
V European Conference on Computational Fluid Dynamics 

ECCOMAS CFD 2010 

J. C. F. Pereira and A. Sequeira (Eds) 

Lisbon, Portugal, 14–17 June 2010 

MULTI-STAGE DESIGN APPROACH FOR HIGH FIDELITY 
AERODYNAMIC OPTIMIZAITON OF MULTI-BODY 

GEOMETRIES BY KRIGING BASED MODEL                                 
AND ADJOINT VARIABLE METHOD 

JinWoo Yim*, ByungJoon Lee† and Chongam Kim†† 

*School of Mechanical & Aerospace Eng., Seoul National Univ. 
599 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea 

baccha@freechal.com 

†NASA Glenn Research center 
21000 Brookpark Road, Cleveland, OH, 44135, USA 

mecha777@hitel.net 

††School of Mechanical & Aerospace Eng., Seoul National Univ. 
599 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea 

chongam@snu.ac.kr (Corresponding Author) 

Key words: Aerodynamic Shape optimization, GA, Kriging, Adjoint Variable Method 

Abstract. An efficient and high-fidelity design approach for wing-body configuration is 
presented. Depending on the size of design space and the number of design of variable, 
aerodynamic shape optimization is carried out via selective optimization strategy at 
each design stage. In the first stage, global optimization techniques are applied to 
planform design with a few geometric design variables. In the second stage, local 
optimization techniques are employed for wing surface design with a lot of design 
variables which can maintain a sufficient design space with a high DOF (Degree of 
Freedom) geometric change. For global optimization, Kriging method in conjunction 
with GA (Genetic Algorithm) is used. A searching algorithm of EI (Expected 
Improvement) points is introduced to enhance the quality of global optimization for the 
wing-planform design. For local optimization, a discrete adjoint method is adopted, and 
adjoint numerical dissipation is introduced to improve convergence behavior of the 
adjoint solver. By the successive combination of global and local optimization 
techniques, drag minimization is performed for a multi-body aircraft configuration in 
inviscid and viscous flow conditions while maintaining the baseline lift and the wing 
weight. Through the design process, performances of the test models are remarkably 
improved in comparison with the single stage design approach. The performance of the 
proposed design framework including wing planform design variables can be efficiently 
evaluated by the drag decomposition method, which can examine the improvement of 
various drag components, such as induced drag, wave drag and viscous drag. 
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1 INTRODUCTION 

Aerodynamic shape optimization using numerical methods becomes more and more 
popular in the area of aircraft design along with growth of computational power. The 
progress of computing environment also makes the choice of optimization methods 
more flexible than before. Nevertheless, it is still recommended that a design strategy 
has to be judiciously chosen by considering the characteristics of design problems. For 
example, highly non-linear characteristics of design space prohibit designers from 
selecting gradient-based optimization method since the gradient-based method can lead 
to a designed geometry trapped in a local optimum. The design methodologies can be 
roughly classified into gradient and non-gradient methods depending on the usage of 
sensitivity analysis process. Non-gradient optimization methods can be usually called 
global optimization method, while gradient-based method can be classified into local 
optimization method. 

Global optimization method may provide the global optimum value within the 
specified design space. For example, Genetic Algorithm (GA) originated from the 
theory of natural evolution is widely used as a global optimization tool[1,2,3]. However, 
this method is generally costly in imitating an accurate evolutional process, and 
especially for three-dimensional aerodynamic design problems with a lot of design 
variables, it requires an enormous amount of computational time in evaluating 
experimental data at each deign point. For that reason, GA as an aerodynamic shape 
optimization is generally applied to problems with a relatively small number of design 
variables. Therefore, approximation technique, called meta-modeling originated from 
statistics, is popularly adopted, such as RSM (Response Surface Method)[4,5] or 
Kriging[6,7]. Once a meta-modeling is constructed by a suitable mathematical function 
and experimental data points in design space, it can predict new values without 
additional flow analysis. However, these modeling methods may also require a huge 
computational cost to obtain sufficient experimental data for building up the response 
model, if geometric shape is complex or the number of design variable is large. 
Furthermore, if sample experimental points representing objective function values are 
not appropriate, design results can be poorer than other optimization tools. As an 
improved meta-modeling, optimization based on Kriging model is applied for the robust 
exploration of the global optimum value. Jones et al.[8] firstly introduced the Expected 
Improvement (EI) method proposed by Mockus et al.[9] into Kriging model, and Jeong 
et al.[10] applied it to shape optimization. 

On the other hand, Gradient-Based Optimization Method (GBOM) is also popularly 
used because computational cost of adjoint approach is essentially independent of the 
number of design variable. In addition, it exhibits a good convergence characteristic 
because GBOM uses the gradient vector of the objective function which provides an 
optimal direction in design space. Thus, it is particularly powerful in case of wing 
surface design which usually requires a lot of design variables. Jameson et al.[11] 
proposed continuous adjoint approach, and applied it to aerodynamic shape 
optimization problems of several wing/body geometries with wing planform and surface 
design variables. Lee et al.[12,13] extended the discrete adjoint method to overset mesh 
system, which can be applied to complex geometries with a relatively simple grid 
topology. Mavriplis[14], Nielsen[15] and Kim[16] et al. also used the discrete adjoint 
method in design problems of various complex geometries on unstructured mesh system. 
Through these applications, continuous or discrete adjoint variable methods have been 
demonstrated the capability to produce a substantial improvement of aerodynamic 
performance. Despite the superior performance in aerodynamic design problems, 
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GBOM still has a potential danger to be trapped in local optimum during design process, 
especially in cases of noisy non-linear design spaces. 

