
V European Conference on Computational Fluid Dynamics
ECCOMAS CFD 2010

J. C. F. Pereira and A. Sequeira (Eds)
Lisbon, Portugal,14-17 June 2010

RESOLVING IMPLEMENTATION ISSUES IN THE HYBRID
SIMULATION OF TURBULENT COLLISION OF CLOUD DROPLETS

Bogdan Rosa∗, Hossein Parishani†, Orlando Ayala†, Lian-Ping Wang†

and Wojciech Grabowski‡

∗Institute of Meteorology and Water Management,
61 Podlesna St, Warsaw 01-673, Poland

e-mail: bogdan.rosa@imgw.pl
†University of Delaware,

130 Academy St, Newark, DE 19716-3140, USA
e-mail: {hparish, omayalah, lwang}@udel.edu

‡National Center for Atmospheric Research
PO Box 3000, Boulder, Colorado 80307-3000, USA

e-mail: grabow@ncar.ucar.edu

Key words: turbulent collision-coalescence, aerodynamic interactions, cloud droplets,
direct numerical simulation, MPI implementation

Abstract. Collision-coalescence of cloud droplets in a turbulent air flow is an essential
step for warm rain precipitation, therefore, the parameterization of turbulent collision-
coalescence rate of cloud droplets is central to the modeling of cloud dynamics in particular
and to weather prediction in general. In the last few years, we have developed a hybrid
direct numerical simulation approach (Ayala et al. 2007, Wang et al. 2009)1,2, to simu-
late the collision of cloud droplets in a turbulent background flow and to incorporate local
aerodynamic interaction of cloud droplets. The present paper extends our previous work
in several directions. First, we have completed the MPI implementation and validated
the results of the new MPI HDNS code. Second, in order to consider a polydisperse sus-
pension of cloud droplets, we combine the direct numerical integration of droplet equation
of motion for finite droplet inertial response time and an asymptotic representation for
small inertial response time (Maxey 1987)3. It was shown that the results are consistent
with those obtained by direct integration. Third, to prepare for next-generation scalable
supercomputers, a new FFT interface is being developed, using 2D domain decomposition
strategy. The scalability of our new FFT interface was found to be quite promising. These
advances are being used to perform HDNS for large domain size and for a polydisperse
droplet size distribution.
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1 INTRODUCTION

Reliable weather and climate prediction at both local and global scales depends on our
understanding of microphysical processes (i.e., droplet activation, condensational growth,
collision-coalescence growth, and drop breakup) and the small-scale cloud dynamics (i.e.,
entrainment, mixing, multiscale turbulent transport, and thermodynamics). Here we
are interested in developing a quantitative approach for turbulent collision-coalescence of
cloud droplets – the last step to warm rain initiation. In recent years, increasing evidence
has been accumulated suggesting that air turbulent could significantly enhance the growth
of cloud droplets by collision-coalescence. A significant progress in this direction has been
made through the computational approach known as the direct numerical simulation
(DNS). DNS of small-scale air turbulence has played a central role in our understanding
of turbulent collision-coalescence of cloud droplets 4,5,6.

DNS is a bottom up approach of turbulent flow. In DNS, turbulent air motion at
the dissipation-range scales (mm to cm scales) and a limited range of inertial-subrange
scales – currently up to O(10 cm) – are resolved, but larger-scale motion is represented
by a forcing scheme. In the last few years, our group has developed a hybrid direct
numerical simulation (HDNS) approach to simulate the collision rate of cloud droplets in
a turbulent air where both the inertia and sedimentation of cloud droplets are considered1.
This approach extends the usual point-particle based simulation2 to include the effect of
droplet-droplet aerodynamic interactions so that the collision efficiency between cloud
droplets in a turbulent flow can be studied.

One of the limitations of this HDNS so far is the limited range of resolved flow length
scales (or equivalently the small computational domain size). As the droplet size increases,
so does the inertial response time of the droplets. A larger range of scales of flow motion
may contribute to the dynamics of cloud droplets. Therefore, it is desirable to include
more inertial range scales, or equivalently, to increase the computational domain size from
O(10 cm) to, say, O(1 m). Increasing the domain size implies that a lager number of cloud
droplets will need to be simulated. It is then necessary to make use of a larger number
of processors on a distributed memory machine. The first part of this paper will address
the MPI implementation of the HDNS code, to prepare for higher resolution simulations.

