate were H and 2H, 

respectively. In this case, up to four computational domains were used for the nested 

grid. The total number of grids was 1.2 million. The boundary conditions of the inlet, 

exit, ground, ceiling, and side wall were the same as in Case 1. In Case 2, two different 

flows were computed at Reynolds numbers of 5.0×10
2
 and 5.0×10

4
, based on the height H 

of the object and the inlet velocity Uin.  
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 Figure 13 shows velocity vectors around the plate for the Reynolds number of 5.0×10
2
. For 

the convective term, an upwind scheme with second-order accuracy was adopted. Three 

computational domains were used for the nested grid. Figure 13(b) shows a comparison of 

velocity vectors between the proposed method and the voxel method. This figure shows a 

close-up view around the center of the plate. It was confirmed that the vectors of the proposed 

method are along the inclined plate, whereas the vectors of the voxel method appear similar to 

flow along a bumpy surface. This comparison indicates that the proposed method more 

accurately approximates the shape than the voxel method. 

 Figure 14 shows that pressure distribution on the surface of the upstream side of the plate. 

In this case, the Reynolds number was 5.0×10
4
. For the convective term, a central difference 

scheme with second-order accuracy was adopted. The Smagorinsky model was used for the 

turbulence model. The coefficient of the Smagorinsky model was taken as Cs=0.10 in this 

study. For the nested grid, four computational domains were used. As shown in Figure 14, 

the present results exhibit less fluctuation and better agreement with experimental data
13

 than 

the results of the voxel method. 

 

 

 

 

 

 

 

 

 

 

 
Figure 12: Computational domains and grid for Case 2 

 

 
Grid size 

(∆x1, ∆x2, ∆x3) 
Dimensions 

(Length × Width × Height) 

Domain 1 0.200H 20H × 12H × 6H 

Domain 2 0.100H 8H × 8H × 4H 

Domain 3 0.050H 5H × 5H × 2.5H 

Domain 4 0.025H 3H × 3H × 1.5H 

 

Table 2: Grid size and dimensions of each domain for Case 2 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Distribution of velocity vectors around plate at Re=5.0×10
2
 for x3=0.5H 

Proposed method Voxel method 

Domain 1 

Domain 2 
Domain 3 

Domain 4  

Plate 

(a) Top view (b) Side view 

H 

Flow direction 

Uin 

(b) Close-up view around plate 

x1 

x2 

o 

Velocity [-] 
1.25 

0.0 

Domain 1 

Domain 2 

Domain 3 
Domain 4 

(a) Top view 

x1 

x2 

o 

x1 

x3 

o 



Kei Akasaka, Kenji Ono 

 

 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14: Comparison of pressure on plate for proposed method, voxel method, and experiment 

at Re=5.0×10
4
 

 

4 CO�CLUSIO�S  

• The proposed method allows grid generation and stable simulation for a non-watertight 

object. This method is expected to contribute greatly to the reduction of time and effort 

required for repairing incomplete polygons, which is the most time-consuming task in 

CFD processes. 

• The proposed method more accurately approximates shape than the conventional 

voxel method.  

• The present results more closely agreed with experimental data than results obtained by 

the voxel method. 
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