In the present study, an efficient multi-stage design strategy is proposed which takes 
advantages of both global and local optimization methods. Transonic wing and DLR-F4 
wing body configuration is re-designed using proposed design strategy in inviscid and 
viscous flow conditions. Wing planform design which can be represented with a few 
design variables is performed by global optimization method using an improved Kriging 
method and GA optimizer. On the other hand, wing surface design which requires a lot 
of design variables for the sophisticated treatment of surface geometry is performed by 
GBOM using the discrete adjoint approach. To improve the convergence in sensitivity 
analysis, numerical dissipation for the discrete adjoint formulation proposed by Lee et 
al.[17,18] is introduced. Finally, capability of the proposed multi-stage design approach 
including wing planform design variables is evaluated by drag decomposition method 
based on far-field analysis[19,20,21,22], which can provide behavior of each drag 
component before and after design process. 

2 NUMERICAL METHODS 

2.1 Kriging Method  

Meta-modeling techniques are commonly used to create approximation of the mean 
and variation of response in noisy design space, because their implementation is 
relatively simple. A meta-model is adopted as a surrogate approximation for actual 
experimental data or numerical analysis during design process. Among the meta-
modeling techniques, RSM and Kriging model are most popular techniques in 
aerodynamic shape design. RSM employs a simple polynomial function using the least 
square regression technique. For that reason, RSM has a limitation if physical 
phenomena are highly non-linear or noisy with respect to design variables. On the other 
hand, Kriging method is more flexible in dealing with aerodynamic design problems of 
highly non-linear design space[6,7,8,9,10]. Kriging method was developed in the field 
of geostatistics, and it is useful in predicting temporally and spatially correlated data. A 
most distinguished advantage of Kriging model is that it can exactly interpolate sample 
data, and represent a function with multiple local extrema. As in Eqn. (1), Kriging 
modeling technique is composed of two elements. 

                                               )()( xZxy                                                         (1) 

where   is a global regression model such as RSM or usually a constant value. x is an 
n-dimensional design vector where n is the number of design variable. )(xZ  is the 
realization of stationary Gaussian random function to calibrate local deviation from the 
global model. Multiple local extrema can be represented by this term, and thus, Kriging 
method may be more suitable than RSM in fitting design space if physical phenomena 
are highly non-linear or noisy. The covariance matrix of )(xZ is given by 

       jiji xxRxZxZCov ,, 2R                                           (2) 

where R is the correlation matrix, and ),( ji xxR is a correlation function between any 

two sample data points, ix  and jx . In the present work, the Gaussian correlation 
function is used as follows. 
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In Eqn. (3), k  are unknown correlation parameters to fit the model, and j
k

i
k xx   is the 

distance between the kth component of the sample points ix  and jx . Once the 
correlation function is determined, predicted estimate, )(ˆ xy , for the response, y , at  
untried value of x is given by Eqn. (4). 

1ˆ ˆˆˆ( ) ( )y x x   Tr ( )R y f                                              (4) 

where ̂ is the estimated value of  , and y is a column vector of length sn (the number 

of sample point) that contains the response values at each sample point. )(rT xˆ  is the 

correlation vector of length sn  between an untried x and the sample points, and it is 

defined as follows. 

 TnsxxRxxRxxRx ),,(),....,,(),,( 21)(rT                                   (5) 

For any given correlation parameters  , ̂  and the estimated variance 2̂  are 
determined as 

yRff)R(f 1T1T  1̂                                                    (6) 

s

T

n

)ˆ()ˆ(
ˆ 2  fyRfy 1 




                                             (7) 

where f  is a vector of ones with sn -dimensional length. Finally, the correlation 
parameter k  is estimated by maximizing the likelihood function (Eqn. (8)) over 0k , 
and Genetic Algorithm (GA) is used to find the k  in this work. 

 
2

ln)ˆln(
)(

2 R



 sn

Ln                                               (8) 

Thus, the distance function between sample points, as in Eqn. (3), is not equally 
weighted. Once k  is determined, 2̂  and R  can be calculated by the correlation 
parameters. Finally, the predicted values at untried x  are obtained from Eqn. (4). 

The accuracy of Kriging method between predicted and real values is seriously 
affected by sample data points. If the number of sample point is not sufficient and/or 
inappropriate sample points are selected, the predicted response surface yields 
inaccurate information which eventually leads to unsatisfactory design result. The 
accuracy of the predicted values at untried x  can be expressed as 
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where )(2 xs  is the mean square error of the predictor, and it represents some 
uncertainty at the predicted point. The root mean square error can be expressed as 

)(2 xss  . 

2.2 Expected Improvement 

Once a Kriging model is constructed, GA is used to search the global optimum value 
within the specified design space. Thus, there is a possibility that the global optimum 
value given by GA may not be the global optimum in the real design space. As a way to 
find more accurate response surface and more efficient exploration for global optimum 
point, EI (Expected Improvement) has been proposed or applied[8,9,10]. 
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The main idea is that the uncertainty of the predicted value should be taken into 
account in sampling additional point for the initial Kriging model. In this process, EI 
basically provides a kind of figure of merit (or a value of expected improvement) when 
additional sample point is added to existing sample data. For example, during the 
minimizing process of the objective function, EI can be formulated and expressed in a 
closed form as in Eqns. (10) and (11). 

 0),(ˆmax
,0

ˆ,)(ˆ
)( min

minmin xyf
otherwise

fyifxyf
xI 
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where minf  is the minimum value predicted by the initial Kriging model.   and   are 
the normal distribution and normal density functions. From Eqn. (11), the maximum EI 
point can be evaluated, and the value of the sample point obtained by CFD solver is 
added. If the objective function value of the sample point is smaller than the current 
minimum value, minf  is newly updated. This process is iteratively performed and 
stopped until the EI becomes less than some threshold criterion. Through the Kriging-EI 
process, the point nearer the global optimum can be predicted in the specified design 
space. Figures 1 to 6 show the Kriging model with EI approach. At the initial step 
(Figure 2), response surface approximated by Kriging with initial sample points does 
not accurately fit the real surface. Based on EI points as shown Figures 3 to 5, 
additional sample points are predicted and added to sample data. After this step, 
improved response surface is obtained as shown Figure 6. 