In recent years, experimental measurements of statistics of inertial particles and droplets
have been made to understand clustering and sedimentation of particles in a turbulent
flow, as well as to probe into relative motion and collision of inertial particles. Advances
in this direction provide opportunities to compare results from our HDNS with those from
experimental observations. One complication in the experiment is that the droplets are
polydisperse containing a range of different sizes. Representing a range of droplet sizes
in HDNS calls for a more efficient algorithm for treating small droplets, which will be
discussed in the second part of this paper.

Currently, our HDNS code is based on 1D domain decomposition for parallel imple-
mentation. This limits the maximum number of processors that the code can utilize. To
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prepare for future petascale computing, we must consider a more flexible domain decom-
position such as 2D and 3D domain decomposition. The third part of the paper will
explore the use of 2D domain decomposition, starting from FFT of 3D field data.

These issues may seem to be somewhat disconnected, but together they will lead to
a much more flexible HDNS code that can eventually be used to address a variety of
multiscale coupling questions in cloud microphysics. Our ultimate goal in the near future
is to be able to simulate O(106) ∼ O(107) droplets suspended in a turbulent flow of Taylor
microscale Reynolds number Rλ of the order of 200 to 500. This will allow us to extend
our HDNS data on kinematic pair statistics such as radial distribution function and radial
relative velocity so a better analytical parameterization of the turbulent collision kernel
can be developed.

2 HYBRID DNS

In this section, we will focus on the MPI (Message Passing Interface) implementation
of aerodynamic interactions of cloud droplets moving in turbulent flow using HDNS ap-
proach. The basic ideas and algorithms for the HDNS approach have been presented
in 1,2. The previous implementation developed by Ayala et al.1 was based on loop-level
parallelization using OpenMP. Such approach assumes shared memory and is limited to
the use of processors (typically 32 or less) within the same computational node. In terms
of the problem size we are dealing with, parallelization with OpenMP could handle the
problem efficiently up to 1283 flow grid resolution with O(105) droplets, giving a maxi-
mum Reynolds number of Rλ = 72.4, λ being the Taylor-microscale of the background
turbulence. In order to tackle problems with a larger number of droplets or flows at higher
Reynolds numbers, we parallelize the code using MPI. The MPI parallelization does not
pose a limitation on the maximum number of processors that can be utilized. Therefore,
a higher speed up could be achieved, this along with the larger available memory will
make it possible to treat larger problem sizes.

For MPI implementation, we decompose the cubic computational domain into slabs
in the direction perpendicular to gravity in order to minimize the number of droplets
crossing the slab boundaries. This will in turn reduce the amount of time spent in data
communication between the slabs. Since this is a spatial decomposition, we will make use
of MPI to communicate data between the slabs when droplets are crossing the boundaries
or whenever data must be communicated between processes.

We consider a dilute suspension of droplets in a background turbulent air flow U(x, t)
solved by the usual pseudo-spectral method in a periodic domain. The flow is resolved
with N3 grid points. Then, the fluid velocity at the location of the k−th droplet of
radius a(k), denoted by U(Y(k)(t), t), will be interpolated from the grid using the 6-point
Lagrangian interpolation in each spatial direction, where Y(k)(t) is the location of that
droplet. The velocity of the k-th droplet will be denoted by V(k)(t).

The disturbance velocity at the center of k−th droplet due to other droplets in the
system is denoted by u(k) ≡ u(Y(k)(t)), which must be solved from a coupled linear
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system1 of dimension 3Np, as shown by Eq. (1) in Table 1. Note that Eq. (1) is derived
from the requirement that the composite flow field (background flow plus the disturbance
flow fields caused by droplets) satisfies, on average, the no-slip boundary condition on
the surface of each droplet. It is evident that the disturbance velocity felt by a given
droplet depends on the background turbulent flow, and positions and velocities of all
other droplets in the system. Other equations needed to describe the motion of droplets
are summarized in Table 1. The most computationally demanding step in the HDNS
approach is to solve Eq. (1). In MPI implementation each processor is assigned to
compute the RHS of equation (1) for the droplets inside its own slab and when it is
needed, data associated with droplets located in the neighboring slabs can be obtained
by non-blocking communication (MPI Isend and MPI Irecv).