 
Figure 1: Real function & 

initial sample points 
Figure 2: Kriging model 
with initial smaple points 

Figure 3: EI at initial step 

 
Figure 4: Additional sample 

points from EI 
Figure 5: Additional sample 

points from EI 
Figure 6: Final kriging model 

with EI points 

2.3 Genetic Algorithm 

Genetic Algorithm (GA) is a class of stochastic algorithm inspired by natural 
evolution, and has been applied to find optimum values in various fields. Starting with a 
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randomly generated population of chromosomes, a GA goes through a process of fitness 
based selection and recombination to produce successor population or the next 
generation. During recombination, parent chromosomes are selected and their genetic 
material is recombined to generate the child generation. As this process is progressed 
iteratively, a sequence of successive generations evolves and average fitness of the 
chromosomes tends to increase until stopping criterion is reached. In this way, a GA 
evolves into the best solution to a given design problem. An advantage of GA is that, 
unlike other optimization algorithms, it does not need gradient information. Therefore, 
if there are many local extrema and discontinuous properties in objective functions and 
constraints, GA is more suitable in finding the global optimization point and design 
variable set than gradient-based optimization methods. On the other hand, a GA 
requires substantial computational cost because of a large number of function 
evaluations. For that reason, it may be prohibitive to directly apply to complex 
aerodynamic shape optimization with a large number of design variables. 

2.4 Discrete Adjoint Approach 

If design space contains multiple local extrema and discontinuities, non-gradient 
optimization methods such as GA could be more suitable to find optimum values. On 
the other hand, if design space is relatively (or locally) smooth and continuous, 
gradient-based methods are much more efficient because of a good convergence 
behavior. Especially, adjoint variable method is the most powerful technique among the 
gradient-based methods, because computational cost to solve the adjoint equation is not 
essentially influenced by the number of design variable. This is particularly useful when 
there are a lot of design variables such as wing surface design. 

In the present paper, discrete adjoint variable method is applied to get sensitivity 
information by fully hand differentiating the three-dimensional Euler and N-S equations. 
The symbolic formulation of the discrete residual R for the steady-state flow equations 
can be written as 

     ( , , ) 0R R Q X D 
                                                

(12) 

where Q is the flow variable vector, X is the position of computational grid and D is the 
vector of design variables. Without evaluating the vector dQ/dD, the sensitivity 
derivative of the objective function, F = F(Q,X,D), can be calculated as 
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if and only if the adjoint vector Λ satisfies the following adjoint equation. 

 0
T

TTF R

Q Q

    
                                                      

(14) 

The solution vector Λ is then obtained by solving Eqn. (14) with the Euler implicit 
method in a time-iterative manner as 

1,
T

m m mI R R F

J t Q Q Q
        

                                             
(15) 

where I is the identity matrix, and J represents the Jacobian matrix. 
Adjoint formulation on the overset boundary can be similarly derived by slightly 

modifying the conventional adjoint boundary condition, which can be expressed as 



JinWoo Yim, ByungJoon Lee and Chongam Kim 

 

 7

 
 0

TT TSM M
TM SF

FM M M

RR F

Q Q Q

     
                                             

(16) 

 0
TT TMS M

TS SF
FS S M

RR F

Q Q Q

     
             

                                 (17) 

 0
T T TMM M

TM MF
FM M M

F F F

RR F

Q Q Q

      
                                              

(18) 

 0
T T TMM M

TM MF
FM M M

F F F

RR F

Q Q Q

      
                                              

(19) 

where the subscript F indicates fringe cell. The superscript M and S represents the 
main-grid and sub-grid domain, respectively. By solving the four equations sequentially, 
overset boundary value on the main- and sub-grid can be updated. The update procedure 
of the adjoint variables on the overset boundary (Eqns. 16, 17, 18 and 19) is reverse to 
the conventional overset flow analysis because of the transposed operation in the adjoint 
formulation. 

2.5 Numerical Dissipation of Adjoint Matrix 

To secure stable convergence, 4th-order numerical dissipation is used for the discrete 
adjoint formulation[17,18]. In case that the solution from the baseline solver is 
evaluated using 5 stencils for 3rd order spatial accuracy which is common in 
conventional CFD solvers, the adjoint Jacobian matrix for 1-D problem can be 
represented by Eqn. (20). 

2 1 1 2
2 1 1 2

m m m m mi i i i i
i i i i i i

i i i i i

R R R R R
RHS

Q Q Q Q Q
       

   

    
     

    
                 (20) 

To modify the adjoint matrix to have more diagonal dominance, a difference type 
symmetric equation such as numerical dissipation is needed. In the present work, 4th 
order numerical dissipation which is represented by the variable G is considered as 
shown in Eqn. (21).  

     1 2 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 1 2 23 3 3 3i i i i i i i i i i i i i iSD G G G G G                             (21) 

where 1/20 1i    is a dissipation coefficient at the cell interface and a newly defined 
variable for dissipation G  is  
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i i
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
 


                                                       (22) 

The dissipation term is added to RHS of the discrete adjoint equation as an anti-
diffusion term to enhance the diagonal terms as shown in Eqn. (23). 

2 1
1 2 1 1 1 1 1
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                  

2
m
i 

  (23) 

The definition of the coefficient for the dissipation can be given by Eqns. (24)-(27). 
The proper scaling of the dissipative terms is accomplished through the factors as 
follow.  
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(4)
1/2 1/2i iC   , and 

11/2

1

2 i iiC C C                                     (24) 

where                     C e   , 1 ( )e e 
     and 2 / 3   (2-D case)                   (25) 

And e is the spectral radius of the flux Jacobian matrices in the body-fitted curvilinear 
directions that conform to the body surface. A conservative estimate of this spectral 
radius is constructed according to the following formula, 

2 2ˆ
x ye u n a n n                                                      (26) 

where a  is the speed of sound at the cell center and n  is the area vector at the face in 
the  -direction. The 4th order coefficient is determined by a second-order 
difference(smoothness) function  . 