Table 1: Key equations for the droplets in the HDNS approach (from top to bottom): (1) the linear
system of dimension 3Np used to solve for the disturbance velocities felt by droplets; (2) the definition of
Stokes disturbance flow; (3) The viscous drag experience by the k-th droplet, (4) the equation of motion,
and (5) the kinematic equation for droplet location.
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The computation of the summations in equation (1) is expensive, since for every droplet
this sum should be carried out over all other droplets in the domain. In other words, the
computational cost for (1) grows as Np

2. As long as the collision efficiency is concerned,
Ayala et al.1 showed that we could truncate the summation and restrict the radius of
influence of the droplet disturbance velocity to d/a(k) = Htrunc without a significant effect
on the computed collision efficiency. Their experiments with d/a(k) = Htrunc showed
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that the computed collision efficiency is insensitive to Htrunc if Htrunc is larger than 35.
In this paper we will use dimensionless truncation radius of Htrunc = 50 which is more
conservative than Htrunc = 35.

In order to efficiently locate the droplets and their immediate neighbors inside the
truncation sphere, we make use of cell-index method and the concept of linked lists7.
This is numerically implemented by dividing the slabs into smaller cells and keeping track
of droplet indices inside each cell. This speeds up the process of finding neighboring
droplets and it does not affect the converged solution of system (1).

When the disturbance velocities u(k) are computed, droplets are advanced by solving
their equation of motion, Eq. 5.

2.1 Results

In the study of droplet collision and coalescence, one is usually interested in the dynamic
collision kernel which is defined as:

Γ =
ṄV 2

box

npairs

(6)

where npairs is the total number of droplet pairs, Ṅ is the number of collisions per unit time
per unit volume. For a monodisperse system of Np droplets, npairs = Np(Np− 1)/2, while
for a bidisperse system of Np1 size-1 droplets and Np2 size-2 droplets, npairs = Np1Np2.
In our HDNS code, collision kernel Γ can be determined dynamically by counting the
number of collisions between droplets and using equation 6 for different types of colliding
pairs (i.e., 1-2, 1-1, 2-2 pairs).

Figure 1: Dynamic collision kernel from MPI implementation compared with the results from previously
developed OpenMP code6
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Furthermore, kinematic pair statistics are also of interest, such as the average radial
relative velocity 〈|wr|〉(r = (a1 + a2)) and the radial distribution function g12(r = (a1 +
a2))

8. More details regarding physical and mathematical aspects of collision kernel, radial
distribution function and radial relative velocity can be found in6. When aerodynamic
interactions are considered, non-overlapping corrections for both kinematic properties are
needed as explained in 8.

a) b)

Figure 2: a) Radial relative velocity compared with the results from previously developed OpenMP code6

b)Radial distribution function from ADI1 compared with the results from previously developed OpenMP
code6

More simulations are underway to extend the current collision efficiency, collision ker-
nel, RDF and relative velocity tables to higher Rλ and a wider range of droplet-size
combinations.

3 EFFICIENT INTEGRATION SCHEME FOR TRACKING LOW INER-
TIA PARTICLES MOVING IN TURBULENT FLOW

Integration of trajectories of a large number (≥ O(106)) of particles moving in tur-
bulent flow is a computationally intensive task. In order to preserve high computational
efficiency, time step size has to be set optimally. There are at least three different issues
which introduce limitations on the time step length. The first is related to handling col-
lisional interaction. Too large time step will not allow to capture of all collisional events,
particularly it will not allow an accurate computation of kinematic properties of the sus-
pension as for example relative velocity or radial distribution function. The second issue
is related to the interaction of the particles with the background turbulent flow. This re-
striction strictly depends on particle response time and nature of the flow. Time step size
has to be significantly smaller than Kolmogorov time and particle response time. Wang
et al. 9 suggested that dt = min(0.2τp, 0.2τk) is appropriate for tracking monodisperse
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system. For polydisperse suspension, this restriction implies using different time steps
for different sets of particles which complicates collision detection process. Finally the
time step size is limited by the stability condition (CFL number) of the flow solver. In
our simulation background turbulent flow is computed with spectral accuracy by solving
incompressible Navier-Stokes equations. In order to preserve numerical stability in the
pseudo-spectral method the CFL number must be of order of 0.3. For testing purpose
the turbulent flow has been computed on uniform grid with 1283 points and time step
size was set to dt=0.002. Average value of CFL number was around 0.21. More flow
statistics including rms fluctuating velocity u′, the longitudinal integral length scale Lf ,
the energy dissipation rate ε, the Taylor-microscale flow Reynolds number Rλ, spatial
resolution parameter kmaxη, Kolmogorov scales (length η and time τk), the skewness S
and the flatness F are given in Table 2.