(4) (4) (2)max(0,( ))k   ,  (2) (2)
, 1,max( , )i j i jk                          (27) 
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                                        (28) 

and 
,i jDC  is the volume integrated drag coefficient on Cell (i,j). In order to prevent the 

deterioration of the accuracy by the dissipation term, the coefficient, (2) is taken 
proportional to the normalized 2nd difference of volume integrated sensitivity which acts 
as a sensor that turns off the dissipation around the boundary of entropy drag. As shown 
in Eqn. (23), the diagonal term of modified adjoint matrix becomes more dominant by 
considering the ratio of diagonal term to sum of off-diagonal terms and it is directly 
related to the stable convergence characteristics of adjoint solver. 

As the dissipation increases, however, the adjoint Jacobian matrix becomes more 
diagonal dominance but the accuracy of the gradients decreases. Therefore, an adequate 
dissipation size which shows quite reasonable accuracy is taken referred from the 
Ref.[17] and the sensitivity analysis and design works in the present paper are 
performed with k(4) =1/128 and k(2)=1. However, the determination of these coefficients 
is still problem-dependant.  

3 DESIGN OPTIMIZATION FRAMEWORK 

In order to obtain high-fidelity design results, design process of a wing can be 
organized by multiple stages according to the goal of each design process, as shown in 
Figure 7. At each design stage, optimization technique is essentially determined by the 
number of design variable, the size of design space and the degree of non-linearity of 
the design space. In case of wing planform design, the range of design variables is 
relatively wide compared to wing surface design. Thus, a gradient-based optimization 
method may have some difficulties in securing a satisfactory performance even after 
design. This is because design space which covers a wide range of design variables may 
contain non-linear characteristics, and a computed solution may be trapped in local 
optimal region, not to mention of convergence problem. In addition, the number of 
design variable is at most about 4~6. Thus, global optimization method, which is time-
consuming but capable of finding the optimal value in non-linear design space, can be a 
good choice. 
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On the other hand, change of design variables is much smaller in wing surface design. 
Thus, each design variable is not highly non-linear so that they can be approximated by 
2nd order polynomial functions in a local design space, as shown in Figure 8. Moreover, 
surface design requires a lot of design variables which is too costly to apply global 
optimization techniques. In addition, most previous researches on wing surface design 
applied gradient-based optimization method using an adjoint method, and a shock-free 
wing could be successfully obtained. In the present research, we also apply adjoint 
approach to the 2nd stage of wing surface design. 

A schematic illustration of the present design framework in a drag minimization 
problem is given in Figure 8. Design space is represented by a simple 3-dimensional 
function with respect to surface and planform design variables. From the baseline 
geometry at point 1, surface design process via GBOM may result in a design solution 
at point 2. The GBOM process including planform design variable can improve the 
design result from point 2 to point 3. However, the solution at point 3 may still remain 
as a local optimum in the given design space. If we can acquire the global optimal 
solution (or a better solution) through the planform design process as indicated by point 
4, it is possible that the solution may reach point 5 by avoiding the local optimum 
between point 3 and point 5. If design space is highly non-linear in terms of surface 
design variables, the point 5 would still be another local optimum. Even in such case, 
the present design framework can provide a better alternative to cure the limitation of 
the GBOM approach. 

 

 
Figure 8: Schematic illustration of 

2-stage design 

3.1 1st –Stage Design : Planform Design using Global Optimization 

As shown in Figure 9, a wing planform can be represented by several design 
variables such as wing span, taper ratio, sweepback angle and twist angle. GA optimizer 
can be directly used for finding the global optimum values at the expense of huge 
computational cost. Generally, GA needs thousands times of flow analyses for only a 
few design variables. For efficient global optimization, a meta-model is firstly 
constructed using Kriging model, and then GA is introduced to find the global optimal 
geometry from the meta-model. Experimental data points are determined through 
Central-Composite Experimental Design (CCD) method based on Design of Experiment 
(DOE) theory, and the solution at each experimental point are evaluated by CFD solver. 
Using the evaluated experimental points, the meta-model can be constructed. After that,  
GA optimizer is applied to find the optimal geometry with respect to wing planform 
design variables. However, this approach might have a possibility to miss the global 

1st - Stage Design  2nd - Stage Design

Design variables 
Wing Planform  

Sweepback, tr, AR, Twist 

Design variables 
Wing Surface 

 Wing Section Geometry

Optimization Method 
Global Optimization 

Kriging + EI + GA

Optimization Method 
Local Optimization 

Adjoint method + BFGS 

Solver & Grid system 
Overset flow analysis code 

Solver & Grid system 
Overset flow analysis code  

& discrete adjoint code 

Figure 7: Strategy of 2-stage design
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optimum, especially experimental data points are not good enough. Thus, additional 
data points based on the searching algorithm of EI are added. As a preliminary case of 
the present multi-stage design approach, ONERA-M6 wing is considered. Planform 
design variables are shown in Figure 9 and Table 1. As shown in Eqn. (29), the 
objective of design process is to minimize drag coefficient, while lift coefficient is 
maintained as the value of the baseline model. In order to provide physically 
meaningful design results, a wing weight constraint obtained by statistical group weight 
method[23] is incorporated. The optimizer tends to increase the span to reduce induced 
drag, and decrease the thickness of wing section to reduce wave drag. Without the 
constraint of the wing weight, the designed wing could be unrealistic in terms of 
structural safety and fuel storage. Wing weight during the design process is imposed not 
to exceed the baseline wing weight.  

0 0

0 0

:

: , ( )

, ( )

D

L L L

W W W

Minimize C

Subject to C C C Lift coefficient of Baseline Model

W W W Wing weight of Baseline Model

 

 

               (29) 

The free stream Mach number is 0.84, and the angle of attack is 3.06 degree. The 
governing equations are the three-dimensional compressible Euler equations. For the 
spatial discretization, RoeM scheme[24] is used, and MUSCL(Monotonic Upstream 
Centered Scheme for Conservation Law) approach using a third order interpolation is 
applied for a higher order spatial accuracy. For time integration, LU-SGS scheme is applied. 

 
Design variable(Dv) Min Baseline Max Kriging1 Kriging2 Kriging-EI

Dv1 Sweepback Angle )(  25° 30 35° 34.998 None 33.6972° 

Dv2 Half Span )2(b  1.3240 1.4712 1.6183 1.536752 None 1.466160 

Dv3 Taper Ratio )( 12 cc  0.5058 0.562 0.6182 0.549260 None 0.527694 

Dv4 Twist Angle )(  -2° 0 2° -0.000058 None -0.01867°

Table 1: Geometric information of ONERA-M6 and the designed wing 
 

 
Figure 9: Planform variables 

of ONERA-M6 
Figure 10: Surface variables 

of ONERA-M6 
Figure 11: Comparison of baseline 

model with designed model 

 
Table 1 shows a set of planform variables, and Table 2 is the comparison of 

predicted values and real values for the optimal geometry. Predicted values show a 
pretty good agreement with real values, which indicates that the planform design tool 
works well. Kriging-1 is the case obtained without weight constraint, while weight 
constraint is included in Kriging2 and Kriging-EI. The predicted values of sweepback 
angle and half span in Kriging1 are substantially larger than the baseline geometry 
which may cause structural problem. On the other hand, the Kriging-2 fails to predict an 
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optimum point within constrained boundaries. This is caused by the insufficient number 
of sample points. For that reason, additional sample point by EI, which is expected to 
improve the objective function value, is iteratively added until any additional EI point is 
not obtained. As shown in Table 2, when just comparing the objective values, Kriging-1 
appears to be better than Kriging-EI but it does not consider the wing weight. Hence, 
Kriging-EI produces a more realistic design solution. 

 

Obj. fn. & 
Constraint 

Baseline 
model 

Kriging1 + GA Kriging2 + GA Kriging-EI + GA 

Predicted Real value Predicted Real value Predicted Real value

LC  0.261746 0.26174 0.2601053 None None 0.260879 0.2602198

DC  0.011937 0.01059 0.0103969 None None 0.010961 0.0111651

Weight 6.497615 Not included (7.208778) None 6.4926028 

Table 2: Comparison of objective function and constraint values (planform design/ONERA-M6) 
 
Figure 11 depicts the baseline and designed planforms from Kriging model. Figure 

13 and 14 show pressure contours of the designed model. The pressure contour shows 
that shock strength is weakened after design, and as mentioned before, Kriging1 is 
better than Kriging-EI. However, shock waves on upper wing surface are not 
remarkably weakened in both results. It is because drag reduction during the planform 
design comes from both the reduction of induced drag and wave drag. Thus, as shown 
in Table.4, drag decomposition method needs to be introduced to identify the portion of 
induced drag reduction from the whole drag reduction. Detailed analysis will be given 
in section 3.2. 

 

Figure 12: Pressure contour of    
baseline model 

Figure 13: Pressure contour of   
designed planform by kriging1 

method 

Figure 14: Pressure contour of   
designed planform by kriging-EI 

method 

3.2 2nd-Stage Design : Surface Design Using Local Optimization 

With the planform geometry obtained at 1st stage design, surface design is directly 
performed by discrete adjoint approach. Since a large number of design variables are 
usually required to control change of wing surface geometry, adjoint approach is much 
more appropriate. As shown in Figure 10, three design sections are defined along the 
span-wise direction. 10 design variables are positioned at each design section of upper 
and lower surface, respectively. Total 60 design variables are used in this case. Wing 
surface at each section is deformed by using the Hicks-Henne functions. Design 
formulation is given by Eqn. (30). In order to calibrate the variation of drag and lift 
coefficients, the weight factor for the lift constraint is given by the sensitivity ratio of 
drag to lift coefficient with respect to the angle of attack.  
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0 0

0

:

: , ( )

( ) 0, ,

D

L L L

D L
D L L

Minimize C

Subject to C C C Lift coefficient of Baseline Model

C C
Objective function C Wt C C Wt

 

 

         

                      (30) 

After 2-stage design, lift coefficient slightly decreases(0.6% reduction) but drag 
coefficient decreases from 0.011937 to 0.0075882(36.4% reduction). Consequently, L/D 
is enhanced from 21.927 to 34.227(56.3% increase) as shown Figure 16, and the   
shock on the upper wing surface is remarkably weakened as shown in Figure 15. 

 

Obj. fn. & 
Constraint 

Baseline 
model 

Planform design only Surface design  
only (Adjoint) 

Multi-stage design 

Kriging-EI + GA Kriging-EI + GA + Adjoint

LC  0.261746 0.2602198 0.259997 0.2601049 

DC  0.011937 0.0111651 0.007868 0.0075882 

Table 3: Comparison of objective function/costraint values for designed model (ONERA-M6) 
 
Drag coefficient is decomposed by using wake integration method (far-field method) 

to investigate the behavior of each drag component after wing planform and surface 
optimization, as shown in Table 4. In viscous flow, shock strength is relatively weak 
due to viscous effect. On the other hand, flow over wing upper surface is more 
accelerated in inviscid analysis, which induces a strong shock. Thus, the portion of 
induced drag is not so large compared with entropy drag. It can be seen that entropy 
drag reduction at each design stage is larger than induced drag reduction, and entropy 
drag substantially decreases after surface design. 

 

 
Figure 15: Presssure contour of  

2-stage designed model 

 
Figure 16: 2-stage design history of ONERA-M6

(inviscid design) 
 

Design strategy Drag prediction method CL CD CD - entropy CD - induced

Baseline model 
Surface integration  0.261746 0.011937 N/A N/A 

Wake integration  0.267401 0.010837 0.00738432 0.00345286

Planform only 
(Kriging-EI + GA) 

Surface integration 0.260219 0.011165 N/A N/A 

Wake integration 0.270864 0.009873 0.00630170 0.00357173

Surface only 
(AV + BFGS) 

Surface integration 0.259997 0.007868 N/A N/A 

Wake integration 0.270641 0.007347 0.00360265 0.00374472

2-stage design 
Surface integration 0.260104 0.007588 N/A N/A 

Wake integration 0.262512 0.007124 0.00362269 0.00350174

Table 4: Comparison of aerodynamic performances evaluated by drag decomposition method 
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4 MULTI-STAGE DESIGN APPLICATIONS 

The final goal of the present work is development of high fidelity and efficiency 
aerodynamic optimization tool which can be applied to practical applications such as 
complex geometry. Therefore, the 7 block overset mesh system of DLR-F4 wing-body 
configuration, the test geometry in the 1st Drag Prediction Workshop (DPW-I), is 
considered. At the first design case, the transonic wing (ONERA-M6) with overset 
mesh system is re-designed in viscous flow condition. After that, inviscid and viscous 
designs of DLR-F4 geometry are carried out sequentially following the 2-stage design 
process. 