N ν u′ Lf ε Rλ kmaxη CFL η τk S F
128 0.004 0.0127 1.542 0.192 101.6 1.505 0.21 0.024 0.145 -0.469 5.018

Table 2: Parameter setting and average flow statistics. The flow was used for testing accuarcy of the new
integration scheme for computing particle trajectories.

In order to link the DNS scales, namely length, time and velocity to corresponding
scales in realistic turbulence some value of energy dissipation rate has to be assumed.
In our simulations energy dissipation rate was set to 400 cm2/s3. Now, the size of the
particles in DNS can be explicitly defined. In this study we focus on collision-coalescence
of cloud droplets with radii in the range (1-60 µm). Fllowing the criterion of Wang et
al.9 dt = min(0.2τp, 0.2τk) is straightforward to estimate appropriate dt for every particle
size. Such simple evaluation leads us to conclude that only for particles larger than 12
µm we can use the same time step size both for the flow and for integration of particle
trajectories. For smaller particles for example 5 µm time step size has to be more than
four times shorter while for 1 µm droplets this time step must be hundred times shorter.
This brings along undesirable consequences. Namely, running the code with hundred
times smaller time step we will need to run the code hundred times longer to achieve the
same physical time. Moreover for the small droplets (∼ 1 µm), less collisional events occur
due to smaller area of their cross-sections. Therefore, in order to obtain reliable statistics,
the simulation has to be run at a longer time interval. To solve this complex problem we
proposed new, numerically efficient algorithm for tracking low inertia particles. The new
algorithm is based on computing of the particle velocity from background turbulent flow
and its acceleration at the instant particle location. This treatment allows using larger
time steps and preserve satisfactory accuracy.

Since the inertia of the droplets with radii 1-10 µm is very low, the droplets respond
rapidly even if the background turbulent flow is changing dynamically. Nevertheless, the
low but non-zero inertia does not allow the particles follow precisely the fluid elements.
This in turn has significant impact on kinematic properties of the system i.e. both on
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relative velocity between particles and theirs preferential concentration. In the new al-
gorithm the effect of non zero inertia was included to equation of motion directly by
subtracting from the fluid velocity term with fluid acceleration computed at the instant
particle location. Such treatment allows to compute particle velocity directly and does
not require additional integration approaches.

In this algorithm particle velocity is computed based on the asymptotic expansion of
Maxey3 as follows

V̄ (t + dt) ≈ ū
(
x̄ = Ȳ (t + dt), t + dt

)
+ W̄ − τp

Dū

Dt

∣∣∣∣
x̄=Ȳ (t+dt)

(7)

The first term ū is the fluid velocity evaluated at the particle location Ȳ . This term
can be computed using 3D interpolation method from the regular grid. The second term
W̄ is the particle terminal velocity in stagnant air and is given analytically by Wang et
al9. The third term includes contribution from the fluid acceleration where τp is particle
response time. Local fluid acceleration in the 3rd term can be computed in the following
way:

Dū

Dt
=

∂ū

∂t
+ ū · ∇ū =

∂ū

∂t
− ω̄ × ū +∇

(
ū2

2

)
(8)

where ω̄ is fluid vorticity. The first two terms are known explicitly in the spectral
algorithm. The last term contains differential operator and is not explicitly known. The
simplest way to compute the third term is to transfer ū2 to Fourier space where differen-
tiation reduces to arithmetic operation. Then, three additional FFT’s have to be done in
order to transfer back all three components of the acceleration term to the physical space.