4.1 Viscous Design of Transonic Wing 

The first design problem is re-design of transonic wing with relatively simple 2 block 
overset mesh system. The flow condition and definition of design problem are same as 
test design case except the viscous flow condition. Reynold number 14.6 million and 3-
dimensional overset Navier-Stokes solver with k w SST turbulence model is applied. 
To determine the sample experimental data points, Latin Hypercube Sampling(LHS) 
based on space filling method is applied and 41sample points are supplied as initial 
experimental points. 

 
Design variable(Dv) Min Baseline Max Kriging-EI(inviscid) Kriging-EI(viscous)

Dv1 Sweepback Angle )(  25° 30 35° 33.6972° 32.9786° 

Dv2 Half Span )2(b  1.3240 1.4712 1.6183 1.466160 1.43395 

Dv3 Taper Ratio )( 12 cc  0.5058 0.562 0.6182 0.527694 0.54987 

Dv4 Twist Angle )(  -2° 0 2° -0.01867° -0.031334° 

Table 5: Geometric parameters of transonic wing and designed wing 
 

Obj.-Fn. & constraint Baseline model 
1st –stage design 2nd –stage design 

Planform design Surface design 

LC  0.2618 0.25962 0.26182 

DC  0.01751 0.01691 0.01446 

Weight 6.52404 6.49503 N/A 

Table 6: Comparison of objective function & constraint values 
 
Table 5 and 6 are the 2-stage viscous design result of transonic wing. The 

modification of planform design variables shows similar trend to the inviscid design 
result. The drag coefficient decreases from 0.01751 to 0.01446(17.3% reduction) while 
lift coefficient decreases 0.1% after 2-stage design and L/D is enhanced from 14.97 to 
18.10. The amount of drag reduction is about half of the inviscid case due to the viscous 
drag and Table 7 shows the each drag component. However, when comparing entropy 
drag component with the inviscid case(Table 4) which comes from shock wave only, 
shock wave in viscous design case is weaken more than inviscid case. Figure 20 shows 
more clearly that the   shock on the upper wing surface is almost disappeared. 
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Design strategy Dreg prediction LC  DC  DC -entropy DC -induced

Baseline model 
Surface integration 0.262187 0.017506 N/A N/A 
Wake integration 0.292724 0.016039 0.0128468 0.0031921 

Planform only 
(Kriging-EI+GA) 

Surface integration 0.259623 0.016913 N/A N/A 
Wake integration 0.288164 0.015516 0.0119126 0.0036035 

2-stage design 
Surface integration 0.261824 0.014463 N/A N/A 
Wake integration 0.297502 0.011227 0.0072514 0.0039755 

Table 7: Comparison of aerodynamic performances evaluated by drag decomposition method 
 

 
Figure 17: 2-stage design history of ONERA-M6

 
Figure 18: Pressure contour of baseline model 

 

 
Figure 19: Pressure contour of 1st-stage  

designed model 

 
Figure 20: Pressure contour of 2nd-stage 

designed model 

4.2 Inviscid Design of DLR-F4 

As a second design case, shape optimization of DLR-F4 wing-body geometry is 
carried out in inviscid flow condition. Figure 21 and 22 shows design variables. 
Variables for planform design are span, chord length at the kink and wing tip position, 
sweep-back angle and twist angle. Surface design sections are defined along the span-
wise direction by considering large aspect ratio of the baseline wing. 10 design 
variables are positioned at each section of upper and lower surface, respectively. Total 
200 design variables are used. Wing surface at each section is deformed using the 
Hicks-Henne functions. Regions between design sections are deformed by using linear 
interpolation. 
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Figure 21: Wing planform 
design variables of DLR-F4 

Figure 22: Surface variables of 
DLR-F4 

Figure 23: Overset grid system for 
DLR-F4 

 
In order to compute multi-body configuration, overset mesh system is used. Figure 

23 shows the overall mesh system composed of 7 blocks: a global box, a fuselage box, a 
wing box, a fuselage block (O-O type), a collar block (O-H type), a wing block (O-H 
type), and a tipcap block (C-type). The total number of mesh point is about 1.22 million. 
The collar block is positioned at the interface of wing and fuselage, and a tipcap block 
on the wing tip to maintain a high-quality mesh. The free stream Mach number is 0.75, 
the angle of attack is zero. Numerical techniques for flow analysis and are the same as 
the inviscid design case of the ONERA-M6 wing. Objective functions and constraint for 
2-stage design are also same with the first design case. 

Table 8 presents the comparison of the baseline and the designed geometries using 
Kriging model and Kriging-EI method. As shown in Table 8 and Figure 24, the change 
of design variables is relatively small because of weight constraint. This tendency is 
also shown in ONEAR-M6 wing design problem which uses weight constraint, and it 
demonstrates that the statistical group weight method using in this study adequately 
works as a constraint. Table 9 shows 2-stage design results and both Kriging and 
Kriging-EI methods improve aerodynamic performance even though the change of 
design variables is relatively small. 

 
Design variable(Dv) Min Baseline Max Opt. Kriging Opt. Kriging-EI

Dv1 Sweepback Angle )(  25° 27.15° 30° 27.187492 27.03516° 

Dv2 Kink-Span(Skink) 3733.5 4148.6 4563.2 3886.7324 3908.1826 

Dv3 Semi-Span(Ssemi) 11682.0 12980.5 14273.0 12840.069 12990.120 

Dv4 Kink-Chord(Ckink) 2731.2 3034.7 3338.1 3138.7873 3160.5550 

Dv5 Tip-Chord(Csemi) 1401.0 1556.7 1712.4 1570.0544 1501.5888 

Dv6 Twist Angle )(  -5.0° -4.631° -3.0° -4.445511° -4.603918° 

Const. Wing Weight(
0WW )  14.3024  14.284285 14.299511 

Table 8: Design variables and optimum values of DLR-F4 wing/body 
 

Obj. fn. & 
Constraint 

Baseline 
model 

1st-stage design 2nd-stage design 

Kriging + GA Kriging-EI + GA Kriging-EI + Adjoint 

LC  0.710176 0.708225 0.711111 0.7077625 

DC  0.023014 0.021064 0.020632 0.0202102 

Table 9: Comparison of objective function and constraint values (2-stage design/DLR-F4) 
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Figure 24: Comparison of baseline model with 

designed models (kriging method) 

 
Figure 25: Pressure contour of baseline model 

 
After 2-stage design process, drag coefficient decreases by 12.3%, and variation of 

lift coefficient during the design process is less than 0.3% of the initial value as shown 
Figure 26. As the result, L/D increases from 30.85 to 35.02 after the 2-stage design 
process. It is observed that shock strength on wing surface from root and mid-span is 
almost eliminated after the 2-stage design process as shown in Figure 28, and shock 
wave on the wing tip is weakened though it does not decrease as much as mid-span. 

 

 
Figure 26: 2-stage design history of DLR-F4 

 
Figure 27: Pressure contour of 2-stage designed model

 

 

 
Figure 28: Surface pressure distribution 
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4.3 Viscous Design of DLR-F4 

For the final practical design case, viscous design of DLR-F4 is performed. To 
secure the accuracy of flow solution at boundary layer, sub-cell TFI(Transfinite 
Interpolation) is applied where the surfaces are overlapped at the block interface such as 
fuselage-collar, collar-wing and wing-tipcap interface. The free stream Mach  number is 
0.75, the angle of attack is 0.0 degree and Reynolds number is 63 10 , which 
corresponds to the cruising condition. 7 blocks overset grid system which has same grid 
topology with inviscid design is used and the total number of mesh point is 3.2million. 

 
Design variable(Dv) Min Baseline Max Kriging-EI(inviscid) Kriging-EI(viscous)

Dv1 Sweepback Angle )(  25° 27.15° 30° 27.03516° 25.24544° 

Dv2 Kink-Span(Skink) 3733.5 4148.6 4563.2 3908.1826 4322.3576 

Dv3 Semi-Span(Ssemi) 11682.0 12980.5 14273.0 12990.120 12875.270 

Dv4 Kink-Chord(Ckink) 2731.2 3034.7 3338.1 3160.5550 3252.0836 

Dv5 Tip-Chord(Csemi) 1401.0 1556.7 1712.4 1501.5888 1709.6295 

Dv6 Twist Angle )(  -5.0° -4.631° -3.0° -4.603918° -4.9590° 

Const. Wing Weight(
0WW )  14.3024  14.299511 14.29989 

Table 10: Design variables and optimum values of DLR-F4 wing/body 
 

Obj.-Fn. & constraint Baseline model 
1st –stage design 2nd –stage design 

Planform design Surface design 

LC  0.491270 0.491078 TBA 

DC  0.032227 0.031038 TBA 

Weight 14.3024 14.29989 N/A 

Table 11: Comparison of objective function & constraint values 
 

Table 10 shows the 1st-stage design result. The modification of planform variables is 
slightly different from inviscid case while the transonic wing case which shows similar 
modification trend. It may be caused by geometry distinction between transonic wing 
and wing-body. Moreover, additional 2 kink parameter for planform variable makes 
DOF of design space higher than the simple transonic wing case. Reduction of Drag 
coefficient may look like that the improvement of the present design is less impressive 
compared to inviscid case. However, the drag, which is caused by the fuselage, remains 
at a constant value through the whole design process, because design variables are 
applied to the wing section only. Thus, the portion of fuselage drag actually increases as 
the whole drag coefficient decreases at each design step. If effects of the fuselage are 
considered in actual design process, aerodynamic performance could be more improved 
than the present result. 

After the planform design, surface design process is still running. The author regrets 
that fully converged 2-stage design results are not included in this paper because 
viscous wing-body design requires more computational cost than what we expected. 
The final results will be shown in the presentation. 



JinWoo Yim, ByungJoon Lee and Chongam Kim 

 

 18

5 CONCLUSION  

An efficient high-fidelity multi-stage design optimization approach is proposed by 
combining global and local optimization techniques. At 1st stage design, wing planform 
design is carried out by GA optimizer based on the Kriging method. Additional sample 
points using the EI algorithm are efficiently added into Kriging model for the enhanced 
global search of wing planform geometry. At 2nd stage design, wing surface is then 
modified by the GBOM approach based on the discrete adjoint method which brings a 
substantial reduction of wave drag. To secure stable convergence characteristics of 
adjoint solver, a 4th-order numerical dissipation is used for the discrete adjoint 
formulation. Performance improvements of the designed model are evaluated through 
the drag decomposition technique. The portion of induced drag and wave drag analyzed 
by drag decomposition can provide concrete information on dominant design parameter 
and/or stage for drag reduction. The proposed design approach is applied to the re-
design of the ONERA-M6 wing and DLR-F4 wing/body configuration using overset 
inviscid and viscous flow analysis/adjoint codes. Results of the two design cases 
demonstrate that the proposed multi-stage design approach can efficiently improve the 
aerodynamic performance of three-dimensional aircraft configuration by exploiting 
advantages of the global and local optimization methods. Especially, the proposed 
multi-stage design approach is expected to be quite useful to deal with design problems 
with drastic geometric change where gradient-based optimization methods might have 
some difficulties. 