3.1 Results

Accuracy of the new integration scheme has been examined through comparing values
of kinematic properties of the bidisperse system computed using both new improved
algorithm and the conventional direct interaction with a small time step9. In two separate
runs we were tracking trajectory of 1M non aerodynamically-interacting particles with
radii a1= 5 µm and a2=10 µm. Stokes numbers of the particles are 0.0158 and 0.063,
respectively. For the first run the new efficient Lagranigian algorithm has been used, in
which the particle velocities are evaluated by equation 7. Time step size was set the same
for flow and particles (dtDNS = 0.002). The second simulation was performed using the
direct integration9 with dtDNS = 0.00046.

It is worthy to mention that both runs start from the same initial flow field and the
same particle location. The flow is forced using a deterministic scheme10 in which energy
is applied in Fourier space only to two wavenumber shells (i.e., 0.5 < k < 1.5 and 1.5 <
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a) b)

Figure 3: Relative velocity between a) 5µm and b) 10µm droplets in function of separation distance
computed using both old and new optimized alghoritms

k < 2.5). Both runs took 10 eddy turnover times and data have been collected only after
3 eddy turnover times. The initial period has been skipped in order to exclude the effect
of the particle relaxation from the initial random setting.

Radial distribution function and relative velocity in function of separation distance
from both runs are presented in figures 3-5. The separation distance is normalized by the
corresponding collision radius i.e. R = 2a1 or 2a2 for monodisperse and R = a1 + a2 for
bidisperse systems. Figure 3 shows relative velocity between particles with the same size.
From the figure 3 we can conclude that both algorithms yield quantively similar results.
Larger oscillations observed in the figure 3a can be attributed to small number of particles
at this separation distance.

Figure 4 presents radial distribution function computed based on spherical formula-
tion of Wang et al.9. Again both algorithms give comparable results, however at close
separation the new algorithm underestimates the RDF. It is hard to asses if this is a
characteristic feature of the new scheme or the difference result from small number of nu-
merical data. It is necessary to run the code for longer time and obtain smaller statistical
uncertainty.

Kinematic properties of the bidisperse system are presented in figure 5. The figure 5a
shows relative velocity between particles with different sizes versus normalized separation
distance. Radial distribution function g12 computed using formulae11 is plotted in figure
5b.

Figure 5a shows that relative velocity computed using both schemes are in quantitative
agreement. Again radial distribution function (figure 5b) seems to be a little underesti-
mated in the new algorithm.
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a) b)

Figure 4: Radial distribution function of the monodisperse system with a) 5µm and b) 10µm droplets in
function of separation distance. Blue line represents result computed using old algorithm. The red line
shows results from the new improved algorithm

a) b)

Figure 5: Relative velocity a) and radial distribution function b) of the bidisperse system (a1 = 5µm,
a2 = 10µm

4 THREE DIMENSIONAL FFT IMPLEMENTATION

Direct numerical simulations of homogeneous isotropic turbulence using the standard
pseudo-spectral method provide accurate kinematic and dynamic flow characteristics for
inertial and dissipation subrange scales, as well as a basis for studying the interactions of
inertial particles with turbulent flow structures. To achieve high flow Reynolds numbers,
one has to perform high-resolution simulations demanding both intensive computation
and large amount of memory. Parallel computing tools have to be developed, the most
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important of which is the MPI implementation of 3D Fast Fourier Transform.
MPI implementations on parallel computers rely on domain decompositions in order

to handle large grid resolutions. Here, we aim specifically at simultaneous domain de-
composition in two of the three spatial dimensions to prepare us for near-future petascale
computers withO(10,000) processors. Previously developed 1D decomposition of Dmitruk
et al.12 does not permit the use of a large number of processors and 3D decomposition
of (e.g., Eleftheriou et al.13,14; Fang et al.15) requires excessive communication. Prelimi-
nary attempts on 2D-decomposition FFTs using different communication/implementation
strategies for array transpose operation have been made by Plimpton16, Pekurovsky17, and
Takahashi18. For example, Plimpton’s strategy was to pack and send as much data as pos-
sible in a multistage algorithm using MPI Send and MPI Irecv commands. Pekurovsky
simply used the traditional MPI command MPIAlltoallv while Takahashi used MPIAll-
toAll to communicate data.