ACKNOWLEDGEMENT 

This work is supported by the Korea Science and Engineering Foundation (KOSEF) 
grant funded by the Korea government (MEST) (No.20090084669), NSL (National 
Space Lab.) program through the National Research Foundation of Korea funded by the 
Ministry of Education, Science and Technology (Grant 20090091724). The authors also 
would like to acknowledge the financial support from Agency for Defense 
Development, the second stage of the Brain Korea-21 Project for the Mechanical and 
Aerospace Engineering Research at Seoul National University. 

REFERENCES 

[1] John McCall, Genetic algorithm for modelling and optimization, Journal of 
Computational and Mathematics, Vol. 184, 2005. 
 

[2] H.S Chung and J.J Alonso, Multi-objective Optimization using Approximation 
Model-Based Genetic Algorithm, 10th AIAA/ISSMO, Multidisciplinary Analysis and 
Optimization Conference, AIAA 2004-4325 Albany, NY, September 2004. 
 

[3] Wataru YAMAZAKI, Kisa MATSUSHIMA and Kazuhiro NAKAHASHI, 
Aerodynamic Shape Optimization Based on Drag Decomposition, 24th Applied 
Aerodynamics Conference, AIAA-2006-3332, 2006. 
 



JinWoo Yim, ByungJoon Lee and Chongam Kim 

 

 19

[4] R.H. Myers, and D.C. Montgomery, Response surface methodology: process and 
product optimization using design experiments, Wiley, New York, 1978. 
 

[5] Ahn.J.K., Kim.H.J., Lee.D.H. and Rho.O.H., Response Surface Method for Aircraft 
Design in Transonic Flow, Journal of Aircraft, Vol. 38, No.2, pp.231-238.2001. 
 

[6] Jerome Sacks, William J. Welch, Toby J. Mitchell and Henry P. Wynn, Design and 
Analysis of Computer Experiments, Statistical Science, Vol. 4, No. 4, pp. 409-435, 
1989. 
 

[7] Timothy W. Simpson, Timothy M. Mauery, John J. Korte and Farrokh Mistree, 
Comparison of response surface and kriging models for multidisciplinary design 
optimization, American Institute of Aeronautics and Astronautics, AIAA-98-4755, 1998. 
 

[8] Donald R. Jones, Matthias Schonlau and William J. Welch, Efficient Global 
Optimization of Expensive Black-Box Function, Journal of Global Optimization, Vol. 
13, pp.455-492, 1998. 
 

[9] Mockus J., Tiesis V. and Zilinskas A., The Application of Bayesian Methods for 
Seeking the Extremum, Toward Global Optimization, Vol. 2, pp.117-129, 1978. 
 

[10] Shinkyu Jeong, Mitsuhiro Murayama and Kazuomi Yamamoto, Efficient 
Optimization Design Method Using Kriging Model, Journal of Aircraft, Vol. 42, No.2, 
pp.413-420, 2005. 
 

[11] Kasidit Leoviriyakit and Antony Jameson, Multi-point Wing Planform 
Optimization via Control Theory, 43rd Aerospace Science Meeting and Exhibit, 2005-
0450, January 10-13,Reno, Nevada, 2005. 
 

[12] B. J. Lee and C. Kim, Automatic Design Methodology of Turbulent Internal Flow 
using Discrete Adjoint Formulation, Journal of Aerospace Science and Technology, 
Vol.11, 2007, pp. 163,173. 
 
[13] B. J. Lee and C. Kim, Aerodynamic Redesign Using Discrete Adjoint Approach on 
Overset Mesh System, Journal of Aircraft, Vol.45. No.5. 2008, pp.1643, 1653. 
 

[14] Dimitri J. Marvrisplis, Discrete Adjoint-Based Approach for Optimization 
Problems on Three-Dimensional Unstructured Meshes, AIAA Journal, Vol. 45, No. 4, 
April, 2007. 
 

[15] E.J Nielsen and W.K Anderson, Recent Improvements in Aerodynamic Design 
Optimization on Unstructured Meshes, AIAA Journal, Vol. 40, No. 6, pp. 1155-1163, 
2002. 
 



JinWoo Yim, ByungJoon Lee and Chongam Kim 

 

 20

[16] S. Koc, H. Kim and K. Nakahashi, Aerodynamic Design Optimization of Wing-
Body Configuration, AIAA paper, 2005-331. 
 

[17] B. J. Lee and Chongam Kim, Strategies for Robust Convergence Characteristics of 
Discrete Adjoint Solver, 5th International Conference of Computational Fluid Dynamics, 
2008. 
 
[18] Byung Joon Lee, Meng-Sing Liou and Chongam Kim, Optimizing a Boundary-
Layer-Ingestion Offset Inlet by Discrete Adjoint Approach, AIAA Journal.(Accepted) 
 

[19] R.M. Cumming, M.B. Giles and G.N. Shrinivas, Analysis of the Elements of Drag 
in Three-Dimensional Viscous and Invicid Flow, AIAA paper 96-2482-CP, 1996. 
 

[20] Micheal B. Giles and Russell M. Cummings, Wake Integration for Three-
Dimensional Flowfield Computation: Theoretical Development, Journal of Aircraft, 
Vol. 36, No. 2, pp.357-365. 1999. 
 

[21] C.P. van Dam, Recent experience with different methods of drag prediction, 
Progress in Aerospace Science 35 (1999), pp. 751-798. 1996. 
 

[22] Luigi Paparone and Renato Tognaccini, Computational Fluid Dynamics-Based 
Drag Prediction and Decomposition, Journal of Aircraft, Vol. 41, No. 9, pp.1647-1657. 
2003. 
 

[23] Kasidit Leoviriyakit and Antony Jameson, Aerodynamic Shape Optimization of 
Wings including Planform Variations, 41th AIAA Aerospace Science Meeting and 
Exhibit, 2003-0210, January 6-9, Reno, Nevada, 2003. 
 

[24] Sung-soo Kim, Chongam Kim, Oh-hyun Rho, and Seung Kyu Hong, Cures for the 
Shock Instability: Development of Shock-Stable Roe Scheme, Journal of 
Computational Physics, Vol. 182, No. 2, 2003, pp. 342-374. 