Our first objective is to extend the ’round robin’ approach used by Dmitruk et al.12

for efficient communication within 1D decomposition, to 2D decomposition. Our second
objective is a systematic study on scalability and efficiency using various 2D decomposi-
tions so their performances can be compared and potentially optimized. Our preliminary
analysis showed that this approach was better than traditional MPI commands that are
currently used for 2D decomposition (MPIAlltoallv or MPIAlltoall).

4.1 2D decomposition FFT strategy

A Three Dimensional FFT can be computed by taking a sequence of three One Di-
mensional FFTs along each direction of the three dimensional block data. On parallel
computation, this data can be distributed among all processors using a two dimensional
decomposition which implies slicing the computational domain in two directions, e.g.
ymatrix and zmatrix (see figure 6a). While with this decomposition, the 1D FFT along the
x direction of the data can be easily performed on each processor, the FFTs along y and
z directions can not be done because data are distributed on different processors. Thus,
special transposes have to be introduced.

In figure 6 is shown schematically the 2D Decomposition Strategy (we only show the
Real to Complex 3D FFT, although the same strategy applies to Complex to Real trans-
form). The data domain is decomposed into columns for each processor (figure 6a) slicing
the data along the ymatrix and zmatrix directions. In this sample figure, there are a total
of 16 processors, 4 on each ymatrix and zmatrix directions (it could be different numbers of
processors along the two directions).

Then, the 2D Decomposition FFT strategy follows 5 subsequent steps. (1) One-
dimensional real to complex FFT is performed along the x direction (figure 6b) in parallel
on each processor. For this first FFT we need to add two additional yz plane of data
at the end of the x direction because the output of a real-to-complex FFT provides
(Nx/2 + 1)NyNz complex numbers which represents (Nx + 2)NyNz elements ((Nx, Ny,
and Nz are the number of data along each direction). Those elements have to be stored in
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the matrix, half of them are the real components of the complex numbers and the other
half are the imaginary components of the complex numbers.

a) b)

c) d)

e) f)

Figure 6: Three Dimensional FFT Real to Complex using the 2D Decomposition Strategy: a) Real Array,
b) 1D FFT along x, c) Transpose between x and y directions, d) 1D FFT along y, e) Transpose between
y and z directions, f) 1D FFT along z

(2) The data is transposed between x and y directions following the same strategy
proposed by Dmitruk et al.12. The idea is to switch the data in a way that the elements
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along the y direction are now stored along the xmatrix direction of all processors. It is
important to point out that for this transpose, the communications among processors are
only needed for those in the same slab of processors as shown in figure 6c. Each slab of
processors can perform their communications at the same time. (3) A complex-to-complex
one-dimensional FFT is carried along the y direction of the data, i.e., along the xmatrix

direction (figure 6d). (4) The data is transposed now between the y and z directions (figure
6e) in a similar fashion as the transpose in step (2) to store the data along the z direction
in the xmatrix direction. (5) Finally, the last one-dimensional complex-to-complex FFT is
done along the z direction of the data which is stored along the xmatrix direction.

The strategy was implemented on ’Bluefire’ - IBM Power 575 cluster (4064 POWER6
processors running at 4.7 GHz) at NCAR’s supercomputing center. We also run the
subroutine by Pekurovsky (2009) using 1D and 2D decomposition, as well as the 1D
decomposition strategy by Dmitruk et al.12. Figure 7 shows the results of the speed
up from the timing tests for a 5123 problem. For comparison, we also include in the
figure the results obtained by Takahashi18 for a 2563 problem in a different machine
(Tsukuba system). We used it as reference as we expect better timing results as the
problem size increase. However, we can notice that the 1D decomposition strategy starts
to worsen for 32 processors. Furthermore, the 2D decomposition by Pekurovski also start
to worsen around same number of processors. On the other hand, we can see a much
better scalability in the new implementation, better than all the other approaches.

Figure 7: Comparison of the scalability results from our 2D decomposition strategy and others for a 5123

real data

4.2 Complexity analysis

We developed an approximate quantitative model for execution time of the message
passing parallel 3D FFT on a square grid of size N3 using P processors. This complex-
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ity analysis helps to study theoretically the execution time of the different strategies.
Dmitruk et al.12 showed that the total time taken for a machine to perform a Three Di-
mensional FFT is the sum of the computational time and the communication time. For
1D decomposition strategy proposed by them, the computational time is given by

TCOMP =
5

2

N3 log2 (N3)

P
tc +

[
2

(
(N + 2)N2

P

)
1

P
+ (P − 1)

(
(N + 2)N2

P

)
1

P

]
ta (9)

and the communication time is

TCOMM = 2(P − 1)

(
(N + 2)N2

P

)
1

P
tw + 2(P − 1)ts (10)

where N is the data size along any of the directions, P is the total number of processors,
tc is the computation time per floating point operation, ta is the memory-to-memory copy
time per word, tw is the time for transmission of a single word between processors, and
ts is the startup or latency time.

Our new implementation is an extension of Dmitruk’s12 strategy. Based on the same
analysis done by Dmitruk et al.12, we obtained the computational time and communication
time to perform a Three Dimensional FFT:

TCOMP =
5

2

N3 log2 (N3)

PyPz

tc + 2

[
2

(
(N + 2)N2

PyPz

)
1

Py

+ (Py − 1)

(
(N + 2)N2

PyPz

)
1

Py

]
ta (11)

TCOMM = 2

[
2(Py − 1)

(
(N + 2)N2

PyPz

)
1

Py

tw + 2(Py − 1)ts

]
(12)

where the total number of processors P is Py ∗ Pz. Py is the number of processors along
the ymatrix direction and Pz is the number of processors along the zmatrix direction. It
is important to point out that equation 12 is similar to the one presented by Takahashi
(2009).

To discuss the performance of the FFT algorithms, the elemental times involved in the
estimates given by equations 9 through 12 (tc, ta, tw, and ts) are needed. Those values
can be obtained empirically through some simple test runs on the machine (Bluefire -
IBM cluster in this case). tc can be obtained by doing repeatedly some floating point
operations. ta is determined by running standard loops of memory-to-memory copy on a
single processor. The communication times can be obtained by timing while doing several
simple communications (send and receive commands) of different array sizes between two
processors only.

The floating-point operation chosen for the experiment was ’multiplication’, and the
average time for this was 1.5 ns/FLOP. Table 3 shows all other results from the performed
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tests on Bluefire. The memory-to-memory copy time varies with the array size to copy.
However, the copy time stabilizes for large array sizes, to an average time of 1.3 ns/word.
As for the communication times, Table 3 shows the wall clock time it takes to send and
received a message of different sizes. The average slope of this time corresponds to a time
per word communicated (tw) and its value is tw ≈ 0.6 ns/word. The latency time is the
time to communicate a message of zero size which can be obtained by extrapolating the
data shown to a zero size message (ts ≈ 6µs). Both communication timings are close to
what is reported by NCAR Supercomputer Center under optimal conditions (tw ≈ 0.2
ns/word and ts ≈ 1.3µs). It is important to mention that the Bluefire is a machine with
128 nodes each with 32 processors (machine architecture). Thus, the communication time
between processors in different nodes may be different. The results on Table 3 correspond
to two processors communicating within the same node. We also perform experiments
with two communicating processors at different nodes. The results are shown in Table 4, it
can be noticed that the communication time increases when the communicating processors
are not in the same node due to the Bluefire’s machine architecture.

Array Size ta (ns/word) communicating time (µs)
23 10.490 6.008
43 3.472 6.1035
83 2.132 7.391
163 1.485 14.9
323 1.208 91.98
643 1.079 198.0
1283 1.443 1288.0

Table 3: Timings from numerical experiments performed on Bluefire to obtain ta, tw, and ts

ONE NODE TWO NODES FOUR NODES
Array size Processors 00-01 Processors 00-63 Processors 00-127

(µs) (µs) (µs)
23 6.008 7.391 13.78
43 6.1035 7.987 14.114
83 7.391 9.0122 19.193
163 14.9 18.883 42.22
323 91.98 103.62 166.79
643 198.0 737.8 967.59
1283 1288.0 6136 7533.41

Table 4: Communication time between two processors sitting at different nodes on Bluefire for different
message sizes

The theoretical equations can be compared with the real time results obtained pre-
viously. Figure 8 shows this comparison. For the theoretical results in this plots, the

15



Bogdan Rosa, Hossein Parishani, Orlando Ayala, Lian-Ping Wang and Wojciech Grabowski

communication times (tw, and ts) are from Table 3 (i.e. two communicating processors in
the same node). The theoretical equation given by Dmitruk et al.12 slightly over predicts
the real time results. However, the theoretical timing equations for the 2D decomposi-
tion predicts reasonably well up to 32 processors. For larger number of processors, the
equations under predict the real times. We argue that this is mainly due to the fact
that for a number of processors larger than 32, the communication times are larger (see
Table 4). Note again that our new 2D decomposition strategy is faster than the one
from Pekurovsky17. Pekurovsky communicational strategy is based on the MPI Alltoall
command. Dmitruk et al.12 has proved that a combination of MPI send and MPI receiv
commands for communicational strategy is faster than using simply the MPI Alltoall
command. It also seems that the MPI Alltoall command is not a suitable command to
be used in machine architecture such as Bluefire’s. From this figure we can also note that
the speed up’s slope of the 1D decomposition decreases when the number of processors
used is near to the domain size along the decomposed direction.

Figure 8: Comparison of the complexity analysis equations with real time data

Plimpton16 presents another 2D decomposition strategy. Following that strategy, the
total time to perform a FFT is given by:

TCOMP =
5

2

N3 log2 (N3)

PyPz

tc + 2

[
2

(
(N + 2)N2

PyPz

)
1

Py

+ log2(Py)

(
(N + 2)N2

PyPz

)
1

Py

]
ta (13)

TCOMM = 2

[
2 log2(Py)

(
(N + 2)N2

PyPz

)
1

Py

tw + 2 log2(Py)ts

]
. (14)

The analysis presented can be used to predict the timing behavior for any number of
processors. In figure 9, we compare the theoretical total time using the equations just
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presented as the problem was solved in Bluefire. It can be noticed that all strategies the-
oretically behave similarly. However, for larger than 4096 processors, Plimpton’s strategy
scales better. In order to explain this, in figure 10 the communication time and the
computational time is shown separately.

Figure 9: Comparison of the Total Time among the different complexity analysis equations for a 5123

problem

In that figure (10), we can see that the most time consuming part for a 5123 problem
in Bluefire is the computation time and it is similar to any of the strategies as expected.
The reason for this is that Bluefire has very good communication times. It takes 0.6 ns
to send and receive a word but 1.5 ns for an operation and 1.3 ns to copy a word. Also,
this computation time scales linearly while the communication time is not linear at all.
In the later, we note that our 2D decomposition strategy theoretically behaves badly for
large number of processors, while Plimpton’s strategy behaves well. The reason for this is
that for larger number of processors the time to communicate a message in our strategy is
(Py − 1) while for Plimpton’s is log2(Py), the first is considerably larger for large number
of processors. This triggers a problem with the latency time in our approach, which is
negligible for fewer processors.
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a) b)

Figure 10: Comparison of the computational time and communication time among the different complex-
ity analysis equations: a) Communication time, b) Computation time

5 CONCLUSIONS

In this paper, we have discussed several implementation issues for the HDNS code.
First, a parallel HDNS code has been developed using MPI. The results pertinent to
turbulent collisions of cloud droplets we obtained from our newly developed MPI HDNS
code are in excellent agreement, with previously published results based on the OpenMP
implementation. It shows that the MPI code can now be used to simulate a larger problem
size and larger flow Reynolds number.

Second, an alternative approach based on the asymptotic expansion of Maxey3 has been
implemented to treat the motion of droplets with small Stokes numbers. This optimized
Lagrangian integration scheme could use a significantly larger time step, yielding a better
computational efficiency without much effect on the accuracy of the simulated collision
statistics. However, the new approach requires 4 additional FFTs and some extra memory
usage. This prepares us for treating a polydisperse size distribution of droplets in our
HDNS approach.

Finally, a new MPI implementation of FFT based on 2D domain decomposition has
been developed. It shows a promising scalability performance. For tests done at 5123 grid
and up to 1024 processors, our implementation scales better than other known imple-
mentations (also utilizing 2D decomposition), namely Plimpton’s16, Pekurovsky’s17 and
Takahashi’s18. However, for larger number of processors, Plimpton’s strategy scales better
due to more massive data communication.

The above advances are being used to perform HDNS for large domain size and for a
polydisperse droplet size distribution. New results on collision rate and kinematics pair
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statistics of cloud droplets will be reported at the conference.
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